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Abstract. We prove a partial regularity result for local minimizers u : Rn ⊃ Ω → RM of
the variational integral J(u, Ω) =

∫
Ω

f(∇ku) dx, where k is any integer and f is a strictly convex
integrand of anisotropic (p, q)-growth with exponents satisfying the condition q < p(1 + 2

n ). This
is some extension for the case n ≥ 3 of the regularity theorem obtained in [BF2].

1. Introduction

In this note we study the regularity properties of local minimizers u : Ω → RM

of higher order variational integrals of the form

J(w, Ω) =

∫

Ω

f(∇kw) dx,

where Ω is a domain in Rn, n ≥ 2, and k ≥ 2 denotes a given integer. The
symbol ∇kw stands for the tensor of all kth order (weak) partial derivatives of
the function w, i.e. ∇kw = (Dαwi)|α|=k,1≤i≤M,α∈Nn

0
. Our main assumption concerns

the energy density f : we consider f ≥ 0 of class C2 satisfying with given exponents
1 < p ≤ q < ∞ and with positive constants λ, Λ the anisotropic ellipticity condition

(1.1) λ(1 + |σ|2) p−2
2 |τ |2 ≤ D2f(σ)(τ, τ) ≤ Λ(1 + |σ|2) q−2

2 |τ |2

being valid for all tensors σ and τ . Note that the left-hand side of (1.1) implies the
strict convexity of f , moreover, it is easy to see that

(1.2) a|τ |p − b ≤ f(τ) ≤ A|τ |q + B

is true with constants a, A > 0, b, B ≥ 0.
According to (1.2) the appropriate space for local minimizers is the energy class

consisting of all Sobolev functions u ∈ W k
p,loc(Ω;RM) such that J(u, Ω′) < ∞ for
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any subdomain Ω′ ⊂⊂ Ω, and we say that a function u with these properties is a
local J-minimizer if and only if

J(u, Ω′) ≤ J(v, Ω′)

for any v ∈ W k
p,loc(Ω;RM) such that spt(u − v) ⊂⊂ Ω′, where as above Ω′ is an

arbitrary subdomain of Ω with compact closure in Ω. For a definition of the Sobolev
classes W k

p ,W k
p,loc, etc., we refer the reader to the book of Adams [Ad]. Now we can

state our main result:

Theorem 1.1. Let u denote a local J-minimizer where f satisfies (1.1). Sup-
pose further that p ≥ 2 together with

(1.3) q < p(1 +
2

n
).

Then there is an open subset Ω0 of Ω such that Ω−Ω0 is of Lebesgue measure zero
and u ∈ Ck,ν

loc (Ω0;R
M) for any exponent 0 < ν < 1.

Remark 1.1. i) In the two-dimensional case, i.e. n = 2, the partial regularity
result of Theorem 1.1 can be improved to everywhere regularity which means that
actually we have Ω0 = Ω. This is outlined in the recent paper [BF2].

ii) The anisotropic first order case, i.e. we have k = 1 and f satisfies conditions
similar to (1.1), is well investigated: without being complete we mention the pa-
pers of Acerbi and Fusco [AF], of Esposito, Leonetti and Mingione [ELM1,2,3] and
the results obtained by the second author in collaboration with Bildhauer, see e.g.
[BF1]. Further references are contained in the monograph [Bi]. Clearly the above-
mentioned results concern the case of vectorvalued functions. The anisotropic scalar
situation for first order problems has been discussed before mainly by Marcellini,
compare e.g. [Ma1,2,3], with the major result that conditions of the form (1.3) are
in fact sufficient for excluding the occurrence of singular points.

iii) If n ≥ 3 together with k ≥ 2, then partial Ck,ν-regularity of minimizers of
the variational integral

∫
Ω

f(∇ku) dx has been studied in the paper [Kr1] of Kronz.
Here the main feature however is the quasiconvexity assumption imposed on f , i.e.
the right-hand side of (1.1) is required to hold with q = p and the first inequality in
(1.1) is replaced by the hypothesis of uniform strict quasiconvexity with exponent
p ≥ 2. A related result concerning quasimonotone nonlinear systems of higher order
with p-growth (p ≥ 2) is established in [Kr2]. Of course the theorems of Kronz
imply our regularity result if we consider (1.1) in the isotropic case p = q together
with p ≥ 2.

For completeness we also like to mention the work of Duzaar, Gastel and Gro-
towski [DGG] dealing with partial regularity of certain higher order nonlinear el-
liptic systems and improving earlier results of Giaquinta and Modica established in
[GiaMo2].

iv) If the non-autonomous case I(w, Ω) :=
∫
Ω

F (x,∇kw) dx is considered with
integrand F (x, σ) satisfying (1.1) uniformly w.r.t. σ, and if in addition we require

|DxDσF (x, σ)| ≤ c1(1 + |σ|2) q−1
2
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then Theorem 1.1 remains valid, provided (1.3) is replaced by the stronger condition
q < p (1 + 1/n) and if for example we assume that F (x, σ) is given by F (x, σ) =
g(x, |σ|) for a suitable function g. The details are left to the reader, we refer to
[ELM3] and [BF3].

Remark 1.2. In Theorem 1.1 we have restricted ourselves to the case p ≥ 2.
In the subquadratic case an application of the techniques used by Carozza, Fusco
and Mingione in [CFM] will imply a comparable partial regularity result.

The proof of Theorem 1.1 is organized in two steps. First we introduce a suitable
regularization of our variational problem following the lines of [BF2] which leads
us to uniform higher integrability and higher weak differentiability results for the
solutions of the approximate problems which then extend to our local minimizer.
Note that these results are valid for all p ∈ (1,∞). In a second step we combine
this initial regularity with a blow–up procedure which will give partial regularity
as stated in Theorem 1.1. From now on and just for notational simplicity we will
assume that k = 2 together with M = 1. Moreover, we let n ≥ 3 for obvious
reasons. If necessary, we pass to subsequences without explicit indications, and we
use the same symbol to denote various constants with different numerical values.

2. Approximation and initial regularity

Let the assumptions of Theorem 1.1 hold but with arbitrary exponent p ∈
(1,∞). Consider a local J-minimizer u. We proceed as in [BF2] by fixing two open
domains Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. Then we consider the mollification um of u with radius
1/m,m ∈ N, and let um ∈ um+

◦
W2

q(Ω2) denote the unique solution of the problem

Jm(w, Ω2) := J(w, Ω2) + ρm

∫

Ω2

(1 + |∇2w|2)q/2 dx → min in um+
◦

W
2
q(Ω2),

where we have set

ρm := ‖um − u‖W 2
p (Ω2)

[ ∫

Ω2

(1 + |∇2um|2)q/2 dx
]−1

.

It is easy to see that (compare [BF2])

um ⇁ u in W 2
p (Ω2), J(um, Ω2) → J(u, Ω2), Jm(um, Ω2) → J(u, Ω2)

as m →∞. Next we use the Euler equation

(2.1)
∫

Ω

Dfm(∇2um) : ∇2ϕ dx = 0, ϕ ∈ ◦
W

2
q(Ω2),

fm := ρm(1+ | · |2)q/2+f , with the choice ϕ := ∂i(η
6∂ium), i = 1, . . . , n, η ∈ C∞

0 (Ω2),
0 ≤ η ≤ 1, η = 1 on Ω1, and get (from now on summation w.r.t. i) with the help of
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the Cauchy–Schwarz inequality for the bilinear form D2fm(∇2um)
∫

Ω2

η6D2fm(∇2um)(∂i∇2um, ∂i∇2um) dx

≤ c
{

(‖∇2η‖2
∞ + ‖∇η‖4

∞)

∫

spt∇η

|D2fm(∇2um)| |∇um|2 dx(2.2)

+ ‖∇η‖2
∞

∫

spt∇η

|D2fm(∇2um)| |∇2um|2 dx
}

where c denotes a finite constant independent of m. Of course this calculation
has to be justified with the help of the difference quotient technique using ϕ =
∆−h(η

6∆hum) in (2.1), ∆hum(x) := 1
h
[um(x + hei) − um(x)]. In case that q ≥ 2,

the reader can follow the steps in [BF2] leading from (2.6) to (2.13) where (2.12)
has to be adjusted for dimensions n ≥ 3. If q < 2, then we refer to [BF1] or [Bi],
pp. 55–57.

Inequality (2.2) implies local uniform higher integrability of the sequence
{∇2um}: let χ := n

n−2
and s := p

2
χ. For concentric balls Br ⊂⊂ BR ⊂⊂ Ω2 and

η ∈ C∞
0 (BR), 0 ≤ η ≤ 1, η = 1 on Br, |∇`η| ≤ c/(R − r)`, ` = 1, 2, we have by

Sobolev’s inequality
∫

Br

(1 + |∇2um|2)s dx ≤
∫

BR

(
η3[1 + |∇2um|2]s n−2

2n

)2χ

dx

=

∫

BR

(η3hm)2χ dx

≤ c
( ∫

BR

|∇(η3hm)|2 dx
) n

n−2
.

Here hm := (1 + |∇2um|2)p/4 is known to be of class W 1
2,loc(Ω2) on account of (2.2),

and with Young’s inequality we deduce
∫

Br

(1 + |∇2um|2)s dx ≤ c
[ ∫

BR

η6|∇hm|2 dx +

∫

BR

|∇η3|2h2
m dx

]χ

=: c[T1 + T2]
χ.

(2.3)

From (1.1) and (2.2) we get (TR,r := BR −Br)

T1 ≤ c(r, R)

∫

TR,r

(1 + |∇2um|2)
q−2
2

[
|∇2um|2 + |∇um|2

]
dx

≤ c(r, R)
[ ∫

TR,r

(1 + |∇2um|2)
q
2 dx +

∫

TR,r

|∇um|q dx
]
,

moreover

T2 ≤ c(r, R)

∫

TR,r

(1 + |∇2um|2)p/2 dx.
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Inserting these estimates into (2.3) we find that

(2.4)
∫

Br

(1 + |∇2um|2)s dx ≤ c(r, R)
[∫

TR,r

(1 + |∇2um|2)q/2 dx +

∫

TR,r

|∇um|q dx
]χ

for a constant c(r,R) = c(R − r)−β with suitable exponent β > 0. Fix Θ ∈ (0, 1)
such that

1

q
=

Θ

p
+

1−Θ

2s

(note: 2s = pχ > q on account of q < p(1 + 2
n
)). Then the interpolation inequality

implies
‖∇2um‖q ≤ ‖∇2um‖Θ

p ‖∇2um‖1−Θ
2s

where the norms are taken over TR,r, and we get:

(2.5)
∫

TR,r

|∇2um|q dx ≤
( ∫

BR

|∇2um|p dx
)Θq/p( ∫

TR,r

|∇2um|2s dx
)(1−Θ) q

2s
.

Before applying (2.5) to the first integral on the r.h.s. of (2.4) we discuss the second
one: we have (for any 0 < ε < 1)

(2.6)
∫

TR,r

|∇um|q dx ≤ ε

∫

TR,r

|∇2um|q dx + c(ε,R, r)

∫

TR,r

|um|q dx,

which follows for example from [Mo], Theorem 3.6.9. For the ε-term on the r.h.s.
of (2.6) we may use (2.5). By construction we know that supm ‖um‖W 2

p (Ω2) < ∞. If
p ≥ n, then the sequence {um} is uniformly bounded in any space W 1

t (Ω2), t < ∞,
thus we clearly have the boundedness of

∫
Ω2
|um|q dx. So let us assume that p < n.

Then
sup
m
‖um‖W 1

t (Ω2) < ∞
for t ≤ np

n−p
=: p. In case p ≥ n we are done. If p < n, then we obtain

sup
m
‖um‖Lt(Ω2) < ∞

for t ≤ np
n−p

= np
n−2p

. Obviously q ≤ np
n−2p

which is a consequence of (1.3) since
p(1 + 2

n
) ≤ np

n−2p
. Altogether we have shown that

(2.7)
∫

TR,r

|um|q dx ≤ c

for a constant c depending also on Ω2 and supm ‖um‖W 2
p (Ω2). Returning to (2.4),

inserting (2.6) combined with (2.7) and applying (2.5) we have shown that
∫

Br

(1 + |∇2um|2)s dx ≤ c(R− r)−β
[(∫

Ω2

(1 + |∇2um|2)
p
2 dx

)Θqχ/p

·
(∫

TR,r

(1 + |∇2um|2)s dx
)(1−Θ) qχ

2s
+ c

]
.

(2.8)
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Now, from (1.3) it follows that (1−Θ) qχ
2s

< 1, and we may therefore apply Young’s
inequality on the r.h.s. of (2.8) with the result∫

Br

(1 + |∇2um|2)s dx

≤
∫

TR,r

(1 + |∇2um|2)s dx + c(R− r)−β1

[(∫

Ω2

(1 + |∇2um|2)
p
2 dx

)β2

+ c
]
,

(2.9)

β1, β2 denoting positive exponents. Adding
∫

Br
(1 + |∇2um|2)s dx on both sides of

(2.9) this inequality turns into

(2.10)
∫

Br

(1 + |∇2um|2)s dx ≤ 1

2

∫

BR

(1 + |∇2um|2)s dx + K(R− r)−β1 ,

where the constant K on the r.h.s. of (2.9) also depends on sup
m

∫
Ω2
|∇2um|p dx. If

we use [Gi], Lemma 5.1, p. 81, inequality (2.10) implies the following

Lemma 2.1. Under the hypothesis of Theorem 1.1 and with the notation intro-
duced before we have that {um} is uniformly bounded in the space W 2

2s,loc(Ω2), s :=
p
2

n
n−2

. In particular we have that u belongs to W 2
q,loc(Ω2). Moreover, the functions

hm = (1 + |∇2um|2)p/4 are uniformly bounded in W 1
2,loc(Ω2).

Note that the last statement follows from (2.2) together with sup
m
‖um‖W 2

q,loc(Ω2) <

∞. We return to (2.1) and choose ϕ = ∂i(η
6∂i[um − Pm]) where η ∈ C∞

0 (Ω2), 0 ≤
η ≤ 1, and Pm denotes a polynomial function of degree ≤ 2. Similar to (2.2) we get
(using difference quotients)∫

Ω2

η6D2fm(∇2um)(∂i∇2um, ∂i∇2um) dx

≤ −
∫

spt∇η

D2fm(∇2um)
(
∂i∇2um,∇2η6∂i[um − Pm]

+ 2∇η6 ¯∇∂i(um − Pm)
)

dx,

where the sum is taken w.r.t. i = 1, . . . , n. We apply the Cauchy–Schwarz inequality
to the bilinear form D2fm(∇2um) with the result∫

Ω2

η6D2fm(∇2um)(∂i∇2um, ∂i∇2um) dx

≤ c
{(
‖∇2η‖2

∞ + ‖∇η‖4
∞

)∫

spt∇η

|D2fm(∇2um)| |∇(um − Pm)|2 dx

+ ‖∇η‖2
∞

∫

spt∇η

|D2fm(∇2um)| |∇2(um − Pm)|2 dx
}

(2.11)

in particular
∫
Ω2

η6|∇hm|2 dx is bounded by the right–hand side of (2.11). We claim

Lemma 2.2. Let h := (1 + |∇2u|2)p/4 Then the following statements hold:
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i) h ∈ W 1
2,loc(Ω2);

ii) hm ⇁ h in W 1
2,loc(Ω2);

iii) ∇`um −→ ∇`u a.e. on Ω2, ` ≤ 2.

If P is a polynomial function of degree ≤ 2, then
∫

Ω2

η6|∇h|2 dx

≤ c
{(
‖∇2η‖2

∞ + ‖∇η‖4
∞

)∫

spt∇η

|D2f(∇2u)| |∇(u− P )|2 dx

+ ‖∇η‖2
∞

∫

spt∇η

|D2f(∇2u)| |∇2(u− P )|2 dx
}

(2.12)

is true for any η ∈ C∞
0 (Ω2), 0 ≤ η ≤ 1.

Proof. From Lemma 2.1 we deduce that there exists a function ĥ ∈ W 1
2,loc(Ω2)

such that hm ⇁ ĥ in W 1
2,loc(Ω2) and almost everywhere. Suppose that we already

have iii). Then i), ii) are trivial. Moreover, if we choose Pm ≡ P in (2.11), Fatou’s
lemma implies that

∫

Ω2

η6|∇h|2 dx ≤ lim inf
m→∞

∫

Ω2

η6|∇hm|2 dx,

and we may control the quantities
∫
Ω2

η6|∇hm|2 dx with the help of (2.11) in
terms of the integrals

∫
spt∇η

|D2fm(∇2um)| |∇2um −∇2P |2 dx =:
∫
spt∇η

Φm dx and∫
spt∇η

|D2fm(∇2um)| |∇um − ∇P |2 dx =:
∫

spt∇η
Ψm dx. By Lemma 2.1 the inte-

grand Φm is uniformly bounded in L1+ε(spt∇η) for some ε > 0, thus Φm ⇁: Φ
in L1+ε(spt∇η) and therefore

∫
spt∇η

Φm dx → ∫
spt

Φ dx. But with the pointwise
convergence iii) we see that Φ = |D2f(∇2u)| |∇2u − ∇2P |. Obviously a similar
argument applies to

∫
spt∇η

Ψm dx which proves (2.12), and it remains to show iii)
just for ` = 2, the other cases are obvious. To this purpose we recall that in fact
we have shown that u is in the space W 2

q,loc(Ω) (due to the arbitrariness of Ω2) and

that by definition um is of class um+
◦

W2
q(Ω2). Therefore the following calculations

are justified: we have
∫

Ω2

(
f(∇2um)− f(∇2u)

)
dx

=

∫

Ω2

Df(∇2u) : (∇2um −∇2u) dx

+

∫

Ω2

∫ 1

0

D2f
(
∇2u + t[∇2um −∇2u]

)

· (∇2um −∇2u,∇2um −∇2u)(1− t) dt dx.

(2.13)
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Note that ‖u − um‖W 2
q (Ω̃) → 0 for all Ω̃ ⊂⊂ Ω, moreover the Euler equation for u

implies∫

Ω2

Df(∇2u) : (∇2um −∇2u) dx =

∫

Ω2

Df(∇2u) : (∇2um −∇2u) dx,

thus the first term on the r.h.s. of (2.13) vanishes as m →∞. The same is true for
the l.h.s. of (2.13) as it was remarked at the beginning of this section. This implies

lim
m→∞

∫

Ω2

∫ 1

0

D2f(∇2u + t[∇2um −∇2u])(∇2um −∇2u,∇2um −∇2u) dt dx = 0

and in the case p ≥ 2 the claim follows from (1.1). Suppose now that p < 2. Then
again by (1.1)

∫ 1

0

. . . dt ≥ λ

∫ 1

0

(1 + |∇2u + t(∇2um −∇2u)|2
) p−2

2 |∇2um −∇2u|2(1− t) dt

≥ c
(
1 + [|∇2u|+ |∇2um|]2

) p−2
2 |∇2um −∇2u|2.

For almost all x ∈ Ω2 we have

hm(x) → ĥ(x) < ∞,

therefore lim
m→∞

|∇2um(x)| exists and is finite for almost all x ∈ Ω2 (by the definition
of hm). If we consider such points x ∈ Ω2 and observe that by the above estimate

(
1 + [|∇2u|+ |∇2um|]2

) p−2
2 |∇2um −∇2u|2 → 0 a.e.,

then it is immendiate that |∇2um −∇2u|2 → 0 a.e., and the claim follows. ¤

3. Blow-up and partial regularity

In this section we give a proof of Theorem 1.1 where we restrict ourselves to the
case that p ≥ 2. As already remarked the subquadratic case can be handled with
techniques introduced in [CFM]. So let the hypothesis of Theorem 1.1 hold. Then
we have the following excess–decay lemma which is the key to partial regularity.

Lemma 3.1. Given a positive number L, define the constant C∗(L) according
to (3.11) below and let C∗ := C∗(L) := 2C∗(L). Then, for any τ ∈ (0, 1/2) there
exists ε = ε(τ, L) such that the validity of

(3.1) |(∇2u)x,r| ≤ L and E(x, r) ≤ ε(L, τ)

for some ball Br(x) ⊂⊂ Ω implies the estimate

(3.2) E(x, τr) ≤ τ 2C∗(L)E(x, r).

Here we have set

E(x, ρ) :=

∫
−
Bρ(x)

|∇2u− (∇2u)x,ρ|2 dy +

∫
−
Bρ(x)

|∇2u− (∇2u)x,ρ|q dy
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for balls Bρ(x) compactly contained in Ω, and
∫−

Bρ(x)
g dy or (g)x,ρ denote the mean

value of a function g w.r.t. Bρ(x). Let us recall that we consider the case p ≥ 2,
thus q > 2. If p < 2 is allowed, then q < 2 is possible but the statement of Lemma
3.1 (and thereby partial regularity) remains true if the excess function E then is
defined according to [CFM].

Remark 3.1. i) It is well known how to iterate the result of Lemma 3.1 leading
to the result that the set of points x0 ∈ Ω such that

lim sup
r↘0

|(∇2u)x0,r| < ∞

together with lim infr↘0 E(x0, r) = 0 is an open set (of full Lebesgue measure) on
which the local minimizer u is of class C2,ν for any 0 < ν < 1. We refer the reader to
Giaquinta’s textbook [Gia] and mention the papers [GiuMi] of Giusti and Miranda,
[Ev] of Evans or the contribution [FH] of Fusco and Hutchinson.

ii) We will give an indirect proof of Lemma 3.1 using the blow-up technique
following more or less the ideas of Evans and Gariepy outlined in [Ev] and [EG].

Proof of Lemma 3.1. To argue by contradiction we assume that for L > 0 fixed
and for some τ ∈ (0, 1/2) there exists a sequence of balls Brm(xm) ⊂⊂ Ω such that

|(∇2u)xm,rm| ≤ L, E(xm, rm) =: λ2
m −→

m→∞
0,(3.3)

E(xm, τ rm) > C∗τ 2λ2
m.(3.4)

Now a sequence of rescaled functions is introduced by letting

am := (u)xm,rm , Am := (∇u)xm,rm , Θm := (∇2u)xm,rm ,

ûm(z) :=
1

λmr2
m

[
um(xm + rmz)− am − rmAmz

− 1

2
r2
mΘm(z, z) +

1

2
r2
m

∫
−
B1

Θm(z̃, z̃)dz̃
]
, |z| < 1.

Direct calculations show that

∇ûm(z) =
1

λmrm

[
∇u(xm + rmz)− Am − 1

2
rm∇(Θαβ

m zαzβ)
]
,

∇2ûm(z) =
1

λm

[
∇2u(xm + rmz)−Θm

]
,

moreover, the quantities (ûm)0,1, (∇ûm)0,1, (∇2ûm)0,1 vanish for all m. From our
assumptions (3.3) we get

(3.5)
∫
−
B1

|∇2ûm|2dz + λq−2
m

∫
−
B1

|∇2ûm|qdz = λ−2
m E(xm, rm) = 1,
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and after passing to subsequences which are not relabeled we find (using Poincaré’s
inequality for deriving (3.7) from (3.5))

Θm →: Θ,(3.6)

ûm ⇁: û in W 2
2 (B1),(3.7)

λm∇2ûm → 0 in L2(B1) and a.e.,(3.8)

λ1−2/q
m ∇2ûm ⇁ 0 in Lq(B1).(3.9)

After these preparations we claim that the limit function û satisfies

(3.10)
∫

B1

D2f(Θ)(∇2û,∇2ϕ) dz = 0 ∀ϕ ∈ C∞
0 (B1).

To prove (3.10) we proceed exactly as in [Ev] (see also [BF1] and [Bi], Proposi-
tion 3.33) taking into account (3.6), (3.7) and (3.9).

Moreover, the application of Poincaré’s inequality in combination with estimate
(3.2) from [GiaMo1] and Lemma 7 of [Kr1] (see also [Ca1,2]) give the existence of a
constant C∗, only depending on n, L, p, q, λ and Λ, such that

(3.11)
∫
−

Bτ

|∇2û− (∇2û)0,τ |2 dz ≤ C∗τ 2.

To be precise, we have
∫
−
Bτ

|∇2û− (∇2û)0,τ |2 dz ≤ cτ 2

∫
−
Bτ

|∇3û|2 dz ≤ cτ 2

∫
−
B1/2

|∇3û|2 dz,

which follows from [GiaMo1], (3.2), applied to the function v := ∂γû, γ = 1, . . . , n.
Moreover

∫
−
B1/2

|∇3û|2 dz ≤ c sup
B1/2

|∇3û|2 ≤ c

∫
−
B1

|∇2û|2 dz ≤ lim inf
m→∞

c

∫
−
B1

|∇2ûm|2 dz ≤ c,

where we used (3.5), (3.7) and [Kr1], Lemma 7. This proves (3.11) for a suitable
constant C∗. Clearly (3.11) is in contradiction to (3.4), if we can improve the
convergences stated in (3.8) and (3.9) to the strong convergences

∇2ûm → ∇2û in L2
loc(B1),(3.12)

λ1−2/q
m ∇2ûm → 0 in Lq

loc(B1).(3.13)

To verify (3.12) and (3.13) we want to show first for any 0 < ρ < 1 the identity

(3.14) lim
m→∞

∫

Bρ

(
1 + |Θm + λm∇2û + λm∇2wm|2

) p−2
2 |∇2wm|2 dz = 0,
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where wm := ûm− û. Following the basic ideas given in [EG] (see also [BF1] or [Bi],
Proposition 3.34) we observe that for all ϕ ∈ C∞

0 (B1), 0 ≤ ϕ ≤ 1,

λ−2
m

∫

B1

ϕ
[
f(Θm + λm∇2ûm)− f(Θm + λm∇2û)

]
dz

− λ−1
m

∫

B1

ϕDf
(
Θm + λm∇2û

)
: ∇2wm dz

=

∫

B1

1∫

0

ϕD2f
(
Θm + λm∇2û + sλm∇2wm

)(
∇2wm,∇2wm

)
(1− s) ds dz.

(3.15)

Obviously (3.14) will follow from the ellipticity of D2f , if we can show that the
left-hand side of (3.15) tends to zero as m →∞. Using the minimality of u as well
as the convexity of f we can estimate

l.h.s. of (3.15) ≤ λ−2
m

∫

B1

f
(
Θm + λm∇2[ûm + ϕ(û− ûm)]

)
dz

− λ−2
m

∫

B1

f
(
Θm + λm

[
(1− ϕ)∇2ûm + ϕ∇2û

])
dz

− λ−1
m

∫

B1

ϕDf(Θm + λm∇2û) : ∇2wm dz

=: I1 − I2 − I3.

Setting

Xm := Θm + λm

[
(1− ϕ)∇2ûm + ϕ∇2û

]
, Zm := 2∇ϕ⊗∇(û− ûm) +∇2ϕ(û− ûm)

we obtain

I1 − I2 = λ−1
m

∫

B1

Df(Xm) : Zm dz

+

∫

B1

1∫

0

D2f
(
Xm + sλmZm

)
(Zm, Zm)(1− s) ds dz

≤ λ−1
m

∫

B1

Df(Xm) : Zm dz

+ c

∫

B1

(
1 +

{
|Θm|+ λm|∇2ûm|+ λm|∇2û|+ λm|Zm|

}2) q−2
2 |Zm|2 dz.

With the notation ε(m) → 0 as m → ∞ we get on account of (3.7) that the last
integral can be estimated from above by

c

∫

B1

λq−2
m |∇ûm|q−2|Zm|2 dz + c

∫

B1

λq−2
m |Zm|q dz + ε(m).
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Furthermore,

J1 := c

∫

B1

λq−2
m |∇ûm|q−2|Zm|2 dz

≤ c

∫

spt ϕ

λq−2
m |∇2ûm|q−2

{
|∇û−∇ûm|+ |û− ûm|

}2

dz

≤ c
{ ∫

spt ϕ

λq−2
m |∇2ûm|q dz

}1−2/q{
λq−2

m

∫

spt ϕ

|∇û−∇ûm|q dz

+ λq−2
m

∫

spt ϕ

|û− ûm|q dz
}2/q

≤ c
{

λq−2
m

∫

spt ϕ

|∇û−∇ûm|q dz + λq−2
m

∫

spt ϕ

|û− ûm|q dz
}2/q

,

where the last inequality follows from (3.9). We also note that due to (3.9) λ
1−2/q
m ∇kûm

−→
m→∞

0 in Lq(B1) for k = 0, 1. This immediately implies

J1 ≤ ε(m) → 0 as m →∞.

Analogous arguments applied to

J2 := c

∫

B1

λq−2
m |Zm|q dz

guarantee that

J2 ≤ ε(m) → 0 as m →∞.

Thus, we arrive at

l.h.s. of (3.15) ≤ ε(m) + λ−1
m

[∫

B1

Df(Xm) : Zm dz

−
∫

B1

Df(Θm + λm∇2û) : ∇2wmϕ dz
]
.

(3.16)

Next we are going to discuss the last two integrals in (3.16). Since

∇2(ϕwm) = ∇2wmϕ− Zm,

we have that

[. . .] =

∫

B1

(
Df(Xm)−Df(Θm + λm∇2û)

)
: Zm dz

−
∫

B1

Df
(
Θm + λm∇2û

)
: ∇2(ϕwm) dz =: I4 − I5.
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From (1.1) and from the requirement that 0 ≤ ϕ ≤ 1 we obtain by recalling the
definition of Zm

I4 =

∫

B1

(
Df

(
Θm + λm[(1− ϕ)∇2ûm + ϕ∇2û]

)
−Df(Θm + λm∇2û)

)
: Zm dz

=

∫

B1

1∫

0

d

ds
Df

(
Θm + λm∇2û + sλm(1− ϕ)∇2(ûm − û)

)
ds : Zm dz

= λm

∫

B1

∫ 1

0

D2f
(
Θm + λm∇2û + sλm(1− ϕ)∇2wm)(∇2wm, Zm)(1− ϕ) ds dz

≤ λmc

∫

B1

(
1 + (|Θm|+ λm|∇2û|+ λm|∇2wm|)2

) q−2
2

· |∇2wm|
[
|∇ϕ||∇wm|+ |∇2ϕ||wm|

]
dz,

and similar to the previous discussion of J1 we get

λ−1
m I4 → 0 as m →∞.

Finally, we observe that

λ−1
m I5 = λ−1

m

∫

B1

(
Df(Θm + λm∇2û)−Df(Θm)

)
: ∇2(ϕwm) dz

= λ−1
m

∫

B1

∫ 1

0

D2f(Θm + sλm∇2û)
(
λm∇2û,∇2(ϕwm)

)
ds dz,

and, consequently, λ−1
m I5 vanishes after passing to the limit m → ∞ on account of

the weak convergence (3.7). Summarizing these results we have shown that limm→∞
(l.h.s. of (3.15)) = 0.

Therefore, identity (3.14) is proved, and (3.12) immediately follows from (3.14)
since we assume that p ≥ 2. To proceed further, i.e. to prove the strong convergence
stated in (3.13), we introduce the auxiliary functions

Ψm(z) := λ−1
m

[
(1 + |Θm + λm∇2ûm(z)|2)p/4 − (1 + |Θm|2)p/4

]
.

For any ρ < 1 Lemma 2.2 implies∫

Bρ

|∇Ψm|2 dz = λ−2
m r2−n

m

∫

Bρrm (xm)

|∇h|2 dx

≤ c (ρ)λ−2
m r2−n

m

∫

Brm (xm)

|D2f(∇2u)| ·
{

r−2
m |∇2(u− P )|2 + r−4

m |∇(u− P )|2
}

dx.

For the last estimate we used inequality (2.12), h being defined in Lemma 2.2 and
P representing a polynomial function of degree ≤ 2. If we choose

P (x) := Amx +
1

2
Θm(x− xm, x− xm) for x ∈ Brm(xm)
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we get

∇(u(x)− P (x)) = λmrm∇ûm

(x− xm

rm

)
,

∇2(u(x)− P (x)) = λm∇2ûm

(x− xm

rm

)
.

So, taking into account (3.7) and (3.9) we obtain for any ρ < 1 the inequality
∫

B1

|∇Ψm|2 dz ≤ c(ρ)

∫

B1

|D2f(Θm + λm∇2ûm)| ·
{
|∇2ûm|2 + |∇ûm|2

}
dz

≤ c(ρ) < ∞.

(3.17)

In addition, one can write

|Ψm| ≤ c

∫ 1

0

|∇2ûm|
(
1 + |Θm + sλm∇2ûm|2

) p−2
4

ds

≤ c
{
|∇2ûm|+ λ

p−2
2

m |∇2ûm|p/2 + 1
}

.

(3.18)

It follows from (3.14) that
∫

Bρ

λp−2
m |∇2ûm|p dx ≤ c(ρ) < ∞.

Combining the last estimate with (3.17) and (3.18) we can conclude that the se-
quence Ψm is bounded in W 1

2,loc(B1). Now we proceed as follows: consider a number
M >> 1 and let

Um := {z ∈ Bρ : λm|∇2ûm| ≤ M}.
Then ∫

Um

λq−2
m |∇2ûm|q dz ≤ c

{ ∫

Um

λq−2
m |∇2wm|q dz +

∫

Um

λq−2
m |∇2û|q dz

}

≤ c
{ ∫

Um

λq−2
m

(
|∇2ûm|q−2 + |∇2û|q−2

)
|∇2wm|2 dz +

∫

Um

λq−2
m |∇2û|q dz

}

≤ c
{ ∫

Bρ

(M q−2 + |∇2û|q−2)|∇2wm|2 dz +

∫

Bρ

λq−2
m |∇2û|q dz

}

→ 0 as m →∞

(3.19)

on account of ∇2wm → 0 in L2(Bρ) and ∇2û ∈ L∞(Bρ). On the other hand, if we
choose M sufficiently large, then on Bρ − Um we get

Ψm(z) ≥ cλ−1+p/2
m |∇2ûm|p/2

and, consequently

|∇2ûm|qλq−2
m ≤ cλ

2 q
p
−2

m Ψ
2q
p

m .
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Since (1.3) guarantees 2q
p

< 2n
n−2

and since Ψm is uniformly bounded in W 1
2,loc(B1),

we can conclude

(3.20)
∫

Bρ−Um

λq−2
m |∇2ûm|q dz → 0 as m →∞ for any ρ < 1.

It only remains to note that obviously the results (3.19) and (3.20) provide (3.13),
which completes the proof. ¤
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