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Abstract. In the general setting of a space of homogeneous type endowed with an Ahlfors
regular measure, we introduce the Banach spaces BMO and V MO defined through suitable cubes,
and we prove that these spaces are topologically equivalent to the standard ones usually defined
by means of balls. Through this fact we extend a known result of Sarason showing that C∞ is
locally dense in V MO in the setting of Carnot–Carathéodory metric spaces related to a family of
free Hörmander vector fields X1, . . . , Xq.

1. Introduction

The space of the functions with bounded mean oscillation BMO, is well known
for its several applications in real analysis, harmonic analysis and partial differen-
tial equations. In particular, for regularity problems regarding solutions of partial
differential equations, the subspace V MO of BMO plays a particular role. V MO is
the space of the vanishing mean oscillation functions and it was introduced by Sara-
son in 1975 (see [27]). In regularity problems the importance of V MO consists in a
density result due to Sarason: the space of smooth functions is dense in V MO. In
this note we prove the analogous result in a more general setting than the euclidean
one. First we introduce the classes BMO and V MO defined on spaces of homoge-
neous type endowed with an Ahlfors regular measure. Spaces of homogeneous type
appear first in Coifman and Weiss (see [8]). A space of homogeneous type is a set
with a quasimetric (that is a metric space with a weaker triangle property) endowed
with a Borel measure with respect to which the ratio between the measure of any
ball and the measure of the same ball with half radius is upper bounded by an
absolute constant (doubling property). These spaces have been investigated since,
in this context, classical results of real analysis such as Lebesgue theorem, Whitney
type decompositions, boundedness of maximal operators, representation formulas,
singular integrals, etc. are naturally settled. Particular spaces of homogeneous type

2000 Mathematics Subject Classification: Primary 43A80, 46E30, 46E35, 54E35.
Key words: VMO, spaces of homogeneous type, Carnot–Carathéodory metric, Ahlfors regular

measures.
Acknowledgements: It is a pleasure to acknowledge with gratitude E.M. Stein for his several

comments.



14 A.O. Caruso and M. S. Fanciullo

are Carnot–Carathéodory metric spaces whose distance is generated by the sub-unit
curves with respect to a system of free Hörmander vector fields X1, X2, . . . , Xq. The
main result of this paper is obtained adapting the original proof of Sarason to this
new setting. In order to do this, we use a decomposition of a space of homogeneous
type into “dyadic cubes” (see Christ [6, 7]; see also [11]) that allows us to employ a
natural convolution operator in these C-C spaces. As in the classical setting, our
density result has been used to solve Lp and BMO regularity problems of elliptic
equations and systems of the type

−X T
i

(
a i j

α β(x) X j uβ
)

= gα −X T
i f i

α(x)

with V MO coefficients, with respect to Carnot–Carathéodory metric (see [1, 5, 12,
2, 4, 13]).

2. BMO in spaces of homogeneous type

Let us begin by recalling the notion of space of homogeneous type.

Definition 2.1. A quasimetric d on a set S is a function d : S × S → [0, +∞[
with the following properties
(qm 1) d(x, y) = 0 if and only if x = y;
(qm 2) d(x, y) = d(y, x) ∀ x, y ∈ S;
(qm 3) ∃A0 > 0 such that d(x, y) ≤ A0 [d(x, z) + d(z, y)] ∀x, y, z ∈ S.

A quasimetric defines a topology in which the balls B(x, r) = {y ∈ S : d(x, y) < r}
form a base. These balls may be not open in general; anyway, given a quasimetric
d, it is easy to construct an equivalent quasimetric d ′ such that the d ′-quasimetric
balls are open (the existence of d ′ has been proved by using topological arguments
in [21]): so we can assume that the quasimetric balls are open.

Definition 2.2. A space of homogeneous type (S, d, µ) is a set S with a quasi-
metric d and a Borel measure µ finite on bounded sets such that, for some absolute
positive constant A1, the following doubling property holds

(D) µ(B(x, 2r)) ≤ A1 µ(B(x, r))

for all x ∈ S and r > 0.

The number Q = log2 A1 (where A1 is the least number satisfying (D) ) is called
the homogeneous dimension of the space (S, d, µ).

It is well known that a space of homogeneous type (S, d, µ) satisfies the following
equivalent properties:

(i) there exists an integer N such that for every x ∈ S and for every r > 0, the
ball B(x, r) contains at most N points x1, x2, . . . , xN with d(xi, xj) ≥ r/2,
for i 6= j;

(ii) there exists an integer N such that for every x ∈ S, for every r > 0 and
for every n ∈ N, the ball B(x, r) contains at most Nn points x1, x2, . . . , xNn

with d(xi, xj) ≥ r/2n, for i 6= j.
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The equivalence of these two properties has been proved in [8]. We recall that a
metric space S satisfying (i) or (ii) is usually called a doubling metric space; some
other properties may be found in [19].

Definition 2.3. A Borel measure µ on a quasimetric space is said to be Ahlfors
regular of dimension Q if there exist two absolute positive constants a and A such
that for all x ∈ S and r > 0 it results

(A) a rQ ≤ µ(B(x, r)) ≤ ArQ.

It is clear that (A) implies (D).
In the following, we shall assume that (S, d, µ) is a space of homogeneous type

with µ Ahlfors regular measure; moreover, we assume that any open ball—and
consequently the whole space—is a connected subset of S.

The first assumption is useful for Definitions 2.5 and 2.13 of VMO spaces; more-
over, the two assumptions jointly simplify the proof of Proposition 2.14: each of
them is satisfied in Carnot–Carathèodory metric spaces studied in Section 3.

If E ⊆ S is a Borel set with positive measure and f ∈ L1(E), we denote by fE

the integral average
∫−Ef dµ = 1

µ(E)

∫
E

f dµ.

Definition 2.4. (BMO with balls) BMO(S) is the set of classes of equivalence
of functions f (with finite integral on bounded sets), modulo additive constants, such
that each of the two following equivalent conditions is satisfied

sup
x∈S
r>0

∫
−

B(x,r)

|f − fB(x,r)| dµ < +∞,

sup
x∈S
r>0

inf
c∈R

∫
−

B(x,r)

|f − c | dµ < +∞.

We denote by ‖ · ‖BMO(S) each of the two equivalent norms above: according to
the context it will be clear which of them we will refer to.

Definition 2.5. (V MO with balls) A function f ∈ BMO(S) belongs to the
space V MO(S) if

M0(f) = lim
a→0+

Ma(f) = 0,

where
Ma(f) = sup

x∈S
0<r≤a

inf
c∈R

∫
−

B(x,r)

|f − c| dµ.

The first results regarding the decomposition of a metric space with cubes ap-
peared in [9] and [10]. In a more general setting than [9], Christ introduced a
decomposition of a space of homogeneous type (S, d, µ) (see [6] and [7]): we thank
R. L.Wheeden for pointing to us recently that a similar construction can be found in
[28] (see also [29]). Actually, in [6] and [7], the following theorem has been proved:

Theorem 2.6. For any k ∈ Z there exist a set, at most countable, Ik, and a
family of subsets Qk

α ⊆ S, with α ∈ Ik, such that
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(1) µ(S \⋃
α Qk

α) = 0 ∀ k ∈ Z;
(2) for any α, β, k, l with l ≥ k, either Ql

β ⊆ Qk
α or Ql

β ∩Qk
α = ∅;

(3) for each Qk+1
α there exists exactly one Qk

β (parent of Qk+1
α ) such that Qk+1

α ⊆
Qk

β;

(4) for each Qk
α there exists at least one Qk+1

β (child of Qk
α) such that Qk+1

β ⊆ Qk
α.

These open subsets of the kind Qk
α are called dyadic cubes of generation k due to

the analogy between them and the standard euclidean dyadic cubes. To construct
them, for any fixed real number δ ∈]0, 1[ and for any integer k, Christ considers a
maximal collection of points zk

α ∈ S such that

d(zk
α, zk

β) ≥ δk ∀ α 6= β.

He orders the pairs (k, α) by constructing a tree with the following properties:
1) for each k ∈ Z and x ∈ S there exists α such that d(x, zk

α) < δk;
2) if (k, α) ≤ (l, β) then k ≥ l;
3) for each (k, α) and l ≤ k there exists an unique β such that (k, α) ≤ (l, β);
4) if (k, α) ≤ (k − 1, β) then d(zk

α, zk−1
β ) < δk−1;

5) if (l, β) ≤ (k, α) then d(zl
β, zk

α) ≤ 2A0 δk.

Then, for a suitable real number a0 ∈
]
0, 1

2 A0
[, he defines the open set Qk

α as follows

Qk
α =

⋃

(l,β)≤(k,α)

B(zl
β, a0 δl).

We enunciate some other useful properties regarding such dyadic cubes:
(5) there exists ε > 0 such that if Qk+1

α ⊆ Qk
β then µ(Qk+1

α ) ≥ ε µ(Qk
β);

(6) there exists c1 > 1 such that diam(Qk
α) ≤ c1 δk;

(7) there exists C̃ > 0 such that for each (α, k) there exists zk
α ∈ S such that

B(zk
α, a0δ

k) ⊆ Qk
α ⊆ B(zk

α, C̃δk).

In the sequel the following lemmas and definitions will be useful.

Lemma 2.7. There exists an absolute positive constant C such that, for any
integer k, if R ∈ ]0, δk], then the number of dyadic cubes of generation k that
intersect B(x,R) is at most C.

Proof. Fix k ∈ Z, x ∈ S, 0 < R ≤ δk and suppose that for some α ∈ Ik there
exists y ∈ B(x,R) ∩ Qk

α. So we can find (l, β) ≤ (k, α) such that y ∈ B(zl
β, a0δ

l).
Then d(zk

α, x) ≤ A0d(zk
α, y)+A0d(y, x) ≤ A2

0d(zk
α, zl

β)+A2
0d(zl

β, y)+A0R ≤ 2A3
0δ

k +
A0

2
δl +A0R ≤ c ′δk, with c ′ = 2A3

0 +A0/2+A0, from which zk
α belongs to B(x, c ′δk).

From ii) and the maximality of the family {zk
α}α∈Ik

the thesis follows. ¤

Definition 2.8. Let Q′ and Q′′ be two dyadic cubes. We say that Q′ is 1-step
contiguous to Q′′ if ∂Q′ ∩ ∂Q′′ 6= ∅. Moreover we say that Q′ is h-step contiguous
(h ≥ 2) to Q′′ if Q′ is 1-step contiguous to some (h−1)-step dyadic cube contiguous
to Q′′.
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The proof of the following lemma is similar to the one above.

Lemma 2.9. There exists an absolute positive constant C ′ such that, for every
dyadic cube Qk

α, there exist at most C ′ dyadic cubes of the same generation k that
are 1-step contiguous to Qk

α.

Now we are able to define “cubes” on our space of homogeneous type.

Definition 2.10. We call cube either a dyadic cube or the union of a given
dyadic cube with its contiguous cubes of the same generation, up to some step
h ≥ 1.

Remark 2.11. In the euclidean setting we can construct these cubes using
standard euclidean dyadic cubes, thus obtaining a family of cubes “dense”, in some
sense, in the family of all euclidean cubes. The analogy between the cubes in
Definition 2.10 and the euclidean ones defined by glueing euclidean dyadic cubes, is
useful for a geometric interpretation of Proposition 2.14 below.

We will denote by Q a generic cube of the space of homogeneous type (S, d, µ).

Definition 2.12. (BMO with cubes) BMOC (S) is the set of classes of equiv-
alence of functions f (with finite integral on bounded sets), modulo additive con-
stants, such that each of the two following equivalent conditions is satisfied

sup
Q

∫
−

Q

|f − fQ| dµ < +∞,

sup
Q

inf
c∈R

∫
−

Q

|f − c | dµ < +∞.

As before we denote by ‖ · ‖BMOC (S) each of the two above equivalent norms;
moreover, by standard arguments (see for instance [24]) it can be proved that the
spaces BMO(S) and BMOC (S) are Banach spaces.

Definition 2.13. (V MO with cubes) A function f ∈ BMOC (S) belongs to
the space V MOC (S) if

MC ,0(f) = lim
a→0+

MC ,a(f) = 0,

where

MC ,a(f) = sup
diam(Q)≤a

inf
c∈R

∫
−

Q

|f − c| dµ.

Now we can show the equivalence between the spaces BMO(S) and BMOC (S).

Proposition 2.14. Let (S, d, µ) be a space of homogeneous type with µ Ahlfors
regular measure. Then there exists an absolute positive constant C such that

(B)
1

C
‖ · ‖BMO(S) ≤ ‖ · ‖BMOC (S) ≤ C ‖ · ‖BMO(S).

Proof. Since the spaces BMO(S) and BMOC (S) are complete, it suffices to
prove that BMOC (S) is continuously embedded into BMO(S).
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Let us consider a ball B(x0, r) : we have to construct two cubes Q′ and Q′′, such
that Q′ ⊆ B(x0, r) ⊆ Q′′. We stress that all set inclusions within this proof hold up
to µ-negligible sets.

Let k be an integer such that δkA0(a0 +2A2
0 +A0) < r ≤ δk−1A0(a0 +2A2

0 +A0).
From property 1), there exists α ∈ Ik such that d(x0, z

k
α) < δk < r, from which

zk
α ∈ B(x0, r). It results Q′ = Qk

α ⊆ B(x0, r). Indeed, let x ∈ Qk
α : there exists

(l, β) ≤ (k, α) such that x ∈ B(zl
β, a0δ

l). Then

d(x, x0) ≤ A0d(x, zl
β) + A2

0d(zl
β, zk

α) + A2
0d(zk

α, x0)

< δkA0(a0 + 2A2
0 + A0) < r.

Now we construct a cube Q′′ such that B(x0, r) ⊆ Q′′. From property 3), there
exists a unique β such that (k, α) ≤ (k − 1, β). If B(x0, r) * Qk−1

β , let Qk−1
γ

be a dyadic cube (different from Qk−1
β ) such that Qk−1

γ ∩ B(x0, r) 6= ∅. Now we
estimate the distance between zk−1

γ and zk−1
β . Let x ∈ Qk−1

γ ∩B(x0, r), there exists
(l, ζ) ≤ (k − 1, γ) such that x ∈ B(zl

ζ , a0δ
l). From properties 4) and 5), we have

d(zk−1
γ , zk−1

β ) ≤ A0d(zk−1
γ , x) + A0d(x, zk−1

β )

≤ A2
0d(zk−1

γ , zl
ζ) + A2

0d(zl
ζ , x) + A2

0d(x, x0) + A2
0d(x0, z

k−1
β )

≤ 2A3
0δ

k−1 + A2
0a0δ

l + A2
0r + A3

0d(x0, z
k
α) + A3

0d(zk
α, zk−1

β )

≤ 2A3
0δ

k−1 + A2
0a0δ

k−1 + A3
0(a0 + 2A2

0 + A0)δ
k−1

+ A4
0(a0 + 2A2

0 + A0)δ
k−1 + A3

0δ
k−1

≤ c(a0, A0)δ
k−1.

Then the points like zk−1
γ (centers of dyadic cubes of generation k− 1 that intersect

B(x0, r) ) belong to a ball centered in zk−1
β . S is a space of homogeneous type (see

ii) ) so there exists an absolute number m (depending only on S) of points zk−1
γ

such that Qk−1
γ ∩ B(x0, r) 6= ∅ for any γ. Since B(x0, r) is connected, we can find

an integer s ≤ m, the maximum step of contiguity of all such cubes with respect
to Qk−1

β : define Q′′ as the union of Qk−1
β with its contiguous cubes of generation

k−1, up to the step s. According to Definition 2.10 Q′′ is a cube and it is the union⋃t
γ=1 Qk−1

γ , where t ≤ C ′ + C ′ 2 + · · ·+ C ′ m (C ′ is the constant in Lemma 2.9). So,
for c ∈ R, we have∫

−
B(x0,r)

|f − c |dµ ≤ 1

µ(B(x0, r))

∫

Q′′
|f − c | dµ

≤ 1

µ(B(x0, r))

t∑
γ=1

µ(Qk−1
γ )

∫
−

Q′′
|f − c | dµ

≤
t∑

γ=1

µ(Qk−1
γ )

µ(Qk
α)

∫
−

Q′′
|f − c | dµ.
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Now we observe that, from property (7) and Ahlfors regularity, we can find an
absolute positive constant c such that µ(Qk−1

γ )/µ(Qk−1
α ) ≤ c for all γ = 1, 2, . . . , t;

moreover from property (5), we have that
∑t

γ=1 µ(Qk−1
γ )/µ(Qk

α) ≤ t c/ε. So it
follows that, choosing c = fQ′′ , if f is in BMOC (S), then f is in BMO(S) and the
left inequality of (B) is proved. ¤

It is not difficult to verify that V MO(S) (respectively V MOC (S) ) is a closed
subspace of BMO(S) (respectively BMOC (S) ), so the following proposition holds.

Proposition 2.15. Let (S, d, µ) be a space of homogeneous type with µ Ahlfors
regular measure, then

V MO(S) = V MOC (S).

Remark 2.16. We stress that in this setting the space BMOC (S) is smaller
than the dyadic BMO(S), in analogy with the euclidean dyadic BMO (see [16]).
Proposition 2.14 is just the analogous of a property much more easy to verify in the
euclidean setting. Indeed, it is simple to prove that every euclidean cube can be
filled up (respectively covered) by a finite union of euclidean dyadic cubes, in such a
way that both the ratio between the measure of the covering union and the measure
of the given cube, and the ratio between the measure of the cube and the measure of
the enclosed union are bounded by an absolute positive constant. This fact proves
that, in the euclidean case, BMO equals BMOC , where, as noted in Remark 2.11,
the last one is made up by Definition 2.10 related to standard euclidean dyadic
cubes.

3. Carnot–Carathéodory spaces: A density result

In this section we prove that the class V MO is locally the closure of C∞ in the
space BMO, with respect to the Carnot–Carathéodory metric induced by a finite
set of free Hörmander vector fields.

We recall some preliminary facts about a particular class of nilpotent Lie groups:
for more details we refer, for instance, to [15, 30, 14] and to [31] for general facts
about Lie groups and Lie Algebras.

Let X1, . . . , Xq be generators of the free real Lie algebra g q,s. For every d ∈ N
and every multi-index α = (α1, . . . , αd) with 1 ≤ αi ≤ q, we set d = |α | and
denote by Xα the commutator of length d

[
Xα1 , [Xα2 , . . . , [Xαd−1

, Xαd
] . . . ]

]
. Then

there exists a finite set A such that {Xα}α∈A is a base for the underlying vector
space V of g q,s. Writing explicitly V =

⊕s
i=1 Vi, if N = Card(A), we can assume

A =
{
1, 2, . . . , N

}
so that if, for any i = 1, . . . , s, we set di = dim(Vi), one has d1 +

· · ·+ds = N. More precisely X1, . . . , Xq span V1 as a real vector space, so that d1 = q,
while Vi = [V1, Vi−1] for i = 2, . . . , s, being zero every further commutator. Let G be
the connected and simply connected Lie group associated to g q,s. By the property
of the global diffeomorphism exp: g q,s → G and the Baker–Campbell–Hausdorff
formula we can multiply two N-tuples of exponential coordinates—of the first kind—
of elements of G , so that we can identify G with (RN , ·), where “ · ” is a polynomial
law group. Moreover, it is possible to endow RN with a group of automorphisms
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{δλ}λ>0, called dilations, that we are going to describe. If V1 = span{Xj}1≤j≤d1

and Vi = span{Xj} d1+···+di−1+1≤j≤d1+···+di
for i = 2, . . . , s, it is enough to define, for

λ > 0, an automorphism γλ of the Lie algebra g q,s on the generators by the position
γλ(Xj) = λiXj for j = 1, . . . , N, where i = 1, 2, . . . , s is such that Xj ∈ Vi ; thus,
the position δλ = exp ◦ γλ ◦ exp−1 defines, for λ > 0, an automorphism on the Lie
group RN satisfying the following property: for any y = (yj)1≤j≤N ∈ RN it results
δλ(y) = (λiyj)1≤j≤N ∈ RN where i = 1 if j = 1, . . . , d1 and otherwise i = 2, . . . , s is
such that d1 + · · ·+ di−1 + 1 ≤ j ≤ d1 + · · ·+ di. We recall that actually in the Lie
group RN one has ξ ·η = ξ+η+Q(ξ, η), where Q = (Q1, . . . , QN) is a homogeneous
polynomial vector function such that Q1 = · · · = Qd1 = 0, Qj has degree i with
respect to any dilation δλ and depends only on the first d1 + · · ·+ di−1 coordinates,
for any d1 + · · ·+di−1 +1 ≤ j ≤ d1 + · · ·+di, and for any i = 2, . . . , s. With respect
to such group product the identity element is exactly 0 and the inverse ξ−1 of any
ξ ∈ RN is exactly −ξ. So RN comes to be a homogeneous group in sense of Folland
and Stein, more recently called Carnot group. Denoting by | · | the euclidean norm,
we can introduce in RN , endowed with the above Lie group structure, a homogeneous
norm || · || by setting, for every ξ ∈ RN , ‖ξ‖ = λ ⇔ |δ 1

λ
(ξ)| = 1 if ξ 6= 0 and ‖0‖ = 0

(note that the function [0, +∞[3 λ → |δλ(ξ)| ∈ [0, +∞[ is strictly increasing and
goes to infinity with λ, for any ξ 6= 0). This norm results a C∞ function outside
the origin and it follows that the law RN 3 (ξ, η) → ‖η−1 · ξ‖ ∈ [0, +∞[, defines a
quasimetric in RN . If τξ denotes either a left or a right translation on the Lie group
RN then, according to the polinomial form of the group law recalled before, the
matrix associated to dτξ is lower triangular with ones on the diagonal so that the
Lebesgue measure L N is the bi-invariant Haar measure. Moreover, for any fixed
dilation δλ it is clear that Jδλ

=diag
(
λ1, . . . , λ1

︸ ︷︷ ︸
d1

, λ2, . . . , λ2

︸ ︷︷ ︸
d2

, . . . , λs, . . . , λs

︸ ︷︷ ︸
ds

)
so that,

setting Q =
∑s

i=1 i di, det Jδλ
= λQ. It follows that, for every ξ ∈ RN , λ > 0 and

every Lebesgue measurable subset E, it results L N
(
δλ(ξ · E)

)
= L N

(
δλ(E · ξ)) =

λQ L N(E).
Now we denote by X a family {X1, X2, . . . , Xq} of C∞ real vector fields: without

lost of generality we can assume that these vector fields are defined on the whole
space RN .

The family X satisfies Hörmander condition of step s at some point ξ0 ∈ RN

if, for any fixed set A of indexes as above, {Xj(ξ0)}j∈A spans RN as vector space.
Moreover we say that the vector fields X1, X2, . . . , Xq are free up to order s at ξ0 if
dimV = N.

With such a family X we can introduce in RN the Carnot–Carathéodory metric
(see for instance [18]). A Lipschitz continuous curve γ : [0, T ] → RN is said to be
X-subunit if there exists a measurable vector function h = (h1, . . . , hq) : [0, T ] → Rq

such that γ̇(t) =
∑q

i=1 hi(t)Xi(γ(t)) for a.e. t ∈ [0, T ] and |h|∞ ≤ 1. Set

dX(x, y) = inf
{

T ≥ 0 | ∃ γ : [0, T ] → RN , X − subunit, γ(0) = x, γ(T ) = y
}

.
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From now on we assume that the vector fields X1, X2, . . . , Xq satisfy Hörmander
condition of step s and are free up to the same order at any point ξ ∈ RN .

Under these assumptions it can be shown that the above position defines a
metric on RN , usually called the Carnot–Carathéodory distance (briefly C-C metric)
associated to the family X. In the sequel we shall denote by B(ξ, r) a C-C ball
centered in ξ ∈ RN with radius r > 0.

Next theorem (see [25, 26]) establishes a correspondence between some neigh-
borhoods of the points ξ of a given compact set W endowed with the C-C metric
induced by a family of free Hörmander vector fields, and a neighborhood of the
origin 0 ∈ RN , endowed with a Carnot group structure; this correspondence also
makes possible to introduce a quasimetric on W, in terms of the distance between
the corresponding points of the neighborhood of the origin of RN . Actually, this
corrispondence imitates the standard one between the points of a real Lie algebra
and its (connected and simply connected) Lie group, based on the property of the
exponential mapping and the induced Malcev’s coordinates of the first kind on the
group. By means of this “local” coordinates, we will able to define locally a suitable
convolution modeled to the Carnot–Carathéodory metric.

Theorem 3.1. Let X = {X1, X2, . . . , Xq} be a family of C∞(RN) real vector
fields satisfying Hörmander condition of step s and free up to the same order at ξ0 ∈
RN . Then, for any fixed set A of indexes as above, there exist open neighborhoods
U of 0, V and W of ξ0, W b V, such that for any fixed ξ ∈ V, the mapping

U 3 y → η = exp

(
N∑

j=1

yjXj

)
ξ ∈ V

is invertible, and calling y = Θξ(η) its inverse, it results:
a) Θξ|V is a diffeomorphism onto the image for every ξ ∈ V ;
b) U ⊆ Θξ(V ) for every ξ ∈ W ;
c) Θ : V × V → RN defined by Θ(ξ, η) = Θξ(η) is C∞(V × V );
d) if we set, for any ξ, η ∈ V, ρ(ξ, η) = ‖Θ(ξ, η)‖, it results Θ(ξ, η) = Θ(η, ξ)−1

= −Θ(η, ξ) and there exists a positive constant c such that

ρ(ξ, η) ≤ c (ρ(ξ, ζ) + ρ(ζ, η)),

whenever ρ(ξ, ζ), ρ(ζ, η) ≤ 1.

Clearly we can assume that the neighborhood V is compactly contained in RN .
The topology induced on RN by the C-C metric associated to the family X and

the Euclidean topology are the same, nevertheless the C-C metric and the Euclidean
one are not equivalent: indeed, for any bounded subset E there exists a positive
constant C depending on X and E such that 1

C
|ξ− η| ≤ dX(ξ, η) ≤ C |ξ− η|1/s, for

any ξ, η ∈ E. Moreover, Lebesgue measure is locally doubling with respect to dX ;
actually, for any bounded subset E there exists R > 0 such that L N(B) ≈ rQ for
any C-C ball B with center in E and radius r ∈ ]0, R]. From the doubling property
and the local equivalence between dX and ρ of d) in Theorem 3.1 (see [25, 26]), it
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follows that the BMO and V MO spaces defined over the two space of homogeneous
type (V, dX , L N) and (V, ρ, L N) coincide.

In the sequel we shall assume (V, d, L N) as our space of homogeneous type,
where d is equivalently either dX or ρ.

At last we need to recall a relevant structure property of C-C balls, known as
Ball–Box Theorem (see [17, 20, 22]), that we state in a suitable form.

Theorem 3.2. Let X = {X1, X2, . . . , Xq} be a family of C∞(RN) real vector
fields satisfying Hörmander condition of step s and free up to the same order at any
point ξ ∈ RN . Set, for r > 0,

Box(r) =
{

y =(y1, . . . , yN) ∈ RN :

|yj| ≤ r if 1 ≤ j ≤ d1,

|yj| ≤ ri if d1 + · · ·+ di−1 + 1 ≤ j ≤ d1 + · · ·+ di

and for any i = 2, . . . , s
}

.

Then for any bounded subset E, if R > 0, there exist σ1, σ2 ∈ ]0, 1[, σ1 < σ2, such
that, for every ξ ∈ E and r ∈ ]0, R[, it results

B(ξ, σ1 r) ⊆
{

η ∈ RN : η = exp

(
N∑

j=1

yjXj

)
ξ : y ∈ Box(σ2 r)

}
⊆ B(ξ, σ2 r).

Now we are going to introduce a suitable convolution on the neighborhood W :
according to the notation of Theorem 3.1, we state first the following lemma which,
thanks to the Ball–Box theorem, geometrically says that the ball B(ξ, ε) with ξ ∈ W,
looks like a box in V and, through the diffeomorphism V c B(ξ, ε) 3 η → Θξ(η) ∈
RN , is mapped exactly, whatever ξ ∈ W is chosen, into a suitable ball of radius
s > 0, centered in the identity of the Carnot group RN , that we shall denote by
B(0, s). The easy proof, based on the properties of the map Θ, is omitted.

Lemma 3.3. There exist ε > 0 small enough such that, for all ε ∈ ]0, ε ] , it
results B(ξ, ε) b V for every ξ ∈ W and there exists a positive constant ϑ for which
B(0, ϑε) = Θ(ξ, B(ξ, ε)) for every ξ ∈ W .

So we can define, for y ∈ RN and ε > 0,

ϕ(y) =

{
0 if ‖y‖ ≥ 1
c exp

(
1

‖y‖2−1

)
if ‖y‖ < 1

,

where the constant c > 0 is such that
∫

B(0,1)
ϕ(y) dy = 1, and

ϕε(y) =
1

(ϑε)Q
ϕ
(
δ 1

ϑε
(y)

)
.

Clearly
∫

B(0,ϑε)
ϕε(y) dy = 1. Denote by Jξ the Jacobian of the map Θξ.
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Definition 3.4. If f ∈ L1
loc(V ) we set, for any ξ ∈ W and ε > 0 small enough,

fε(ξ) =

∫

B(0,ϑε)

f(Θ−1
ξ (y))ϕε(y) dy =

∫

B(ξ,ε)

f(η)ϕε(Θξ(η))Jξ(η) dη.

The convolution-type operator clearly behaves like the euclidean one, as shown
in the following lemma.

Lemma 3.5. If f ∈ L1
loc(V ), then

(a) fε ∈ C∞(W );
(b) fε → f a.e. as ε → 0; moreover, if f ∈ C(W ) then fε ⇒ f in any W ′ b W ;
(c) if 1 ≤ p < ∞, f ∈ Lp

loc(W ) and W ′ b W, then for ε > 0 small enough it
results ‖fε‖Lp(W ′) ≤ ‖f‖Lp(W ) and fε → f in Lp

loc(W
′);

(d) if f ∈ BMO(V ) then fε ∈ BMO(W ), moreover, for ε > 0 small enough it
results

‖fε‖BMO(W ) ≤ c̃ ‖f‖BMO(V )

where c̃ is an absolute positive constant.

Proof. We prove (d) since the other proofs are quite standard. Let B(ξ0, r) be
a ball centered in ξ0 ∈ W, and c ∈ R; for ε > 0 small enough it results∫

B(ξ0,r)

|fε(ξ)− c| dξ ≤
∫

B(ξ0,r)

∫

B(0,ϑε)

|f(Θ−1
ξ (y))− c|ϕε(y) dy dξ( I)

=

∫

B(0,ϑε)

ϕε(y)

∫

B(ξ0,r)

|f(Θ−1
ξ (y))− c| dξ dy.

Applying Theorem 3.2 to the set E = B(ξ0, r), there exists σ ∈ ]0, 1[ such that
exp

( ∑N
j=1 yjXj

)
ξ ∈ B(ξ, σ r) ⊆ B(ξ, r), for any ξ ∈ B(ξ0, r) and for any y ∈

Box (σ r). By the very definition of homogeneous norm, it is possible to choose
ε > 0 small enough such that B(0, ϑε) ⊆ Box (σ r). Let κ > 1 be an absolute positive
constant—independent of ξ0—such that B(ξ, r) ⊂ B(ξ0, κr), for any ξ ∈ B(ξ0, r).
Finally observe that the inverse function of the map B(ξ0, r) 3 ξ → η = Θ−1

ξ (y) ∈
B(ξ0, κr), has a uniformly bounded jacobian with respect to y ∈ B(0, ϑε). So one
can find an absolute positive constant c̃ such that ( I) yields us∫

B(ξ0,r)

|fε(ξ)− c| dξ ≤ c̃

∫

B(0,ϑε)

ϕε(y)

∫

B(ξ0,κr)

|f(η)− c| dη dy,

from which the thesis follows. ¤
Last property allows us to extend to the setting of these Carnot–Carathéodory

metric spaces the density result first proved by Sarason in the Euclidean setting;
first we need the two following lemmas. We thank Marco Bramanti for useful hints
in the proof of the second one.

Lemma 3.6. There exists an absolute positive constant K such that, if a > 0,
for all f ∈ BMO(V ) there exists a function g ∈ C∞(W ) such that

‖f − g‖BMOC (W ) ≤ K MC ,a(f).
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Proof. Fix f ∈ BMOC (W ), a > 0, and l > MC ,a(f). Let k be an integer to be
fixed later and let h be the step function assuming the value fQk

α
on Qk

α. Now we
estimate ‖f −h‖BMOC (W ). Let Q be a cube made up around a dyadic cube of some
generation k; taking k′ ≥ max{k, k} we can also write Q =

⋃m
α=1 Qk′

α . It results∫
−

Q

|f − h− (f − h)Q| dx ≤ 2

∫
−

Q

|f − h| dx =
2

|Q|
m∑

α=1

∫

Qk′
α

|f − fQk′
α
| dx ≤ 2 l.

According to Lemma 3.3, for any ε ≤ δk′ small enough, let us consider the function
hε. If ξ ∈ W, then, up to a Lebesgue negligible set, ξ belongs to some Qk′

α . By
Lemma 2.7 there exist at most C dyadic cubes of generation k′ that intersect the
ball B(ξ, ε). Let s ≤ C the maximum step of contiguity of all such cubes with
respect to Qk′

α ; define Q′ as the union of Qk′
α with its contiguous cubes up to the

step s: namely Q′ =
⋃t

β=1 Qk′
β , where t ≤ c = C ′ + C ′ 2 + · · · + C ′ C ; moreover

diam(Q′) ≤ p(C ′, C) c1 δk′ , where p(C ′, C) is a polynomial depending only on the
embraced constants. Choosing so k such that p(C ′, C) c1 δk < a, we have, for any
β = 1, 2, . . . , t,

|fQk′
β
− fQ′| ≤

∫
−

Qk′
β

|f − fQ′| dξ ≤ |Q′|
|Qk′

β |
∫
−

Q′
|f − fQ′| dξ ≤ c c l,

where c is the constant as in Proposition 2.14. So, for any β1, β2 = 1, 2, . . . , t, it
results

|fQk′
β1

− fQk′
β2

| ≤ |fQk′
β1

− fQ′|+ |fQ′ − fQk′
β2

| ≤ 2 c c l,

from which

|h(ξ)− hε(ξ)| ≤
∫

B(ξ,ε)

|h(ξ)− h(η)|ϕε(Θξ(η))Jξ(η) dη ≤ 2 c c l.

Now we can estimate the ‖f − hε‖BMOC (W ):
‖f − hε‖BMOC (W ) ≤ ‖f − h‖BMOC (W ) + ‖h− hε‖BMOC (W ) ≤

≤ 2l + 2‖h− hε‖∞ ≤ K l,

where K = 2(1 + c c). ¤

Lemma 3.7. Let Ω′′ b Ω′ ⊆ RN be open subsets. Then there exists an absolute
positive constant K such that, if a > 0 and f ∈ BMO(Ω′), then there exists a
function g ∈ C∞(Ω′′) such that

‖f − g‖BMOC (Ω′′) ≤ K MC ,a(f).

Proof. Since Ω′′ is compact, it is a finite union of suitable balls Bi; using a
partition of unity related to these balls we can construct a function g ∈ C∞(Ω′′)
and, arguing as in Lemma 4.4 of [3], we can control the BMO(Ω′′) norm of f − g
with the norm BMO(Bi). ¤
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So our density result follows.

Theorem 3.8. Let Ω′′ b Ω′ ⊆ RN be open subsets, and f ∈ V MO(Ω′). Then
there exists a sequence {fn} in C∞(Ω′′) such that fn → f in BMO(Ω′′). Moreover
fn → f a.e. in Ω′′.

References

[1] Acquistapace, P.: On BMO regularity for linear elliptic systems. - Ann. Mat. Pura
Appl. 161:4, 1992, 231–269.

[2] Bramanti, M., and L. Brandolini: Lp Estimates for nonvariational hypoelliptic operators
with V MO coefficients. - Trans. Amer. Math. Soc. 352:2, 1999, 781–822.

[3] Bramanti, M., and L. Brandolini: Estimates of BMO type for singular integrals on
spaces of spaces of homogeneous type and applications to hypoelliptic pdes. - Rev. Mat.
Iberoamericana 21:2, 2005, 511–556.

[4] Caruso, A.O.: Local S1,p
X estimates for variational hypoelliptic operators with local V MOX

coefficients. - Preprint.

[5] Chiarenza, F., M. Frasca, and P. Longo: W 2,p–solvability of the Dirichlet problem for
non divergence elliptic equations with V MO coefficients. - Trans. Amer. Math. Soc. 336:1,
1993, 841–853.

[6] Christ, M.: Lectures on singular integral operators. - Conference Board of the Mathematical
Sciences, Regional Conference Series in Mathematics 77, 1990.

[7] Christ, M.: A T (b) Theorem with remarks on analytic capacity and the Cauchy integral. -
Colloq. Math. LX/LXI:2, 1990, 601–628.

[8] Coifman, R., and G. Weiss: Analyse Harmonique Non-Commutative sur Certains Espaces
Homogenes. - Lectures Notes in Math. 242, Springer–Verlag, 1971.

[9] David, G.: Morceaux de graphes lipschitziens et integrales singulieres sur une surface. - Rev.
Mat. Iberoamericana 4:1, 1988, 73–114.

[10] David, G.: Wavelets and singular integrals on curves and surfaces. - Lecture Notes in Math.
1465, Springer–Verlag, 1991.

[11] David, G., and S. Semmes: Fractured Fractals and Broken Dreams. - Oxford Lecture Ser.
Math. Appl. 7, Clarendon Press Oxford, 1997.

[12] Di Fazio, G.: Lp estimates for divergence form elliptic equations with discontinuous coeffi-
cients. - Boll. Un. Mat. Ital. (7) 10:2, 1996, 409–420.

[13] Di Fazio, G., and M.S. Fanciullo: BMO regularity for elliptic systems in Carnot–
Carathéodory spaces. - Comm. Appl. Nonlinear Anal. 10:2, 2003, 81–95.

[14] Franchi, B., R. Serapioni, and F. Serra Cassano: On the structure of finite perimeter
sets in step 2 Carnot groups. - J. Geom. Anal. 13:3, 2003, 421–466.

[15] Folland, G.B., and E.M. Stein: Hardy spaces on homogeneous groups. - Princeton Uni-
versity Press, 1982.

[16] Garnett, J. B., and P.W. Jones: BMO from dyadic BMO, Pacific J. Math. 99:2 (1982),
351-371.

[17] Gromov, M.: Carnot–Carathéodory spaces seen from within. - In: Sub-Riemannian Geom-
etry, Progr. Math. 144, ed. by A. Bellaïche and J. Risler, Birkhäuser, 1996.



26 A.O. Caruso and M. S. Fanciullo

[18] Hajłasz, P., and P. Koskela: Sobolev met Poincaré. - Mem. Amer. Math. Soc. 688, 2000.

[19] Heinonen, J.: Lectures on Analysis in Metric Spaces. - Universitext, Springer–Verlag, 2001.

[20] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications.
- Math. Surveys Monogr. 91, 2002.

[21] Macias, R., and C. Segovia: Lipschitz functions on spaces of homogeneous type. - Adv.
Math. 33, 1979, 257–270.

[22] Nagel, A., E.M. Stein, and S. Wainger: Balls and metrics defined by vector fields I:
Basic properties. - Acta Math. 155, 1985, 130–147.

[23] Nagel, A., and E.M. Stein: Differentiable control metrics and scaled bump functions. - J.
Differential Geom. 57, 2001, 465–492.

[24] Neri, U.: Some properties of functions with bounded mean osccillation. - Studia Math. 61,
1977, 63–75.

[25] Rothschild, L. P., and E.M. Stein: Hypoelliptic differential operators and nilpotent
groups. - Acta Math. 137, 1976, 247–320.

[26] Sanchez-Calle, A.: Fundamental solutions and geometry of sum of squares of vector fields.
- Inv. Math. 78, 1984, 143–160.

[27] Sarason, D.: Functions of vanishing mean oscillation. - Trans. Amer. Math. Soc. 207, 1975,
391–405.

[28] Sawyer, E., andR.L. Wheeden: Weighted inequalities for fractional integrals on Euclidean
and homogeneous spaces. - Amer. J. Math. 114:4, 1992, 813–874.

[29] Sawyer, E., and R.L. Wheeden: Hölder continuity of weak solutions to subelliptic equa-
tions with rough coefficients. - Mem. Amer. Math. Soc. 180, 2006.

[30] Stein, E.M.: Harmonic Analysis: Real-Variable methods, Orthogonality and Oscillatory
Integrals. - Princeton Univ. Press, Princeton, 1993.

[31] Varadarajan, V. S.: Lie groups, Lie algebras, and their representations. - Grad. Texts in
Math. 102, Springer–Verlag, 1984.

Received 28 July 2004


