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Abstract. A priori estimates for solutions to homogeneous Neumann problems for uniformly
elliptic equations in open subsets Ω of Rn are established, with data in the limiting space Ln/2(Ω),
or, more generally, in the Lorentz spaces Ln/2,q(Ω). These estimates are optimal as far as either
constants or norms are concerned.

1. Introduction and main results

We are concerned with optimal a priori estimates for solutions to homogeneous
Neumann problems for linear elliptic equations in divergence form. Precisely, weak
solutions are taken into account to problems having the form

(1.1)




− div

(
A(x)∇u

)
+ B(x) · ∇u = f(x) in Ω,

∂u

∂ν
= 0 on ∂Ω.

Here, Ω is a domain, namely a connected open set, in Rn, n ≥ 3, which is
bounded and has a sufficiently regular boundary ∂Ω; A(x) is an n × n matrix
with essentially bounded coefficients, uniformly positive definite for x ∈ Ω, and
normalized in such a way that

(1.2) A(x)ξ · ξ ≥ |ξ|2 for ξ ∈ Rn;

∇u denotes the gradient of u; ν is the co-normal on ∂Ω, namely ν = A(x)Tn, where
n is the normal unit vector on ∂Ω; f and B are a given real-valued and a given
vector-valued function in Ω, respectively; the dot · stands for scalar product in Rn.

Weak solutions u to (1.1) are well-defined if B and f satisfy appropriate integra-
bility conditions. Assume, for instance, that |B| ∈ Ln(Ω) and f ∈ L

2n
n+2 (Ω). Then a

function u from the Sobolev space W 1,2(Ω) is said to be a weak solution to (1.1) if

(1.3)
∫

Ω

A(x)∇u · ∇φ dx +

∫

Ω

B(x) · ∇uφ dx =

∫

Ω

f φ dx
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for every φ ∈ W 1,2(Ω).
By the very definition of W 1,2(Ω), any weak solution u to (1.1) is in L2(Ω) and,

by the Sobolev embedding theorem, it also belongs to L
2n

n−2 (Ω). However, classical
results tell us that, if f belongs to a smaller space than just L

2n
n+2 (Ω), then u enjoys

stronger summability properties. Consider, for instance, the case where f ∈ Lp(Ω)
for some p ≥ 2n/(n+2), and B ≡ 0. If p < n/2, then a constant C = C(p, Ω) exists
such that

(1.4) ‖u−m(u)‖
L

np
n−2p (Ω)

≤ C‖f‖Lp(Ω)

for every weak solution to (1.1), where

(1.5) m(u) = sup
{
t ∈ R : |{u > t}| ≥ |Ω|/2},

the median of u, and | · | denotes Lebesgue measure. Notice that a normalization
condition for u is indispensable in (1.4), since being a weak solution to (1.1) is not
affected by adding real constants. Of course, other choices would be possible—for
example, m(u) could be replaced by the mean value of u over Ω; for convenience we
shall work with m(u) throughout.

When p > n/2, u is in fact essentially bounded, and a constant C = C(p, Ω)
exists such that

(1.6) ‖u−m(u)‖L∞(Ω) ≤ C‖f‖Lp(Ω).

We refer e.g. to [Ma1, MS1] for these results. Let us also mention that improvements
and extensions of (1.4) in terms of Lorentz norms could be proved similarly by [Ta],
where Dirichlet problems are taken into account.

In the present paper we focus the limiting case where f belongs to Ln/2(Ω), or
to Lorentz spaces close to Ln/2(Ω). In this case, weak solutions to (1.1) not only
belong to Lq(Ω) for every q < ∞, but they are also exponentially summable. More
precisely, constants C1 = C1(Ω) and C2 = C2(Ω) exist such that

(1.7)
∫

Ω

exp
(
C1
|u−m(u)|
‖f‖Ln/2

) n
n−2

dx ≤ C2,

as a combination of the estimate of [MS1] with an argument of [GT] easily shows.
Our purpose is to improve on estimate (1.7) in two directions.

As a first result, we find the best constant C1 for inequality (1.7) to hold for
every Ω in suitable classes of domains, for every f ∈ Ln/2(Ω) and for every weak
solution u to (1.1). It turns out that, if ∂Ω is smooth enough, of class C 1,α say, then
such a best constant depends only on the dimension n, and equals n(n−2)(ωn/2)2/n,
where ωn is the measure of the unit ball in Rn. This is a special case, corresponding
to the choice q = n/2, of the following theorem, where f is allowed to belong to any
Lorentz space Ln/2,q(Ω), with 1 < q ≤ ∞, and B is not necessarily identically equal
to 0.
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Theorem 1.1. Let Ω be a bounded domain from the class C 1,α, for some
α ∈ (0, 1]. Let f ∈ Ln/2,q(Ω) for some q ∈ (1,∞] and let |B| ∈ Lσ,τ (Ω), for some
σ > n and τ ∈ [2,∞]. Let u be a weak solution to (1.1).

(i) Case 1 < q < ∞. A constant C = C (Ω, q, ‖B‖Lσ,τ ) exists such that

(1.8)
∫

Ω

exp

(
n(n− 2)

(ωn

2

)2/n |u−m(u)|
‖f‖Ln/2,q

)q′

dx ≤ C.

The constant n(n − 2)(ωn/2)2/n in (1.8) is sharp. Indeed, domains Ω ∈ C 1,α ex-
ist such that the left-hand side of (1.8), with n(n − 2)(ωn/2)2/n replaced by any
larger constant, cannot be uniformly bounded as f ranges among all functions from
Ln/2,q(Ω) and u is a weak solution to (1.1) with B(x) ≡ 0 and A(x) ≡ I, the n× n
unit matrix.

(ii) Case q = ∞. For every γ < n(n − 2)(ωn/2)2/n, a constant C = C (Ω, γ,
‖B‖Lσ,τ ) exists such that

(1.9)
∫

Ω

exp
(
γ
|u−m(u)|
‖f‖Ln/2,∞

)
dx ≤ C.

The result is sharp. Indeed, there exist domains Ω ∈ C 1,α, functions f ∈ Ln/2,∞(Ω)
and weak solutions to (1.1) with B(x) ≡ 0 and A(x) ≡ I such that the left-hand
side of (1.9) diverges for every γ ≥ n(n− 2)(ωn/2)2/n.

A more general version of Theorem 1.1, where irregular domains Ω with singu-
larities on ∂Ω of conical type are admitted, is stated and proved in Section 3. Let
us mention in advance that for these domains the best constant in (1.8)–(1.9) does
depend on the geometry of ∂Ω.

Notice that the case where q = 1 is not dealt with in Theorem 1.1, since weak
solutions to (1.1) are in L∞(Ω) when f ∈ Ln/2,1(Ω) (see [Al] for the case of Dirichlet
problems; the result for Neumann problems can be derived similarly via estimate
(3.2), Section 3).

Results like those of Theorem 1.1 usually go under the name of Moser type
inequalities, since they were first proved in [Mo] in the framework of Sobolev em-
beddings for the limiting space W 1,n

0 (Ω). Estimates analogous to (1.8)–(1.9) for
solutions to elliptic Dirichlet boundary value problems are the object of [AF, AFT,
FFV1, FFV2, FFV3, L]. However, the discussion of the optimality of the constant
in the case of equations seems to appear here for the first time, at least in this
generality.

In order to illustrate the other improvement of inequality (1.7) that will be
established, let us observe that (1.7) is equivalent to

(1.10) ‖u−m(u)‖
exp L

n
n−2 (Ω)

≤ C ‖f‖Ln/2(Ω),

for some positive constant C = C (Ω), where ‖ · ‖
exp L

n
n−2 (Ω)

denotes the Luxemburg

norm in the Orlicz space exp L
n

n−2 (Ω) associated with the Young function et
n

n−2 −1.
Our second result ensures that if f ∈ Ln/2(Ω), then u is not just in exp L

n
n−2 (Ω), but
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belongs in fact to the strictly smaller Lorentz-Zygmund space L∞,n/2 (log L)−1(Ω).
Moreover, the result is sharp in the framework of all rearrangement invariant (briefly,
r.i.) spaces, namely, those Banach function spaces where the norm of a function
depends only on its decreasing rearrangement. Indeed, L∞,n/2 (log L)−1(Ω) turns
out to be the smallest possible space from this class to which any weak solution u
to (1.1) belongs when f ∈ Ln/2(Ω). Recall that for 1 ≤ p, q ≤ ∞ and α ∈ R, the
space Lp,q (log L)α(Ω) consists of those measurable functions g in Ω for which the
quantity

(1.11) ‖g‖Lp,q (log L)α(Ω) = ‖s 1
p
− 1

q (1 + log(|Ω|/s))αg∗(s)‖Lq(0,|Ω|)

Here, g∗ is the decreasing rearrangement of g.
This result is part of Theorem 1.2 below, where data f and B in Lorentz spaces

are considered. Observe that this theorem requires weaker regularity assumptions
on Ω than Theorem 1.1; actually, any bounded domain satisfying a relative isoperi-
metric inequality with exponent n′ = n

n−1
is allowed (see Section 2 for the definition).

In particular, bounded domains with a Lipschitz boundary are admissible.

Theorem 1.2. Let Ω be a bounded domain in Rn, n ≥ 3, satisfying a relative
isoperimetric inequality with exponent n′. Let f ∈ Ln/2,q(Ω) for some q ∈ (1,∞],
and let |B| ∈ Lσ,τ (Ω) for some σ > n and τ ∈ [2,∞]. Let u be a weak solution to
(1.1). Then a constant C = C(Ω, q, ‖B‖Lσ,τ ) exists such that

(1.12) ‖u−m(u)‖L∞,q (log L)−1(Ω) ≤ C‖f‖Ln/2,q(Ω).

The space L∞,q (log L)−1(Ω) is optimal among all r.i. spaces, in the sense that if
Ω is any domain as above and X(Ω) is any r.i. space such that (1.12) holds with
‖ · ‖L∞,q (log L)−1(Ω) replaced by ‖ · ‖X(Ω) for every f ∈ Ln/2,q(Ω) and every weak
solution to any problem having the form (1.1), then L∞,q (log L)−1(Ω) ⊆ X(Ω).

As far as we know, estimates like (1.12), although appearing in the framework
of Sobolev embeddings [BW, Han, CP, KP], are not known for solutions to ellip-
tic equations, even subject to Dirichlet boundary conditions. Such estimates for
solutions to Dirichlet problems can be derived by the methods of this paper.

We conclude the present section by a few considerations about these methods.
Our approach to Theorems 1.1 and 1.2 rests upon a priori estimates for solutions to
problem (1.1) in terms of rearrangements which go back to [MS1, MS2, Be, C2], and
trace their origins in the work of Maz’ya [Ma1] and Talenti [Ta]. Similarly to anal-
ogous results for solutions to Dirichlet problems, these estimates rely upon isoperi-
metric inequalities. In the case where homogeneous Dirichlet boundary conditions
are prescribed, the standard isoperimetric inequality in Rn is involved, solutions to
properly spherically symmetrized problems enjoy suitable extremal properties, and
thus any bound for these symmetric solutions translates into a corresponding bound
for the solution to any problem in an appropriate class. The picture for Neumann
problems is not so neat. Indeed, as elucidated in the fundamental paper [Ma1],
the isoperimetric inequality in Rn has to be replaced by the relative isoperimetric
inequality for open subsets of Rn, and the latter is not explicitly known, except in
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very few cases. Furthermore, no extremal problem exists and, consequently, sharp
bounds for solutions to problems like (1.1) are not automatically reduced to anal-
ogous bounds for solutions to some symmetrized problem. Fortunately, the piece
of information which can be deduced from the relevant rearrangement estimate is
sufficient, in fact, to derive optimal results at least as far as norms are concerned.
This explains why Theorem 1.2 can be proven by these techniques. The situation
for Theorem 1.1 is more delicate, since a sharp constant is involved. Actually, opti-
mal constants in a priori bounds for solutions to Neumann problems are usually not
derivable via rearrangement estimates. This approach is successful here because
the constant in question turns out to depend only on an asymptotic form of the
relative isoperimetric inequality for subsets of Ω whose measure approaches zero.
Such an asymptotic inequality can actually be established, at least for sufficiently
regular domains, as demonstrated by recent results of [C4], where Moser type in-
equalities for functions not necessarily vanishing on the boundary are discussed (see
also [AH-S, CY, Ch, EH-S] for related exponential inequalities).

2. Prerequisites

We collect in this section some miscellaneous definitions and results known in
the mathematical literature and coming into play in the proofs of Theorems 1.1 and
1.2.

2.1. Isoperimetric inequalities. The isoperimetric function hΩ : (0, |Ω|) →
[0, +∞) of an open set Ω in Rn is defined as

(2.1) hΩ(s) = inf{P(E; Ω) : E ⊂ Ω, |E| = s} for s ∈ (0, |Ω|),
where P(E; Ω) is the perimeter of E relative to Ω (see e.g. [AFP, Definition 3.35]).
Notice that P(E; Ω) = H n−1(∂E ∩Ω), the (n− 1)-dimensional Hausdorff measure
of ∂E ∩ Ω, if E is sufficiently smooth. Equation (2.1) immediately implies that

(2.2) P(E; Ω) ≥ hΩ(|E|)
for every measurable subset E of Ω. Inequality (2.2) is called the relative isoperi-
metric inequality in Ω. The isoperimetric function of any open set Ω having finite
measure is symmetric about |Ω|/2; namely,

(2.3) hΩ(s) = hΩ(|Ω| − s) for s ∈ (0, |Ω|).
Unfortunately, hΩ is explicitly known only for very special sets Ω, such as balls,
hyperplanes and convex cones. Nevertheless, many applications just involve the
behavior of hΩ at 0, and information on this point is much easier to derive. For
instance, if Ω is connected, has finite measure and satisfies the cone property, there
exists a positive constant C = C(Ω) such that

(2.4) hΩ(s) ≥ C min1/n′{s, |Ω| − s} for s ∈ (0, |Ω|)
([Ma2, Corollary 3.2.1/3]). A domain Ω fulfilling (2.4) is usually said to satisfy a
relative isoperimetric inequality with exponent 1/n′.
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A precise asymptotic estimate for the isoperimetric function hΩ is available for
domains from the class Σ1,α defined as follows.

Definition 2.1. Let α ∈ (0, 1]. An open subset Ω of Rn is said to be a domain of
class Σ1,α if a finite family {Uk}k∈K , K ⊂ N, of open subsets of Rn exists satisfying
the following properties:

(i) Ω ⊂ ∪k∈K Uk;
(ii) for each k ∈ K there exists an open subset Vk of Rn, a diffeomorphism

Φk : Uk → Vk, a point xk ∈ Uk and an open convex cone Λk (possibly the
whole of Rn) with vertex at Φk(xk) and smooth boundary, such that

Φk : Ω ∩ Uk → Λk ∩ Vk

is a homeomorphism;
(iii) the Jacobian matrix J Φk(xk) = I;
(iv)

|J Φk(x)− J Φk(y)| ≤ L|x− y|α
for some constant L and for every x, y ∈ Uk.

In particular, we have

Definition 2.2. Let α ∈ (0, 1]. An open subset Ω of Rn is said to be a domain
of class C 1,α if it satisfies the definition of domain of class Σ1,α with Λk either equal
to a half-space or to Rn for every k ∈ K.

In our applications, the minimum of the solid apertures

θk = |Λk ∩B1(Φk(xk))|
of the cones Λk in Definition 2.1 will play a role, where Br(x) denotes the ball
centered at x and having radius r. We call such aperture θΩ; namely, we set

θΩ = min
k∈K

θk.

Note that, with this notation in force, the class C 1,α can be identified with the
subclass of those domains Ω in Σ1,α satisfying θΩ = ωn/2.

An asymptotically sharp relative isoperimetric inequality for domains in Σ1,α is
proved in [C4, Theorem1.3]. We shall make use of a consequence of that inequality,
which tells us that if Ω is a bounded domain from the class Σ1,α for some α ∈ (0, 1],
there exist constants β = β(Ω) > 0, C = C (Ω) > 0 and s1 = s1(Ω) ∈ (

0, |Ω|/2]
such that if h : (0, |Ω|) → (0, +∞) is the function defined as

(2.5) h(s) =

{
n θ

1/n
Ω s1/n′ (1− Csβ) if s ∈ (0, s1],

h(s1) if s ∈ (s1, |Ω|/2],

and symmetric about |Ω|/2, then h(s) and
s

h(s)
are nondecreasing in

(
0, |Ω|/2), and

(2.6) hΩ(s) ≥ h(s) for s ∈ (0, |Ω|)
(see [C4, Corollary 2.1]).
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For a detailed study and for applications of isoperimetric functions and inequal-
ities, we refer to [C1, G, Ma1, MP].

2.2. Rearrangements and rearrangement invariant spaces. Let Ω be a
measurable subset of Rn having finite measure and let u be a real-valued measurable
function in Ω. The decreasing rearrangement u∗ of u is the unique non-increasing
right-continuous function from [0, +∞) into [0, +∞] which is equidistributed with
u. In formulas,

u∗(s) = sup{t ≥ 0 : |{x ∈ Ω : |u(x)| > t}| > s} for s ≥ 0.

The function u∗∗ : (0, +∞) → [0, +∞], defined as u∗∗(s) = 1
s

∫ s

0
u∗(r) dr for s > 0,

is also non-increasing and satisfies u∗ ≤ u∗∗.
A rearrangement invariant space X(Ω) is a Banach function space equipped

with a norm ‖ · ‖X(Ω) satisfying

(2.7) ‖v‖X(Ω) = ‖u‖X(Ω) if u∗ = v∗.

The associate space X
′
(Ω) of X(Ω) is the r.i. space of those measurable functions v

in Ω for which the r.i. norm

(2.8) ‖v‖X′ (Ω) = sup
u6=0

∫

Ω

|uv| dx

‖u‖X(Ω)

is finite. As a consequence, the Hölder type inequality

(2.9)
∫

Ω

|uv| dx ≤ ‖u‖X(Ω)‖v‖X′ (Ω)

holds for every u ∈ X(Ω) and v ∈ X
′
(Ω).

The representation space X(0, |Ω|) of an r.i. space X(Ω) is the unique r.i. space
on (0, |Ω|) satisfying

(2.10) ‖u‖X(Ω) = ‖u∗‖X(0,|Ω|)

for every u ∈ X(Ω). In most instances, an expression for the norm ‖ · ‖X(0,|Ω|) is
immediately derived from that of ‖ · ‖X(Ω). In general, one has

(2.11) ‖ϕ‖X(0,|Ω|) = sup
‖v‖

X
′
(Ω)
≤1

∫ |Ω|

0

ϕ∗(r) v∗(r) dr.

Hardy’s lemma ensures that if X(Ω) is any r.i. space and u and v are measurable
functions in Ω such that v ∈ X(Ω), then

(2.12) u∗∗ ≤ v∗∗ implies ‖u‖X(Ω) ≤ ‖v‖X(Ω).

Let l > 0 and let X(0, l) be any r.i. space on (0, l). Then the linear operator
T : X(0, l) → X(0, l), defined by

(2.13) (Tϕ)(s) = ϕ(s/2) for s ∈ (0, l) ,
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is bounded, and

(2.14) ‖T‖ ≤ 2.

Lebesgue, Orlicz, Lorentz and Lorentz-Zygmund spaces are customary examples of
r.i. spaces. If 1 < p < ∞ and 1 ≤ q ≤ ∞, or p = q = ∞, the Lorentz space Lp,q(Ω)
is a special case of the Lorentz-Zygmund spaces Lp,q(log L)α(Ω) defined in Section
1, corresponding to α = 0. Notice that the quantities ‖ · ‖Lp,q(Ω) and ‖ ·‖Lp,q(log L)α(Ω)

need not be norms, but they are always equivalent, up to multiplicative constants, to
the r.i. norms ‖·‖L(p,q)(Ω) and ‖·‖L(p,q)(log L)α(Ω) obtained on replacing u∗ by u∗∗ in the
definition. Thus, in particular, positive constants C1 = C1(p, q) and C2 = C2(p, q)
exist such that

(2.15) C1 ‖u‖Lp,q(Ω) ≤ ‖u‖L(p,q)(Ω) ≤ C2 ‖u‖Lp,q(Ω)

for every u ∈ Lp,q(Ω). The associate space to L(p,q)(Ω) is, up to equivalent norms,
L(p′,q′)(Ω) for all admissible values of p and q. Thus, owing to (2.8), (2.9) and (2.15),
positive constants C1 = C1(p, q) and C2 = C2(p, q) exist such that

(2.16) C1 ‖v‖Lp′,q′ (Ω) ≤ sup
u∈Lp,q(Ω)

∫

Ω

|uv| dx

‖u‖Lp,q(Ω)

≤ C2 ‖v‖Lp′,q′ (Ω)

for every v ∈ Lp′,q′(Ω).
A thorough treatment of r.i. spaces can be found in [BS].

2.3. One-dimensional inequalities. A weighted version of the Hardy in-
equality states the following. Let l > 0, let q ∈ [1,∞] and let µ and ν be nonnegative
locally integrable functions in [0, l]. Define

(2.17) K1 = sup
s∈(0,l)

‖µ‖Lq(s,l) ‖1/ν‖Lq′ (0,s).

If K1 < ∞, then

(2.18)
∥∥∥∥µ(s)

∫ s

0

ϕ(r) dr

∥∥∥∥
Lq(0,l)

≤ (q′)1/q′ q1/qK1‖ν(s) ϕ(s)‖Lq(0,l)

for every nonnegative measurable function ϕ in [0, l]. Define

(2.19) K2 = sup
s∈(0,l)

‖µ‖Lq(0,s) ‖1/ν‖Lq′ (s,l).

If K2 < ∞, then

(2.20)
∥∥∥∥µ(s)

∫ l

s

ϕ(r) dr

∥∥∥∥
Lq(0,l)

≤ (q′)1/q′ q1/qK2‖ν(s) ϕ(s)‖Lq(0,l)

for every nonnegative measurable function ϕ in [0, l] (see e.g. [Ma2, Section 1.3.1]
or [OK]).
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A Hölder type inequality for non-increasing function ensures that if l > 0,
q ∈ (1,∞) and µ is as above, then there exists a constant C = C(q) such that

∫ l

0

ϕ(s) ψ(s) ds ≤ C
( ∫ l

0

ϕ(s)q µ(s) ds
)1/q

·
[(∫ l

0

( ∫ s

0

ψ(r) dr

)q′
µ(s)

( ∫ s

0

µ(r) dr
)q′ ds

)1/q′

+

∫ l

0

ψ(s) ds

( ∫ l

0

µ(s) ds
)1/q

]
(2.21)

for any measurable ψ : [0, l] → [0, +∞) and any non-increasing ϕ : [0, l] → [0, +∞)
(see [Sa, Theorem 1]).

An extension of Moser’s one-dimensional lemma, appearing in [FFV1], tells us
the following. Let l ∈ R, q ∈ (1,∞) and let k : (l, +∞) × (l, +∞) → [0,∞) be a
measurable kernel. Set

S = sup
t>l

∫ ∞

t

k(t, ζ)q′ dζ.

Assume that

(2.22) S < ∞
and that there exists g : (l, +∞) → [0, +∞) satisfying

(2.23)

{
k(t, ζ) ≤ 1 + g(ζ) if l < ζ < t,

g ∈ L1(l,∞) ∩ Lq′(l,∞).

Then a constant C = C (q, l, ‖g‖L1 , ‖g‖Lq′ , S) exists such that

(2.24)
∫ ∞

l

exp

[(
1

‖ϕ‖Lq(l,∞)

∫ ∞

l

k(t, ζ) ϕ(ζ) dζ

)q′

− t

]
dt ≤ C

for every ϕ ∈ Lq(l,∞).

3. Moser type estimates

The point of departure in our proofs is the following rearrangement estimate for
solutions to problem (1.1). Let Ω be a bounded domain in Rn. Assume that f ∈
Ln/2,q(Ω) for some q ∈ [1,∞] and that |B| ∈ Lσ,τ (Ω) for some σ > n and τ ∈ [2,∞].
Let u be a weak solution to problem (1.1). Then there exists a measurable function
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b : (0, |Ω|) → [0, +∞), fulfilling
∫ s

0

(b∗(r))2 dr ≤
∫ s

0

(|B|∗(r))2 dr for s ∈ (0, |Ω|),
∫ |Ω|

0

(b∗(r))2 dr =

∫ |Ω|

0

(|B|∗(r))2 dr,

(3.1)

such that

(3.2)
(
u−m(u)

)∗
i
(s) ≤

∫ |Ω|/2

s

1

h2
Ω(ρ)

( ∫ ρ

0

exp
( ∫ ρ

ζ

b(η)

hΩ(η)
dη

)
f ∗i (ζ) dζ

)
dρ,

i = 1, 2, for s ∈ (
0, |Ω|/2), where f1 = max{f, 0}, f2 = max{−f, 0}, the positive

and the negative part of f , respectively, and
(
u − m(u)

)
i
, i = 1, 2, are defined

analogously. Notice that, as a consequence of (2.15), (3.1) and (2.12), a constant
C = C (σ, τ) exists such that for every σ > 2 and τ ≥ 2

(3.3) ‖b‖Lσ,τ (Ω) ≤ C ‖B‖Lσ,τ (Ω).

A version of inequality (3.2) is established in [Be] for |B| ∈ L∞(Ω) and for domains Ω
satisfying a relative isoperimetric inequality with exponent 1/n′, with hΩ(s) replaced
by the right-hand side of (2.4). A proof of the slightly more general estimate (3.2)
can be accomplished similarly; the necessary modifications can be patterned on the
arguments of [AFT], where an analogous estimate for solutions to Dirichlet problems
is given.

As announced in Section 1, we prove a generalized version of Theorem 1.1 for
domains from the class Σ1,α.

Theorem 3.1. Let Ω be a bounded domain from the class Σ1,α for some α ∈
(0, 1]. Let f ∈ Ln/2,q(Ω) for some q ∈ (1,∞] and let |B| ∈ Lσ,τ (Ω) for some σ > n
and τ ∈ [2,∞]. Let u be a weak solution to (1.1).

(i) Case 1 < q < ∞. A constant C = C (Ω, q, ‖B‖Lσ,τ ) exists such that

(3.4)
∫

Ω

exp
(
n(n− 2) θ

2/n
Ω

|u−m(u)|
‖f‖Ln/2,q

)q′

dx ≤ C.

The constant n(n − 2) θ
2/n
Ω in (3.4) is sharp in the same sense as in Theorem 1.1,

part (i).
(ii) Case q = ∞. For every γ < n(n− 2) θ

2/n
Ω , a constant C = C (Ω, γ, ‖B‖Lσ,τ )

exists such that

(3.5)
∫

Ω

exp
(
γ
|u−m(u)|
‖f‖Ln/2,∞

)
dx ≤ C.

The result is sharp in the same sense as in Theorem 1.1, part (ii).

Remark 3.2. The same conclusions as in Theorem 3.1 hold when Ω is any
bounded convex polytope in Rn, provided that θΩ is replaced by the minimum of
the solid apertures of the support cones to Ω. The proof is completely analogous to
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that given below, on making use of a version of estimate (2.6) which follows from
[C4, Prop. 2.1].

Our approach to Theorem 3.1 is related to that of [Mo] and of [Ad, AFT, FFV1,
Fo]. We split the proof in two parts. In Part I inequalities (3.4)-(3.5) are established.
Their optimality is proved in Part II.

Proof of Theorem 3.1, Part I. Consider first the case where q < ∞. From
estimates (3.2) and (2.6) we get
(3.6)

(
u−m(u)

)∗
i
(s) ≤

∫ |Ω|/2

s

1

h2(ρ)

( ∫ ρ

0

exp
( ∫ ρ

ζ

b(η)

h(η)
dη

)
f ∗i (ζ) dζ

)
dρ, i = 1, 2,

for s ∈ (0, |Ω|/2). An application of Fubini’s theorem to the integral on right-hand
side of (3.6) yields

(3.7)
∫ |Ω|/2

s

1

h2(ρ)

( ∫ ρ

0

exp
( ∫ ρ

ζ

b(η)

h(η)
dη

)
f ∗i (ζ) dζ

)
dρ =

∫ |Ω|/2

0

f ∗i (r) a(s, r) dr,

i = 1, 2, for s ∈ (0, |Ω|/2), where a : (0, |Ω|/2)× (0, |Ω|/2) → (0, +∞) is defined as

(3.8) a(s, r) =





∫ |Ω|/2

s

1

h2(ρ)
exp

( ∫ ρ

r

b(η)

h(η)
dη

)
dρ if 0 < r ≤ s < |Ω|/2,

∫ |Ω|/2

r

1

h2(ρ)
exp

( ∫ ρ

r

b(η)

h(η)
dη

)
dρ if 0 < s < r < |Ω|/2.

From (3.6)–(3.7), via a change of variable, one obtains

(3.9)
(
u−m(u)

)∗
i
(|Ω| e−t) ≤ |Ω|

∫ ∞

log 2

f ∗i (|Ω| e−ζ) a(|Ω| e−t, |Ω| e−ζ) dζ, i = 1, 2,

for t > log 2. Another change of variables in the integrals defining the function a
tells us that

a(|Ω| e−t, |Ω| e−ζ)

=





|Ω|
∫ t

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ζ

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ if log 2 < t ≤ ζ,

|Ω|
∫ ζ

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ζ

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ if log 2 < ζ < t,

(3.10)

≤





|Ω|
∫ t

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ if log 2 < t ≤ ζ,

|Ω|
∫ ζ

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ if log 2 < ζ < t.



38 Angela Alberico and Andrea Cianchi

Hence, on setting

φi(ζ) = f ∗i (|Ω|e−ζ)e−2ζ/n |Ω|2/n for ζ > log 2

and

K(t, ζ) =





|Ω|2/n′e(−1+2/n)ζ

∫ t

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

if log 2 < t ≤ ζ,

|Ω|2/n′e(−1+2/n)ζ

∫ ζ

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

if log 2 < ζ < t,

we have

(3.11)
(
u−m(u)

)∗
i
(|Ω| e−t) ≤

∫ ∞

log 2

K(t, ζ) φi(ζ) dζ, i = 1, 2,

for t > log 2. We claim that the kernel k(t, ζ) = n(n − 2)θ
2/n
Ω K(t, ζ) satisfies

assumptions (2.22)–(2.23) with p = q and

(3.12) g(ζ) = max{g(ζ)− 1, 0},

where

g(ζ) = n(n− 2)θ
2/n
Ω |Ω|2/n′e(−1+2/n)ζ

·
∫ ζ

log 2

e−ρ

h2(|Ω| e−ρ)
exp

(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

(3.13)

for ζ > log 2. Indeed, we have

sup
t>log 2

∫ ∞

t

K(t, ζ)q′ dζ

= sup
t>log 2

|Ω| 2
n′ q

′
∫ ∞

t

e−
n−2

n
q′ ζ

( ∫ t

log 2

e−ρ

h2(|Ω|e−ρ)

· exp
(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

)q′

dζ

= sup
t>log 2

|Ω| 2
n′ q

′
( ∫ t

log 2

e−ρ

h2(|Ω|e−ρ)

· exp
(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

)q′
∫ ∞

t

e−
n−2

n
q′ ζ dζ.

(3.14)
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Now, by (2.16) and (3.3)

|Ω|
∫ ∞

log 2

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ =

∫ |Ω|/2

0

b(η)

h(η)
dη

≤ C‖b‖Lσ,τ (0,|Ω|/2)

∥∥1/h
∥∥

Lσ′,τ ′ (0,|Ω|/2)

≤ C1‖B‖Lσ,τ (0,|Ω|/2)

∥∥1/h
∥∥

Lσ′,τ ′ (0,|Ω|/2)

(3.15)

for some constants C = C(σ, τ) and C1 = C1(σ, τ). Owing to (2.5), the last norm is
finite. Consequently, by (3.14)–(3.15), a constant C = C (Ω, σ, τ, q, ‖B‖Lσ,τ ) exists
such that

(3.16) sup
t>log 2

∫ ∞

t

K(t, ζ)
n

n−2 dζ ≤ sup
t>log 2

C e(−n−2
n

) q′ t
( ∫ t

log 2

e−ρ

h2(|Ω|e−ρ)
dρ

)q′

.

By (2.5), a constant C = C(Ω) exists such that the last integral does not exceed
C

(
1 +

∫ t

log(|Ω|/s1)
e

n−2
n

ρ dρ
)
. Hence, (2.22) follows. As far as (2.23) is concerned, the

inequality is trivial. As for the second condition, an application of De L’Hopital
rule shows that the function g given by (3.13) satisfies lim

ζ→+∞
ḡ(ζ) = 0. Moreover, if

α < min
{
1− 2

n
, β, 1

n
− 1

σ

}
,

lim
ζ→+∞

ḡ(ζ)

e−α ζ

= lim
ζ→+∞

1

e(1−2/n−α)ζ

[
n(n− 2)θ

2/n
Ω |Ω|2/n′

( ∫ ζ

log 2

e−ρ

h2(|Ω|e−ρ)

· exp
(
|Ω|

∫ ∞

ρ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
dρ

)
− e(1−2/n)ζ

]

= lim
ζ→+∞

1(
1− 2

n
− α

)
e(1−2/n−α)ζ

[
n(n− 2)θ

2/n
Ω |Ω|2/n′ e−ζ

h2(|Ω|e−ζ)

· exp
(
|Ω|

∫ ∞

ζ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
−

(
1− 2

n

)
e(1−2/n)ζ

]

= lim
ζ→+∞

1(
1− 2

n
− α

)
e(1−2/n−α)ζ

[n− 2

n

e−ζ

e−
2
n′ ζ

(
1− C |Ω|β e−β ζ

)2

· exp
(
|Ω|

∫ ∞

ζ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

)
−

(
1− 2

n

)
e(1−2/n)ζ

]

= lim
ζ→+∞

n− 2

n

e(1−2/n) ζ

(
1− 2

n
− α

)
e(1−2/n−α) ζ

[(
1 + 2 C |Ω|β e−β ζ + o (e−ζβ)

)

·
(
1 + |Ω|

∫ ∞

ζ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ + o

( ∫ ∞

ζ

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ

))
− 1

]
,

(3.17)
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where the second equality follows from an application of De L’Hopital rule, and the
third one is due to (2.5). Here, the notation o(φ(ζ)) means that lim

ζ→+∞
o(φ(ζ))/φ(ζ) =

0. Equation (2.5) also ensures that a constant C = C (Ω, σ, τ) exists such that
∥∥1/h

∥∥
Lσ′,τ ′ (0,|Ω|e−t)

≤ C e−( 1
n
− 1

σ
) t

if t is sufficiently large. Hence, similarly as in (3.15), we have

(3.18) |Ω|
∫ ∞

t

b(|Ω| e−λ)

h(|Ω| e−λ)
e−λ dλ =

∫ |Ω|e−t

0

b(η)

h(η)
dη ≤ C ‖B‖Lσ,τ (0,|Ω|/2) e−( 1

n
− 1

σ
) t

for some constant C = C(Ω, σ, τ) and for large t. From (3.17)–(3.18) one easily
infers that

(3.19) lim
t→+∞

ḡ(t)

e−αt
= 0.

Therefore, g ∈ L1(log 2,∞) ∩ Lq′(log 2,∞), and (2.23) holds.
Now, one has

∫

Ω

exp
(
n(n− 2)θ

2/n
Ω

|u−m(u)|
‖f‖Ln/2,q

)q′

dx

≤
2∑

i=1

∫

Ω

exp
(
n(n− 2)θ

2/n
Ω

(u−m(u))i

‖fi‖Ln/2,q

)q′

dx

=
2∑

i=1

∫ |Ω|
2

0

exp
(
n(n− 2)θ

2/n
Ω

(u−m(u))∗i (s)
‖fi‖Ln/2,q

)q′

ds

= |Ω|
2∑

i=1

∫ ∞

log 2

exp
[(

n(n− 2)θ
2/n
Ω

(u−m(u))∗i (|Ω|e−t)

‖fi‖Ln/2,q

)q′

− t
]
dt

≤ |Ω|
2∑

i=1

∫ ∞

log 2

exp
[(

n(n− 2)θ
2/n
Ω

1

‖fi‖Ln/2,q

∫ ∞

log 2

K(t, ζ)φi(ζ) dζ
)q′

− t
]
dt,

(3.20)

where the last inequality is a consequence of (3.11). On the other hand,

‖φi‖Lq(log 2,∞) =
( ∫ ∞

log 2

(
f ∗i (|Ω|e−ζ) e−2ζ/n|Ω|2/n

)q
dζ

)1/q

=
( ∫ |Ω|/2

0

(
f ∗i (s)s2/n

)q ds

s

)1/q

= ‖fi‖Ln/2,q(0,|Ω|/2).

(3.21)

By (3.20)–(3.21) and by (2.24) inequality (3.4) follows.
Assume now that q = ∞. The very definition of Lorentz norm entails that

(3.22)
f ∗i (s)

‖f‖Ln/2,∞
≤ f ∗i (s)

‖fi‖Ln/2,∞
≤ s−2/n for s > 0.
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Given γ > 0, inequalities (3.6) and (3.22) yield
∫

Ω

exp
(
γ
|u−m(u)|
‖f‖Ln/2,∞

)
dx ≤

2∑
i=1

∫ |Ω|
2

0

exp
(
γ

(u−m(u))∗i (s)
‖fi‖Ln/2,∞

)
ds

≤ 2

∫ |Ω|
2

0

exp
[
γ

∫ |Ω|
2

s

1

h2(ρ)

( ∫ ρ

0

exp
( ∫ ρ

ζ

b(η)

h(η)
dη

)
ζ−2/n dζ

)
dρ

]
ds

≤ 2

∫ |Ω|
2

0

exp
[
γ

n

n− 2

∫ |Ω|
2

s

1

h2(ρ)
exp

( ∫ ρ

0

b(η)

h(η)
dη

)
ρ1−2/n dρ

]
ds.

(3.23)

From equation (2.5) and inequality (3.18) one deduces that, for every ε > 0, a
constant C = C (Ω, ε, σ, τ, ‖B‖Lσ,τ ) exists such that

(3.24)
∫ |Ω|

2

s

ρ1−2/n

h2(ρ)
exp

( ∫ ρ

0

b(η)

h(η)
dη

)
dρ ≤ C +

1 + ε

n2θ
2/n
Ω

log
(1

s

)

for s ∈ (
0, |Ω|/2). Owing to the arbitrariness of ε, inequalities (3.23)-(3.24) yield

(3.5) for every γ ∈ (0, n(n− 2)θ
2/n
Ω ). ¤

Proof of Theorem 3.1, Part II. Assume that q < ∞. In order to prove the
optimality of (3.4), for every β > n(n − 2)θ

2/n
Ω we exhibit a domain Ω ∈ Σ1,α and

a sequence {fk}k∈N of functions in Ln/2,q(Ω) such that the corresponding sequence
{uk}k∈N of solutions to the problems

(3.25)




−∆uk = fk in Ω,

∂uk

∂n
= 0 on ∂Ω,

satisfies

(3.26) lim
k→+∞

∫

Ω

exp
(
β
|uk −m(uk)|
‖fk‖Ln/2,q

)q′

dx = +∞.

Let ϕ : R → [0, +∞) be an increasing smooth function (of class C 2, say) such that

ϕ(t) ≡ 0 if t ≤ 0 and ϕ(t) = t if t ≥ 1.

Given ε ∈ (0, 1), let ψε : R → [0, 1] be defined as

(3.27) ψε(t) =





0 if t < 0,

ε ϕ(t/ε) if 0 ≤ t ≤ ε,

t if ε < t < 1− ε,

1− ε ϕ
(

1−t
ε

)
if 1− ε < t ≤ 1,

1 if t > 1.

Furthermore, for k ∈ N, let ξε,k : (0, +∞) → [0, 1] be given by

(3.28) ξε,k(r) = ψε

(
log 1

r

log k

)
for r > 0.
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Fixed θ ∈ (0, ωn

2
], choose as a ground domain any bounded domain Ω ∈ Σ1,α sat-

isfying B2(0) ∩ Ω = B2(0) ∩ Λ for some cone Λ having aperture θ. Finally, define
uε,k : Ω → R as

(3.29) uε,k(x) =

{
ξε,k(|x|) if x ∈ B1(0) ∩ Ω,

0 otherwise.

Thanks to our assumptions on ϕ, for every ε ∈ (0, 1) and k ∈ N, uε,k ∈ C 2(Ω).
Since |Ω| ≥ |B2(0) ∩ Λ| > 2|B1(0) ∩ Λ| = 2|B1(0) ∩ Ω|, we have

(3.30) m(uε,k) = 0.

Moreover,
∂ uε,k

∂n
= 0 on ∂Ω. Set

fε,k = ∆ uε,k.

Hence,

(3.31) fε,k(x) = ψ′′ε

(
log 1

|x|
log k

)
1

|x|2 (log k)2
− (n− 2)ψ′ε

(
log 1

|x|
log k

)
1

|x|2 log k

if x ∈ B1(0) ∩ Ω, and fε,k(x) ≡ 0 otherwise. Thus, a constant C = C (ϕ), which we
choose larger than n− 2, exists such that, on setting

(3.32) Υ(ε, k) = C
(
1 +

1

ε log k

)
,

we have

(3.33) |fε,k(x)|





= 0 if 0 < |x| < 1

k
,

≤ Υ(ε, k)

|x|2 log k
if

1

k
≤ |x| < 1

k1−ε
,

=
n− 2

|x|2 log k
if

1

k1−ε
≤ |x| < 1

kε
,

≤ Υ(ε, k)

|x|2 log k
if

1

kε
≤ |x| < 1,

for x ∈ B1(0) ∩ Ω. Consequently, if gε,k : [0, +∞) → [0, +∞) is given by

gε,k(s) =





Υ(ε, k)θ2/n

s2/n log k
if

θ

kn
< s <

θ

k(1−ε)n
,

(n− 2)θ2/n

s2/n log k
if

θ

k(1−ε)n
≤ s <

θ

kε n
,

Υ(ε, k)θ2/n

s2/n log k
if

θ

kε n
≤ s < θ,

0 otherwise,
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then, by (3.33),

(3.34) fε,k(x) ≤ gε,k(θ |x|n) for x ∈ B1(0) ∩ Ω,

and hence

(3.35) f ∗ε,k(s) ≤ g∗ε,k(s) for s > 0.

Computations show that, if k is sufficiently large, then

(3.36)

g∗ε,k(s) =





Υ(ε, k) θ2/n

(log k)(s + θ
kn )2/n

if 0 < s <
θ

k(1−ε)n
− θ

kn
,

(n− 2) θ2/n

(log k)(s + θ
kn )2/n

if
θ

k(1−ε)n
− θ

kn
≤ s

<
θ

kε n

( n− 2

Υ(ε, k)

)n/2

− θ

kn
,

(
(n− 2)n/2 + Υ(ε, k)n/2

θ
kn + θ

kε n + s

)2/n
θ2/n

log k
if

θ

kε n

( n− 2

Υ(ε, k)

)n/2

− θ

kn

≤ s <
θ

kε n

(Υ(ε, k)

n− 2

)n/2

− θ

kn
,

Υ(ε, k) θ2/n

(log k)(s + θ
kn )2/n

if
θ

kε n

(Υ(ε, k)

n− 2

)n/2

− θ

kn

≤ s < θ − θ

kn
,

0 if θ − θ

kn
≤ s.

We have
∫

Ω

exp
(
β
|uε,k −m(uε,k)|
‖fε,k‖Ln/2,q

)q′

dx

≥
∫

{x∈B1(0)∩Ω: |x|≤1/k}
exp

(
β

uε,k

‖fε,k‖Ln/2,q

)q′

dx

≥
∫

{x∈B1(0)∩Ω: |x|≤1/k}
exp

(
β

uε,k

‖gε,k‖Ln/2,q

)q′

dx

=
θ

kn
exp

( β

‖gε,k‖Ln/2,q

)q′

= θ exp
[( β

‖gε,k‖Ln/2,q

)q′

− n log k
]

= θ exp
[
log k

(
− n +

1

log k

( β

‖gε,k‖Ln/2,q

)q′)]
,

(3.37)
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where the first inequality is due to (3.30) and to the fact that uε,k(x) ≡ 1 if 0 ≤
|x| ≤ 1/k, and the second one holds owing to (3.35). From equation (3.37) and the
definition of Lorentz norm one can deduce, after some computations that,

lim
k→+∞

1

log k ‖gε,k‖q′
Ln/2,q

=
[
n(1− 2ε)((n− 2)θ2/n)q + 2nε(Cθ2/n)q

] 1
1−q

for every ε ∈ (0, 1), where C is the constant appearing in (3.32). Hence, the right-
most side of (3.37) diverges to +∞ as k → +∞ if

(3.38) −n + βq′[n(1− 2ε)((n− 2)θ2/n)q + 2nε(Cθ2/n)q
] 1

1−q > 0.

Thus, given any β > n(n − 2)θ
2/n
Ω and chosen any ε ∈ (0, 1) for which (3.38) is

fulfilled, equation (3.26) holds with uk = uε,k.
Consider now the case where q = ∞. Let Ω be as above. We exhibit a function

f ∈ Ln/2,∞(Ω) and a solution u to the problem



−∆u = f in Ω,

∂u

∂n
= 0 on ∂Ω,

fulfilling

(3.39)
∫

Ω

exp
(
γ
|u−m(u)|
‖f‖Ln/2,∞

)
dx = +∞

for every γ ≥ n(n− 2)θ2/n. Let Ψ: R → [0, +∞) be a smooth convex function, C 2

say, such that

Ψ(t) = 0 if t ≤ 0 and Ψ(t) = t− 1

2
if t ≥ 1.

Given a > 1, define ξa : (0, +∞) → R as

ξa(r) = Ψ

(
log 1

r

log a

)
for r > 0,

ua : Ω → R as

(3.40) ua(x) =

{
ξa(|x|) if x ∈ B1(0) ∩ Ω,

0 otherwise,

and
fa(x) = ∆ ua(x).

Then

fa(x) = Ψ′′
(

log 1
|x|

log a

)
1

|x|2 (log a)2
− (n− 2)Ψ′

(
log 1

|x|
log a

)
1

|x|2 log a
.
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Observe that Ψ′′ is bounded and nonnegative, 0 ≤ Ψ′(t) ≤ 1 for every t ∈ R,
and Ψ′(t) ≡ 1, Ψ′′(t) ≡ 0 if t ≥ 1. Thus, for x ∈ B1(0) ∩ Ω,

|fa(x)|





=
n− 2

|x|2 log a
if |x| ≤ 1

a
,

≤ n− 2

|x|2 log a
if

1

a
< |x| ≤ 1,

= 0 if |x| > 1,

provided that a is sufficiently large. Hence,

(3.41) ‖fa‖Ln/2,∞(Ω) ≤
(n− 2) θ2/n

log a
.

By (3.40)–(3.41),

∫

Ω

exp
(
γ
|ua −m(ua)|
‖fa‖Ln/2,∞

)
dx ≥

∫

B1(0)∩Ω

exp

[
γ

Ψ
(

log 1
|x|

log a

)
log a

(n− 2)θ2/n

]
dx

≥
∫

{x∈B1(0)∩Ω:|x|≤1/a}
exp

[
γ

(
log 1

|x|
log a

− 1
2

)
log a

(n− 2)θ2/n

]
dx

= θ

∫ 1
a

0

rn−1 exp
(
γ

log 1
r

(n− 2)θ2/n

)
exp

(
− γ log a

2 (n− 2)θ2/n

)
dr

= θ exp
(
− γ log a

2 (n− 2)θ2/n

) ∫ 1
a

0

r
− γ

(n−2)θ2/n
+n−1

dr = +∞

if γ ≥ n(n− 2)θ2/n. Hence, (3.39) follows with u = ua and f = fa. ¤

4. Optimal summability

The present section is devoted to the proof of Theorem 1.2.

Proof of Theorem 1.2. From inequality (3.2), via (2.4) and (3.15), we deduce
that

(4.1)
(
u−m(u)

)∗
i
(s) ≤ C

∫ |Ω|/2

s

r−2+2/n

∫ r

0

f ∗i (ρ) dρ dr, i = 1, 2,
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for some constant C = C(Ω, σ, τ, ‖B‖Lσ,τ ) and for every s ∈ (
0, |Ω|/2). Hence,

‖u−m(u)‖L∞,q(log L)−1(Ω) ≤
2∑

i=1

‖(u−m(u))i‖L∞,q(log L)−1(Ω)

≤
2∑

i=1

∥∥∥∥∥
(u−m(u))∗i (s)

s1/q
(
1 + log |Ω|

2s

)
∥∥∥∥∥

Lq(0,|Ω|/2)

≤ C

2∑
i=1

∥∥∥∥∥

∫ |Ω|/2

s
r−2+2/n

∫ r

0
f ∗i (ρ) dρ dr

s1/q
(
1 + log |Ω|

2s

)
∥∥∥∥∥

Lq(0,|Ω|/2)

.

(4.2)

An application of Fubini’s theorem and simple estimates yield
∥∥∥∥∥

∫ |Ω|/2

s
r−2+2/n

∫ r

0
f ∗i (ρ) dρ dr

s1/q
(
1 + log |Ω|

2s

)
∥∥∥∥∥

Lq(0,|Ω|/2)

≤ n

n− 2

(∥∥∥∥∥
s−1+ 2

n
− 1

q

1 + log |Ω|
2s

∫ s

0

f ∗i (ρ) dρ

∥∥∥∥∥
Lq(0,|Ω|/2)

+

∥∥∥∥∥
s−

1
q

1 + log |Ω|
2s

∫ |Ω|/2

s

f ∗i (ρ) ρ−1+2/n dρ

∥∥∥∥∥
Lq(0,|Ω|/2)

)
,

(4.3)

for i = 1, 2. By an application of (2.18) and (2.20) to the first norm and to the
second norm, respectively, on the right hand side of (4.3), one deduces that

∥∥∥∥∥

∫ |Ω|/2

s
r−2+2/n

∫ r

0
f ∗i (ρ) dρ dr

s1/q
(
1 + log |Ω|

2s

)
∥∥∥∥∥

Lq(0,|Ω|/2)

≤ n

n− 2
C

∥∥∥s
2
n
− 1

q f ∗i (s)
∥∥∥

Lq(0,|Ω|/2)
, i = 1, 2 ,

(4.4)

for some constant C = C(q) and for every f ∈ Ln/2,q(Ω). Inequality (1.12) then
follows from (4.2) and (4.4).

We now prove the optimality of the space L∞,q(log L)−1(Ω). Let Ω be a bounded
domain in Rn, let q ∈ (1,∞], and let X(Ω) be any r.i. space on Ω having the
following property: a constant C exists such that

(4.5) ‖u−m(u)‖X(Ω) ≤ C‖f‖Ln/2,q(Ω)

for every f ∈ Ln/2,q(Ω) and for every solution u to the Neumann problem

(4.6)




−∆u = f(x) in Ω,
∂u

∂n
= 0 on ∂Ω.

We may assume, without loss of generality, that 0 ∈ Ω. Let R > 0 be such that
BR(0) ⊂⊂ Ω and |BR(0)| < |Ω|/2. Set |BR(0)| = V . Let φ be any function in
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Ln/2,q(0,∞) fulfilling

(4.7) φ(s) = −φ(V − s) if s ∈ (0, V ), φ(s) = 0 if s > V,

and

(4.8) φ(s) ≥ 0 if s ∈ (0, V/2).

Hence, in particular,

(4.9)
∫ s

0

φ(r) dr ≥ 0 if s ∈ [0, V ] and
∫ s

0

φ(r) dr = 0 if s ≥ V.

Define f : Ω → R as
f(x) = φ(ωn|x|n) for x ∈ Ω.

Thus, by (4.9),

(4.10)
∫

Ω

f(x) dx =

∫ V

0

φ(s) ds = 0.

Moreover, define u : Ω → R as

(4.11) u(x) =
1

n2 ω
2/n
n

∫ V/2

ωn|x|n
r−2+2/n

∫ r

0

φ(ρ) dρ dr for x ∈ Ω.

Therefore,
−∆ u = f in Ω,

and since

(4.12) u(x) = − 1

n2 ω
2/n
n

∫ V

V/2

r−2+2/n

∫ r

0

φ(ρ) dρ dr if x ∈ Ω \BR(0),

then
∂u

∂n
= 0 on ∂Ω. In other words, u is a solution to problem (4.6). Observe that

(4.13) m(u) = − 1

n2 ω
2/n
n

∫ V

V/2

r−2+2/n

∫ r

0

φ(ρ) dρ dr < 0,

where the equality holds owing to (4.12) and to the fact that V < |Ω|/2, and the
inequality in (4.13) is a consequence of (4.9). Thus,

|u(x)−m(u)| = 1

n2 ω
2/n
n

∣∣∣∣∣
∫ V/2

ωn|x|n
r−2+2/n

∫ r

0

φ(ρ) dρ dr

+

∫ V

V/2

r−2+2/n

∫ r

0

φ(ρ) dρ dr

∣∣∣∣∣

=
1

n2 ω
2/n
n

∣∣∣∣∣
∫ V

ωn|x|n
r−2+2/n

∫ r

0

φ(ρ) dρ dr

∣∣∣∣∣

≥ χ[0,V/2](ωn|x|n)

n2 ω
2/n
n

∫ V/2

ωn|x|n
r−2+2/n

∫ r

0

φ(ρ) dρ dr ≥ 0

(4.14)
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for x ∈ Ω. Consequently,

(4.15) ‖u−m(u)‖X(Ω) ≥
∥∥∥∥∥
χ[0,V/2](s)

n2 ω
2/n
n

∫ V/2

s

r−2+2/n

∫ r

0

φ(ρ) dρ dr

∥∥∥∥∥
X(0,|Ω|)

.

The following chain holds
∥∥∥∥∥
χ[0,V/2](s)

n2 ω
2/n
n

∫ V/2

s

r−2+ 2
n

∫ r

0

φ(ρ) dρ dr

∥∥∥∥∥
X(0,|Ω|)

=

∥∥∥∥∥
χ[0,V/2](s)

22/n n2 ω
2/n
n

∫ V

2 s

r−2+ 2
n

∫ r

0

φ
(ρ

2

)
dρ dr

∥∥∥∥∥
X(0,|Ω|)

≥ 1

21+2/n n2 ω
2/n
n

∥∥∥∥∥χ[0,V ](s)

∫ V

s

r−2+ 2
n

∫ r

0

φ
(ρ

2

)
dρ dr

∥∥∥∥∥
X(0,|Ω|)

=
1

21+2/n n2 ω
2/n
n

∥∥∥∥∥
nχ[0,V ](s)

n− 2

((
s−1+ 2

n − V −1+ 2
n

) ∫ s

0

φ(r/2) dr

+

∫ V

s

φ(r/2)
(
r−1+ 2

n − V −1+ 2
n

)
dr

)∥∥∥∥∥
X(0,|Ω|)

≥ 1

n (n− 2)21+2/n ω
2/n
n

∥∥∥∥∥χ[0,V ](s)

∫ V

s

φ(r/2)
(
r−1+ 2

n − V −1+ 2
n

)
dr

∥∥∥∥∥
X(0,|Ω|)

≥ 1

n (n− 2)21+2/n ω
2/n
n

∥∥∥∥∥χ[0,V ](2s)

∫ V

2 s

φ(r/2)
(
r−1+ 2

n − V −1+ 2
n

)
dr

∥∥∥∥∥
X(0,|Ω|)

≥ (1− 2−1+2/n)

n (n− 2)21+2/n ω
2/n
n

∥∥∥∥∥χ[0,V ](2s)

∫ V

2 s

φ(r/2) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

≥ (1− 2−1+2/n)

2n (n− 2)21+2/n ω
2/n
n

∥∥∥∥∥χ[0,V ](s)

∫ V

s

φ(r/2) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

,

(4.16)

where the first and the fifth inequality are consequences of (2.14), and the second
inequality holds since φ(r/2) ≥ 0 if r ∈ (0, V ). On the other hand,

(4.17) ‖f‖Ln/2,q(Ω) =
∥∥∥φ(s/2)χ[0,V ](s)

∥∥∥
Ln/2,q(0,|Ω|)

.

From (4.5), (4.15), (4.16) and (4.17) we deduce that

(4.18)
∥∥∥∥χ[0,V ](s)

∫ V

s

φ(r/2) r−1+ 2
n dr

∥∥∥∥
X(0,|Ω|)

≤ C
∥∥∥φ(s/2)χ[0,V ](s)

∥∥∥
Ln/2,q(0,|Ω|)

,
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for some constant C = C(X(Ω), q). Hence, in particular,

(4.19)

∥∥∥∥∥
∫ |Ω|

s

ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

≤ C
∥∥ ψ

∥∥
Ln/2,q(0,|Ω|)

for every ψ ∈ Ln/2,q(0, |Ω|) vanishing outside [0, V ]. If ψ need not vanish outside
[0, V ], then

∥∥∥∥∥
∫ |Ω|

s

ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

≤
∥∥∥∥∥

∫ |Ω|

s

χ[0,V ](r) ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

+

∥∥∥∥∥
∫ |Ω|

s

χ[V,|Ω|](r) ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

.

(4.20)

We have

∥∥∥∥∥
∫ |Ω|

s

χ[V,|Ω|](r) ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

≤ V −1+ 2
n

∥∥∥∥∥
∫ |Ω|

s

|ψ(r)| dr

∥∥∥∥∥
X(0,|Ω|)

≤ V −1+ 2
n ‖1‖X(0,|Ω|)

∫ |Ω|

0

|ψ(r)| dr

≤ C V −1+ 2
n ‖1‖X(0,|Ω|) ‖1‖L

n
n−2 ,q′

(0,|Ω|) ‖ψ‖Ln/2,q(0,|Ω|)

(4.21)

for some constant C = C(X(Ω), q). From (4.20)–(4.21) and from (4.19) applied
with ψ replaced by χ[0,V ] ψ, one infers that

(4.22)

∥∥∥∥∥
∫ |Ω|

s

ψ(r) r−1+ 2
n dr

∥∥∥∥∥
X(0,|Ω|)

≤ C ‖ψ‖Ln/2,q(0,|Ω|)

for some constant C = C(X(Ω), q) and for every ψ ∈ Ln/2,q(0, |Ω|). We now use an
argument involving associate spaces analogous to that of [C3, Proof of Lemma 1]
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and [EKP, Proof of Theorem 4.6]. Inequality (4.22) entails that

C ≥ sup
ψ∈Ln/2,q(0,|Ω|)

∥∥∥
∫ |Ω|

s

|ψ(r)| r−1+2/n dr
∥∥∥

X(0,|Ω|)
‖ψ‖Ln/2,q(0,|Ω|)

= sup
ψ∈Ln/2,q(0,|Ω|)

ξ∈X
′
(0,|Ω|)

∫ |Ω|

0

ξ∗(s)
∫ |Ω|

s

|ψ(r)| r−1+ 2
n dr ds

‖ξ‖X
′
(0,|Ω|) ‖ψ‖Ln/2,q(0,|Ω|)

= sup
ψ∈Ln/2,q(0,|Ω|)

ξ∈X
′
(0,|Ω|)

∫ |Ω|

0

|ψ(r)| r−1+ 2
n

∫ r

0

ξ∗(s) ds dr

‖ξ‖X
′
(0,|Ω|) ‖ψ‖Ln/2,q(0,|Ω|)

≥ C1 sup
ξ∈X

′
(0,|Ω|)

∥∥r2/n ξ∗∗(r)
∥∥

L
n

n−2 ,q′
(0,|Ω|)

‖ξ‖X
′
(0,|Ω|)

,

(4.23)

for some constant C1 = C1(X(Ω), q), where the first equality is due to (2.11).
Consequently,

‖φ‖X(0,|Ω|) = sup
ξ∈X

′
(0,|Ω|)

∫ |Ω|

0

φ∗(s) ξ∗(s) ds

‖ξ‖X
′
(0,|Ω|)

≤ C sup
ξ∈L

n
n−2 ,q′

(0,|Ω|)

∫ |Ω|

0

φ∗(s) ξ∗(s) ds

‖s2/n ξ∗∗(s)‖
L

n
n−2 ,q′

(0,|Ω|)

(4.24)

for some constant C = C(X(Ω), q) and for every φ ∈ X(0, |Ω|).
In the case where q < ∞, by [KP, Theorem 3.9] a constant C = C (n, q, |Ω|)

exists such that
C ‖s2/n ξ∗∗(s)‖

L
n

n−2 ,q′
(0,|Ω|) ≥ sup

s≤r≤|Ω|
‖r2/n ξ∗∗(r)‖

L
n

n−2 ,q′
(0,|Ω|)

=
( ∫ |Ω|

0

[(
sup

s≤r≤|Ω|
r2/n ξ∗∗(r)

)
r

n−2
n

]q′
ds

s

)1/q′

≥
( ∫ |Ω|

0

ξ∗∗(s)q′sq′−1 ds
)1/q′

(4.25)

for every ξ ∈ L
n

n−2
,q′(0, |Ω|). From (4.24)–(4.25) we get

(4.26) ‖φ‖X(0,|Ω|) ≤ C sup
ξ∈L

n
n−2 ,q′

(0,|Ω|)

∫ |Ω|
0

φ∗(s) ξ∗(s) ds
( ∫ |Ω|

0
ξ∗∗(s)q′sq′−1 ds

)1/q′ ,
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for some constant C = C(X(Ω), q). An application of (2.21) with

µ(s) =
1

s (1 + log |Ω|
s

)q

tells us that the supremum in (4.26) does not exceed

C

( ∫ |Ω|

0

(
φ∗(s)

1 + log |Ω|
s

)q
ds

s

)1/q

for some constant C = C (q, |Ω|). Notice that here we have made use of the fact
that ∫ |Ω|

0

ξ∗(s) ds ≤ C
( ∫ |Ω|

0

ξ∗∗(s)q′ sq′−1 ds
)1/q′

for some constant C = C(q, |Ω|) and for every measurable function ξ in (0, |Ω|),
see e.g. [GP, Theorem 4.1]. Hence, by (2.10), L∞,q(log L)−1(Ω) is continuously
embedded into X(Ω).

Finally, assume that q = ∞, and hence q′ = 1. One has

(4.27) ‖s2/n ξ∗∗(s)‖
L

n
n−2 ,1

(0,|Ω|) =

∫ |Ω|

0

ξ∗∗(s) ds =

∫ |Ω|

0

ξ∗(s) log
(|Ω|/s) ds

for ξ ∈ L
n

n−2
,1(0, |Ω|). Since

(4.28)
∫ s

0

(
1 + log

(|Ω|/r)
)

dr ≤ (1 + e )

∫ s

0

log
(|Ω|/r) dr for s ∈ (0, |Ω|),

one has by Hardy’s Lemma (see e.g. [BS, Proposition 3.6, Chap. 2])

(4.29)
∫ |Ω|

0

ξ∗(s)
(
1 + log

(|Ω|/s)
)

ds ≤ (1 + e)

∫ |Ω|

0

ξ∗(s)log
(|Ω|/s) ds

for every ξ as above. Combining (4.24), (4.27) and (4.29) tells us that

‖φ‖X(0,|Ω|) ≤ C (1 + e) sup
ξ∈L1,1(log L)(Ω)

∫ |Ω|
0

φ∗(s) ξ∗(s) ds
∫ |Ω|
0

ξ∗(s)
(
1 + log

(|Ω|/s)) ds

≤ C (1 + e)
∥∥∥ φ∗(s)

1 + log
(|Ω|/s)

∥∥∥
L∞(0,|Ω|)

= C (1 + e) ‖φ‖L∞,∞(log L)−1(0,|Ω|)

(4.30)

for some constant C = C(X(Ω), q). Hence, L∞,∞(log L)−1(Ω) is continuously em-
bedded into X(Ω). The proof is complete. ¤
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