CURVATURE INTEGRAL AND LIPSCHITZ PARAMETRIZATION IN 1-REGULAR METRIC SPACES

Immo Hahlomaa

> University of Jyväskylä, Department of Mathematics and Statistics P.O. Box 35, FI-40014 Jyväskylä, Finland; imhahlom@maths.jyu.fi

Abstract

We show that for a bounded 1-regular metric measure space (E, μ) the finiteness of the Menger curvature integral $$
\int_{E} \int_{E} \int_{E} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}
$$ guarantees that E is a Lipschitz image of a subset of a bounded subinterval of \mathbf{R}.

1. Introduction

Let z_{1}, z_{2} and z_{3} be three points in a metric space (E, d). The Menger curvature of the triple $\left(z_{1}, z_{2}, z_{3}\right)$ is

$$
c\left(z_{1}, z_{2}, z_{3}\right)=\frac{2 \sin \varangle z_{1} z_{2} z_{3}}{d\left(z_{1}, z_{3}\right)}
$$

where

$$
\varangle z_{1} z_{2} z_{3}=\arccos \frac{d\left(z_{1}, z_{2}\right)^{2}+d\left(z_{2}, z_{3}\right)^{2}-d\left(z_{1}, z_{3}\right)^{2}}{2 d\left(z_{1}, z_{2}\right) d\left(z_{2}, z_{3}\right)} .
$$

Note that $c\left(z_{1}, z_{2}, z_{3}\right)$ is the reciprocal of the radius of the circle passing through x_{1}, x_{2} and x_{3} whenever $\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathbf{R}^{2}$ is an isometric triple for $\left\{z_{1}, z_{2}, z_{3}\right\}$. We set

$$
c^{2}(E)=\int_{E} \int_{E} \int_{E} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}
$$

Through the paper μ is the 1-dimensional Hausdorff measure on E.
We say that a metric space (E, d) is 1 -regular if there exists $M_{0}<\infty$ such that

$$
\begin{equation*}
M_{0}^{-1} r \leq \mu(B(x, r)) \leq M_{0} r \tag{1}
\end{equation*}
$$

whenever $x \in E$ and $r \in] 0, d(E)]$. Here $d(E)$ is the diameter of E and $B(x, r)$ will denote the closed ball in E with center $x \in E$ and radius $r>0$. The smallest constant M_{0} such that (1) holds is called the regularity constant of E. We denote

$$
\begin{equation*}
\ell(E)=\inf \{\operatorname{Lip}(f): f: A \rightarrow E \text { is a surjection and } A \subset[0,1]\} \tag{2}
\end{equation*}
$$

where $\operatorname{Lip}(f) \in[0, \infty]$ is the Lipschitz constant of f. Note that if E is a subset of a Hilbert space H, then by the classical Kirszbraun-Valentine extension theorem we

[^0]can take in (2) the infimum over all functions $f:[0,1] \rightarrow H$ for which $E \subset f([0,1])$ without that $\ell(E)$ changes. Further, if E is a connected metric space, $\ell(E)$ is at most a constant multiple of $\mu(E)$ (see [11] and [3]). In this paper we shall prove the following theorem:

Theorem 1.1. Let (E, d) be a 1-regular metric space. Then $\ell(E) \leq C\left(c^{2}(E)+\right.$ $d(E)$), where $C<\infty$ depends only on the regularity constant of E.

In [4] P. W. Jones gave a sufficient and necessary condition for $E \subset \mathbf{C}$ to be contained in a rectifiable curve by showing that
(i) $\ell(E) \leq C_{1}\left(d(E)+\sum_{Q \in \mathscr{D}} \beta_{E}(Q)^{2} d(Q)\right)$,
(ii) $\sum_{Q \in \mathscr{D}} \beta_{E}(Q)^{2} d(Q) \leq C_{2} \ell(E)$,
where C_{1} and C_{2} are some absolute constants, $\mathscr{D}=\{3 Q: Q$ is a dyadic cube $\}$ and

$$
\beta_{E}(Q)=\inf _{L} d(Q)^{-1} \sup \{d(y, L): y \in E \cap Q\}
$$

for $Q \in \mathscr{D}$, where the infimum is taken over all lines. Here $3 Q$ is the cube with the same center as Q and sides parallel to the sides of Q, but whose diameter is $3 d(Q)$. Jones's proof for (i) works also if $E \subset \mathbf{R}^{n}$. The latter part has been extended to sets in \mathbf{R}^{n} by Okikiolu in [8]. Then, of course, the constant C_{2} must depend on n. In [11] Schul extended this theorem to sets in a Hilbert space H using the family

$$
\left\{\left\{y \in H: d(y, x) \leq A 2^{-k}\right\}: x \in \Delta_{k}, k \in \mathbf{Z}\right\}
$$

in the place of \mathscr{D}. Here A is some fixed constant and $\left(\Delta_{k}\right)_{k}$ is a net for E, that is, Δ_{k} is a maximal subset of E such that $d\left(x_{1}, x_{2}\right)>2^{-k}$ for any distinct points $x_{1}, x_{2} \in \Delta_{k}$ and $\Delta_{k} \subset \Delta_{k+1}$ for all $k \in \mathbf{Z}$. The easier part of Jones's theorem has an extension also for general metric spaces. In [3] we showed that there is an absolute constant C such that $\ell(E) \leq C(d(E)+\beta(E))$ for any metric space E, where

$$
\beta(E)=\inf \left\{\sum_{k \in \mathbf{Z}} \sum_{x \in \Delta_{k} \backslash \Delta_{k-1}} \beta\left(x, 2^{-k}\right)^{2}\left(2^{-k}\right)^{3}:\left(\Delta_{k}\right)_{k} \text { is a net for } E\right\}
$$

and $\beta(x, t)=\sup \left\{c\left(z_{1}, z_{2}, z_{3}\right): z_{1}, z_{2}, z_{3} \in B(x, A t), d\left(z_{i}, z_{j}\right) \geq t \forall i \neq j\right\}$ for $x \in$ E and $t>0$, where A is some sufficiently large constant. An example given by Schul shows that there is not any absolute constant C such that $\beta(E) \leq C \ell(E)$ for any metric space E. In fact, there exists a plane set E equipped with the ℓ^{1} metric such that $\ell(E)<\infty$ and $\beta(E)=\infty$. The part (i) has extended also to the Heisenberg group in [2].

David and Semmes proved in [1] that a closed 1-regular set $E \subset \mathbf{R}^{n}$ is contained in a 1 -regular curve if and only if there is $C<\infty$ such that

$$
\begin{equation*}
\int_{0}^{R} \int_{E \cap B(z, R)} \beta_{q}(x, t, E)^{2} d \mu x \frac{d t}{t} \leq C R \tag{3}
\end{equation*}
$$

for all $z \in E$ and $R>0$. Here $q \in[1, \infty]$ is arbitrary,

$$
\beta_{q}(x, t, E)=\inf _{L}\left(t^{-1-q} \int_{E \cap B(x, t)} d(y, L)^{q} d \mu y\right)^{1 / q}
$$

for $q \in[1, \infty[$ and

$$
\beta_{\infty}(x, t, E)=\inf _{L} t^{-1} \sup \{d(y, L): y \in E \cap B(x, t)\}
$$

where the infima are taken over all lines in \mathbf{R}^{n}. For $q=\infty$ this was already proved by Jones. In fact, David and Semmes gave in [1] a version of this theorem for m dimensional sets in \mathbf{R}^{n}, where m is any integer. In [9] Pajot gave a more direct proof for that a closed 1-regular set $E \subset \mathbf{R}^{n}$ lies in a 1-regular curve if (3) is satisfied. His construction also yields

$$
\begin{equation*}
\ell(E) \leq C\left(d(E)+\int_{0}^{d(E)} \int_{E} \beta_{q}(x, t, E)^{2} d \mu x \frac{d t}{t}\right) \tag{4}
\end{equation*}
$$

where $C<\infty$ depends only on the regularity constant of E. The basic idea of our proof for Theorem 1.1 is inspired by Pajot's algorithm, which is itself a kind of variant of Jones's one in [4].

Mattila, Melnikov and Verdera used Menger curvature in [7] for proving that the L^{2} boundedness of the Cauchy integral operator associated to a closed 1-regular set $E \subset \mathbf{C}$ implies that E is contained in a 1 -regular curve. The starting point of their work was the relation that for any three points $z_{1}, z_{2}, z_{3} \in \mathbf{C}$

$$
c\left(z_{1}, z_{2}, z_{3}\right)^{2}=\sum_{\sigma} \frac{1}{\left(z_{\sigma(1)}-z_{\sigma(3)}\right) \overline{\left(z_{\sigma(2)}-z_{\sigma(3)}\right)}}
$$

where σ runs through all six permutations of $\{1,2,3\}$. This implies that the Cauchy operator is bounded in $L^{2}(E)$ if and only if there is $C<\infty$ such that $c^{2}(E \cap$ $B(z, R)) \leq C R$ for all $z \in E$ and $R>0$. They showed that for some constant λ depending only on the regularity constant of E

$$
\begin{equation*}
\int_{0}^{R} \int_{E \cap B(z, R)} \beta_{2}(x, t, E)^{2} d \mu x \frac{d t}{t} \leq \lambda c^{2}(E \cap B(z, \lambda R)) \tag{5}
\end{equation*}
$$

for all $z \in E$ and $0<R<d(E) / \lambda$. The claim now follows from the result of David and Semmes. Note that we get from (5) and (4) that a bounded 1-regular set $E \subset \mathbf{R}^{n}$ lies in a rectifiable curve if $c^{2}(E)<\infty$.

Jones has later proved that for a 1-regular set $E \subset \mathbf{C}$

$$
\int_{0}^{R} \int_{E \cap B(z, R)} \beta_{\infty}(x, t, E)^{2} d \mu x \frac{d t}{t} \leq C c^{2}(E \cap B(z, C R))
$$

for all $z \in E$ and $R>0$, where $C<\infty$ depends only on the regularity constant of E. For the proof see [10]. Using this we get also $\beta(E) \leq C c^{2}(E)$ for some $C<\infty$ depending only on the regularity constant of E whenever E is a 1-regular set in \mathbf{C}. We can easily construct an example which shows that this is not true for general 1 -regular metric spaces. For example, let $\delta>0$ and consider the plane set $E_{\delta}=$
$([0,1] \times\{0\}) \cup(\{0,1\} \times[0, \delta])$ equipped with the ℓ^{1} metric. Then $c^{2}\left(E_{\delta}\right) / \beta\left(E_{\delta}\right) \rightarrow 0$ as $\delta \rightarrow 0$.

Any Borel set $E \subset \mathbf{R}^{n}$ with $\mu(E)<\infty$ and $c^{2}(E)<\infty$ is rectifiable in sense that there are rectifiable curves $\Gamma_{1}, \Gamma_{2}, \ldots$ such that

$$
\mu\left(E \backslash \bigcup_{i=1}^{\infty} \Gamma_{i}\right)=0
$$

This was first proved by David. Léger gave in [5] a different proof which also gives a version for higher dimensional sets in \mathbf{R}^{n}.

For related results see also [6].

2. Preliminaries of the proof of Theorem 1.1

We assume that E is a bounded 1-regular metric space with regularity constant M_{0} such that $c^{2}(E)<\infty$. Let C_{1}, C_{2} and $\delta<1$ be positive constants such that $C_{1}(1-\delta)>4(2-\delta)$ and $C_{2}(1-\delta)>8\left(1+2 C_{1}\right)(2-\delta)$, and let r_{2}, r_{4} and R_{2} be small positive constants depending on C_{2} and δ. Then, let $r_{5}>0$ be a small constant depending on $C_{2}, \delta, r_{2}, r_{4}$ and R_{2}. We also let r_{3} and R_{3} be large positive constants depending on C_{2}, δ and M_{0}, and then we let $\varepsilon_{0}<1$ be a sufficiently large positive constant depending on $C_{1}, C_{2}, \delta, M_{0}$ and r_{5}. Finally, let $r_{0}>0$ be a small constant depending on R_{2} and ε_{0}, and let $r_{1}>0$ be a small number depending on most of the above constants. See more details later. For any $x \in E$ and $n \in \mathbf{Z}$ we choose a point $q_{n}(x) \in B\left(x, r_{1} \delta^{n}\right)$ such that

$$
\begin{aligned}
& \mu\left(B\left(x, r_{1} \delta^{n}\right)\right) \int_{S_{n}(x)} c\left(z_{1}, z_{2}, q_{n}(x)\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) \\
& \leq \int_{B\left(x, r_{1} \delta^{n}\right)} \int_{S_{n}(x)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) d \mu z_{3},
\end{aligned}
$$

where $S_{n}(z)=\left\{(\zeta, \eta) \in\left(B\left(z, r_{3} \delta^{n}\right) \backslash B\left(z, r_{2} \delta^{n}\right)\right)^{2}: d(\zeta, \eta)>r_{4} \delta^{n}\right\}$ for $z \in E$. We also set

$$
\vartheta(x, n)=\sup \left\{\varepsilon \in[0,1]:\left\{z_{1}, z_{2}, z_{3}\right\} \in \mathscr{O}(\varepsilon) \forall\left(z_{1}, z_{2}, z_{3}\right) \in W(x, n)\right\},
$$

where

$$
W(x, n)=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in B\left(x, R_{3} \delta^{n}\right)^{3}: d\left(z_{i}, z_{j}\right)>R_{2} \delta^{n} \forall i \neq j\right\}
$$

and $\mathscr{O}(\varepsilon)$ is the set of the metric spaces E such that $d(x, z) \geq d(x, y)+\varepsilon d(y, z)$ whenever $x, y, z \in E$ such that $d(x, z)=d(\{x, y, z\})$. We say that $E^{\prime} \subset E$ has an order, if there is an injection $o: E^{\prime} \rightarrow \mathbf{R}$ such that for all $x, y, z \in E^{\prime}$ the condition $o(x)<o(y)<o(z)$ implies $d(x, z)>\max \{d(x, y), d(y, z)\}$. In that case the function o is called an order. If there is an order o on $\left\{x_{1}, \ldots, x_{n}\right\} \subset E, n \in \mathbf{N}$, such that $o\left(x_{i}\right)<o\left(x_{i+1}\right)$ for $i=1, \ldots, n-1$, we write shortly $x_{1} x_{2} \ldots x_{n}$. The notation $x_{1} x_{2} x_{3} \mid \varepsilon$ means that $x_{1} x_{2} x_{3}$ and $\left\{x_{1}, x_{2}, x_{3}\right\} \in \mathscr{O}(\varepsilon)$.

Let $x_{0} \in E$ and let n_{0} be the biggest integer such that $E \subset B\left(x_{0}, \delta^{n_{0}}\right)$. Set $D_{0}^{n_{0}}=\left\{q_{n_{0}}\left(x_{0}\right)\right\}$. Let now $n>n_{0}$ and assume by induction that we have constructed
$D_{0}^{n-1} \subset E$ such that for any $x, y \in D_{0}^{n-1}, x \neq y, d(x, y)>\delta^{n}$. Let $A_{n}^{\prime} \subset E$ such that

- for any $x, y \in A_{n}^{\prime}, x \neq y, d(x, y)>\delta^{n}$,
- for any $x \in A_{n}^{\prime}, y \in D_{0}^{n-1}, d(x, y)>\delta^{n}$,
- for any $x \in E$ there exists $y \in A_{n}^{\prime} \cup D_{0}^{n-1}$ such that $d(x, y) \leq \delta^{n}$.

Now $\# A_{n}^{\prime} \leq 2 M_{0} \delta^{-n} \mu(E) \leq 2 M_{0}^{2} \delta^{-n} d(E)$. We set $A_{n}=q_{n}\left(A_{n}^{\prime}\right)$ and $D_{0}^{n}=A_{n} \cup$ $q_{n}\left(D_{0}^{n-1}\right)$. Let $A_{n}=\left\{x_{1}^{n}, \ldots, x_{\# A_{n}}^{n}\right\}$ such that

$$
d\left(x_{k}^{n}, D_{k-1}^{n-1}\right)=\max \left\{d\left(x, D_{k-1}^{n-1}\right): x \in A_{n}\right\}
$$

for $k=1, \ldots, \# A_{n}$. Here and in the sequel we denote $D_{k}^{n-1}=D_{0}^{n-1} \cup\left\{x_{1}^{n}, \ldots, x_{k}^{n}\right\}$ for $k=1, \ldots, \# A_{n}$. By choosing $\delta \leq 1-2 r_{1}$ we have for all $n \geq n_{0}$
(i) for any $x, y \in D_{0}^{n}, x \neq y, d(x, y)>\left(1-2 r_{1}\right) \delta^{n}$,
(ii) for any $x \in E$ there exists $y \in D_{0}^{n}$ such that $d(x, y) \leq\left(1+r_{1}\right) \delta^{n}$.

For $m \geq n>n_{0}$ and $x \in D_{0}^{n-1} \cup D_{0}^{n}$ we denote

$$
q_{m, n}(x)= \begin{cases}q_{m} \circ q_{m-1} \circ \cdots \circ q_{n+1}(x) & \text { if } x \in D_{0}^{n} \\ q_{m} \circ q_{m-1} \circ \cdots \circ q_{n}(x) & \text { if } x \in D_{0}^{n-1}\end{cases}
$$

Here we interpret $q_{n, n}(x)=x$ if $x \in D_{0}^{n}$. Note that $x=q_{n}(x)$ for $x \in D_{0}^{n-1} \cap D_{0}^{n}$. We also use the convention $q_{n-1, n}(x)=x$ for any x.

We are going to construct a sequence $\left(G_{k}^{n}\right)_{n>n_{0}, 0 \leq k \leq \# D_{0}^{n+1}}$ of connected weighted graphs with no cycles. We will denote by V_{k}^{n} and E_{k}^{n} the sets of the vertices and the edges of G_{k}^{n}. For each (n, k) we will have $D_{k}^{n} \subset V_{k}^{n}$. For all $x, y \in D_{k}^{n}$ such that $\{x, y\} \in E_{k}^{n}$ we will have $w_{k}^{n}(\{x, y\}) \geq d(x, y)$, where $\left.w_{k}^{n}: E_{k}^{n} \rightarrow\right] 0, \infty[$ is the weight function on the graph G_{k}^{n}. We denote $l\left(G_{k}^{n}\right)=\sum_{e \in E_{k}^{n}} w_{k}^{n}(e)$ and for $y \in D_{k}^{n}$ we will use the notations

$$
\begin{aligned}
& V_{k}^{n}(y)=\left\{z \in V_{k}^{n}:\{y, z\} \in E_{k}^{n}\right\}, \\
& D_{k}^{n}(y)=V_{k}^{n}(y) \cap D_{k}^{n} .
\end{aligned}
$$

Each vertex in $V_{k}^{n} \backslash D_{k}^{n}$ will have only one neighbour. Thus the subgraph of G_{k}^{n} induced by D_{k}^{n} will also be connected. We will denote this graph and the set of its edges by T_{k}^{n} and F_{k}^{n}. For each (n, k) we will define a 1-Lipschitz surjection $f_{k}^{n}: I_{k}^{n} \rightarrow D_{k}^{n}$, where $I_{k}^{n} \subset\left[0,2 l\left(T_{k}^{n}\right)\right]$. Here $l\left(T_{k}^{n}\right)=\sum_{e \in F_{k}^{n}} w_{k}^{n}(e)$. If $e \in F_{k}^{n}$, we denote

$$
J_{k}^{n}(e)=\left\{\left(s_{1}, s_{2}\right) \in I_{k}^{n} \times I_{k}^{n}: s_{1}<s_{2}, f_{k}^{n}\left(\left\{s_{1}, s_{2}\right\}\right)=e \text { and } I_{k}^{n} \cap\right] s_{1}, s_{2}[=\emptyset\} .
$$

Further we will define a function $P_{k}^{n}: D_{k}^{n} \rightarrow\left\{V: V \subset\left\{\{x, y\}: x, y \in V_{k}^{n}, x \neq y\right\}\right\}$ such that the following properties will be satisfied:

- Let $y \in D_{k}^{n}$. If $e_{1} \neq e_{2}$ and $e_{1}, e_{2} \in P_{k}^{n}(y)$, then $e_{1} \cap e_{2}=\emptyset$. If $v \in V_{k}^{n}(y)$, then $v \in e$ for some $e \in P_{k}^{n}(y)$. If $\left\{v_{1}, v_{2}\right\} \in P_{k}^{n}(y)$, then $\left\{v_{1}, v_{2}\right\} \subset V_{k}^{n}(y)$ and $v_{1} \neq v_{2}$.
- \# $\left\{e \in P_{k}^{n}(y): e \subset D_{k}^{n}(y)\right\} \leq 1$ for all $y \in D_{k}^{n}$.
- Let $e \in F_{k}^{n}$. Then $1 \leq \# J_{k}^{n}(e) \leq 2$ and $s_{2}-s_{1}=w_{k}^{n}(e)$ for all $\left(s_{1}, s_{2}\right) \in J_{k}^{n}(e)$.

For $n>n_{0}$ and $k \in\left\{0, \ldots, \# A_{n+1}\right\}$ also the following condition, called the (n, k) property, will be satisfied:

If $y \in D_{k}^{n},\left\{z_{1}, z_{2}\right\} \in P_{k}^{n}(y),\left\{z_{1}, z_{2}\right\} \subset D_{k}^{n}(y)$ and $\max \left\{d\left(y, z_{1}\right), d\left(y, z_{2}\right)\right\}<$ $C_{2}\left(1+r_{1}\right) \delta^{n}$, then $q_{m_{1}, n}\left(z_{1}\right) q_{m, n}(y) q_{m_{2}, n}\left(z_{2}\right) \mid \varepsilon_{0}$ for any $m, m_{1}, m_{2} \geq n-1$.
In Section 3 we define the graph G_{k}^{n-1} by deforming the graph G_{k-1}^{n-1}. The main point of the proof is to control $l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)$ by some integral estimate. For this we need that the vertices are well chosen. Thus we at every stage n "update" the vertices by applying q_{n} to them. We do this in Section 4. In Section 5 we show that $l\left(T_{0}^{m}\right)$ is uniformly bounded by a constant multiple of $c^{2}(E)+d(E)$, from which we get the final conclusion.

We define a graph $G_{1}^{n_{0}}$ with 4 vertices and 3 edges as follows. Put $V_{1}^{n_{0}}=$ $D_{1}^{n_{0}} \cup\left\{b_{1}, b_{2}\right\}$, where $\left\{b_{1}, b_{2}\right\} \cap E=\emptyset$, and set

$$
E_{1}^{n_{0}}=\left\{\left\{q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right\},\left\{q_{n_{0}}\left(x_{0}\right), b_{1}\right\},\left\{x_{1}^{n_{0}+1}, b_{2}\right\}\right\},
$$

Further we define $w_{1}^{n_{0}}$ and $P_{1}^{n_{0}}$ by setting

$$
\begin{aligned}
& w_{1}^{n_{0}}\left(\left\{q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right\}\right)=d\left(q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right), \\
& w_{1}^{n_{0}}\left(\left\{q_{n_{0}}\left(x_{0}\right), b_{1}\right\}\right)=w_{1}^{n_{0}}\left(\left\{x_{1}^{n_{0}+1}, b_{2}\right\}\right)=C_{1} d\left(q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right), \\
& P_{1}^{n_{0}}\left(q_{n_{0}}\left(x_{0}\right)\right)=\left\{\left\{x_{1}^{n_{0}+1}, b_{1}\right\}\right\}, \\
& P_{1}^{n_{0}}\left(x_{1}^{n_{0}+1}\right)=\left\{\left\{q_{n_{0}}\left(x_{0}\right), b_{2}\right\}\right\} .
\end{aligned}
$$

Now

$$
\begin{equation*}
l\left(G_{1}^{n_{0}}\right) \leq\left(1+2 C_{1}\right) d(E) \tag{6}
\end{equation*}
$$

We set $I_{1}^{n_{0}}=\left\{0, d\left(q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right)\right\}$ and define $f_{1}^{n_{0}}: I_{1}^{n_{0}} \rightarrow D_{1}^{n_{0}}$ by setting $f_{1}^{n_{0}}(0)=$ $q_{n_{0}}\left(x_{0}\right)$ and $f_{1}^{n_{0}}\left(d\left(q_{n_{0}}\left(x_{0}\right), x_{1}^{n_{0}+1}\right)\right)=x_{1}^{n_{0}+1}$. In the following two sections we assume that $n>n_{0}$.

3. Construction of $G_{\# A_{n}}^{n-1}$

Let now $k \in\left\{1, \ldots, \# A_{n}\right\}$ and assume by induction that we have constructed a graph $G_{k-1}^{n-1}=\left(V_{k-1}^{n-1}, E_{k-1}^{n-1}\right)$ with a weight function $\left.w_{k-1}^{n-1}: E_{k-1}^{n-1} \rightarrow\right] 0, \infty[$ and a 1-Lipschitz surjection $f_{k-1}^{n-1}: I_{k-1}^{n-1} \rightarrow D_{k-1}^{n-1}$, where $I_{k-1}^{n-1} \subset\left[0,2 l\left(T_{k-1}^{n-1}\right)\right]$. We also assume that we have defined $P_{k-1}^{n-1}: D_{k-1}^{n-1} \rightarrow\left\{V: V \subset\left\{\{x, y\}: x, y \in V_{k-1}^{n-1}, x \neq y\right\}\right\}$ such that the $(n-1, k-1)$-property and the other conditions mentioned in the previous section are satisfied. We denote $x=x_{k}^{n}$. Let $y \in D_{k-1}^{n-1}$ such that $d(x, y)=d\left(x, D_{k-1}^{n-1}\right)$.

Case 1. $\vartheta(x, n)<\varepsilon_{0}$.
We set $V_{k}^{n-1}=V_{k-1}^{n-1} \cup\left\{x, b_{1}, b_{2}\right\}$, where $b_{1} \neq b_{2},\left\{b_{1}, b_{2}\right\} \cap\left(V_{k-1}^{n-1} \cup E\right)=\emptyset$, and define

$$
E_{k}^{n-1}=E_{k-1}^{n-1} \cup\left\{\{x, y\},\left\{x, b_{1}\right\},\left\{y, b_{2}\right\}\right\} .
$$

Further we define w_{k}^{n-1} and P_{k}^{n-1} by setting

$$
w_{k}^{n-1}(e)= \begin{cases}d(x, y) & \text { for } e=\{x, y\} \\ C_{1} d(x, y) & \text { for } e \in\left\{\left\{x, b_{1}\right\},\left\{y, b_{2}\right\}\right\} \\ w_{k-1}^{n-1}(e) & \text { for } e \in E_{k-1}^{n-1}\end{cases}
$$

and

$$
P_{k}^{n-1}(v)= \begin{cases}\left\{\left\{y, b_{1}\right\}\right\} & \text { for } v=x \\ P_{k-1}^{n-1}(v) \cup\left\{\left\{x, b_{2}\right\}\right\} & \text { for } v=y \\ P_{k-1}^{n-1}(v) & \text { for } v \in D_{k-1}^{n-1} \backslash\{y\}\end{cases}
$$

Let $t \in I_{k-1}^{n-1}$ such that $f_{k-1}^{n-1}(t)=y$. We set

$$
I_{k}^{n-1}=J_{1} \cup\{t+d(x, y)\} \cup J_{2}
$$

where $J_{1}=I_{k-1}^{n-1} \cap[0, t]$ and $J_{2}=\left(I_{k-1}^{n-1} \cap\left[t, \infty[)+2 d(x, y)\right.\right.$, and define f_{k}^{n-1} by setting

$$
f_{k}^{n-1}(s)= \begin{cases}f_{k-1}^{n-1}(s) & \text { for } s \in J_{1} \\ x & \text { for } s=t+d(x, y) \\ f_{k-1}^{n-1}(s-2 d(x, y)) & \text { for } s \in J_{2}\end{cases}
$$

Now the $(n-1, k)$-property is satisfied, $I_{k}^{n-1} \subset\left[0,2 l\left(T_{k}^{n-1}\right)\right]$ and f_{k}^{n-1} is surjective and 1-Lipschitz.

Let $\left(w_{1}, w_{2}, w_{3}\right) \in W(x, n)$ such that $\left\{w_{1}, w_{2}, w_{3}\right\} \notin \mathscr{O}\left(\varepsilon_{0}\right)$ and let $z_{i} \in B\left(w_{i}\right.$, $\left.r_{0} \delta^{n}\right)$ for $i=1,2,3$. Denote $d_{i j}=d\left(w_{i}, w_{j}\right)$ and $d_{i j}^{\prime}=d\left(z_{i}, z_{j}\right)$ for $i=1,2,3$. Suppose that $d\left(z_{1}, z_{3}\right)=d\left(\left\{z_{1}, z_{2}, z_{3}\right\}\right)$ and $d_{12} \geq d_{23}$. Then, by choosing r_{0} small enough,

$$
\begin{aligned}
\frac{d_{13}^{\prime}-d_{12}^{\prime}}{d_{23}^{\prime}} & \leq \frac{\left(d_{13}+2 r_{0} \delta^{n}\right)-\left(d_{12}-2 r_{0} \delta^{n}\right)}{d_{23}-2 r_{0} \delta^{n}} \leq \frac{d_{13}-d_{12}+4 r_{0} \delta^{n}}{\left(1-2 r_{0} R_{2}^{-1}\right) d_{23}} \\
& \leq \frac{R_{2}}{R_{2}-2 r_{0}}\left(\varepsilon_{0}+\frac{4 r_{0}}{R_{2}}\right)=\frac{\varepsilon_{0} R_{2}+4 r_{0}}{R_{2}-2 r_{0}}<1 .
\end{aligned}
$$

Letting $\alpha=\varangle z_{1} z_{2} z_{3}$ we have

$$
c\left(z_{1}, z_{2}, z_{3}\right)^{2}=\frac{(2 \sin \alpha)^{2}}{d\left(z_{1}, z_{3}\right)^{2}} \geq \frac{4\left(1-\cos ^{2} \alpha\right)}{\left(2\left(R_{3}+r_{0}\right) \delta^{n}\right)^{2}} \geq \frac{1-\max \left\{\varepsilon_{5}^{2}, 1 / 4\right\}}{\left(\left(R_{3}+r_{0}\right) \delta^{n}\right)^{2}}
$$

where

$$
\varepsilon_{5}=\frac{\varepsilon_{0} R_{2}+4 r_{0}}{R_{2}-2 r_{0}}
$$

Using this and the regularity we get

$$
\begin{align*}
& l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)=\left(1+2 C_{1}\right) d(x, y) \leq\left(1+2 C_{1}\right)\left(1+r_{1}\right) \delta^{n-1}=\frac{C_{3} \delta^{3 n} r_{0}^{3} c_{1}}{M_{0}^{3} \delta^{2 n}} \\
& \leq C_{3} \int_{B\left(x,\left(R_{3}+r_{0}\right) \delta^{n}\right)} \int_{T_{n}^{1}\left(z_{3}\right)} \int_{T_{n}^{1}\left(z_{3}\right) \cap T_{n}^{1}\left(z_{2}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}, \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
c_{1} & =\frac{1-\max \left\{\varepsilon_{5}^{2}, 1 / 4\right\}}{\left(R_{3}+r_{0}\right)^{2}}, \\
C_{3} & =\frac{M_{0}^{3}\left(1+2 C_{1}\right)\left(1+r_{1}\right)}{c_{1} \delta r_{0}^{3}}
\end{aligned}
$$

and $T_{n}^{1}(z)=B\left(z, 2\left(R_{3}+r_{0}\right) \delta^{n}\right) \backslash B\left(z,\left(R_{2}-2 r_{0}\right) \delta^{n}\right)$ for $z \in E$.
For the rest of the cases we assume that $\vartheta(x, n) \geq \varepsilon_{0}$.
Case 2. There exists $z \in D_{k-1}^{n-1}(y), n^{\prime} \leq n, k^{\prime} \in\left\{1, \ldots, \# A_{n^{\prime}}\right\}$ such that $k^{\prime} \leq k$ if $n^{\prime}=n,\left\{y^{\prime}, z^{\prime}\right\} \in F_{k^{\prime}-1}^{n^{\prime}-1}, y=q_{n-1, n^{\prime}}\left(y^{\prime}\right), z=q_{n-1, n^{\prime}}\left(z^{\prime}\right)$ and $C_{2} d\left(x_{k^{\prime}}^{n^{\prime}},\left\{y^{\prime}, z^{\prime}\right\}\right) \leq$ $d\left(y^{\prime}, z^{\prime}\right)$.

We define G_{k}^{n-1}, P_{k}^{n-1} and f_{k}^{n-1} as in Case 1. Now

$$
\begin{equation*}
l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)=\left(1+2 C_{1}\right) d(x, y) . \tag{8}
\end{equation*}
$$

The construction will show that $\left\{q_{m, n}(y), q_{m, n}(z)\right\} \in F_{0}^{m}$ for all $m \geq n$.
For the rest of the cases we assume that the condition of Case 2 does not hold.
Case 3. There exists $z \in D_{k-1}^{n-1}(y)$ such that $d(x, z) \leq d(y, z)$.
We set $V_{k}^{n-1}=V_{k-1}^{n-1} \cup\{x\}$ and define

$$
E_{k}^{n-1}=\left(E_{k-1}^{n-1} \backslash\{\{y, z\}\}\right) \cup\{\{y, x\},\{x, z\}\} .
$$

Further we define w_{k}^{n-1} by setting

$$
w_{k}^{n-1}(e)= \begin{cases}d(y, x) & \text { for } e=\{y, x\} \\ \max \left\{d(x, z), w_{k-1}^{n-1}(\{y, z\})-d(y, x)\right\} & \text { for } e=\{x, z\} \\ w_{k-1}^{n-1}(e) & \text { for } e \in E_{k-1}^{n-1} \backslash\{\{y, z\}\}\end{cases}
$$

Let $z^{\prime}, y^{\prime} \in V_{k-1}^{n-1}$ such that $\left\{z^{\prime}, z\right\} \in P_{k-1}^{n-1}(y)$ and $\left\{y, y^{\prime}\right\} \in P_{k-1}^{n-1}(z)$. We set

$$
P_{k}^{n-1}(v)= \begin{cases}\{\{y, z\}\} & \text { for } v=x \\ \left(P_{k-1}^{n-1}(v) \backslash\left\{\left\{z^{\prime}, z\right\}\right\}\right) \cup\left\{\left\{z^{\prime}, x\right\}\right\} & \text { for } v=y, \\ \left(P_{k-1}^{n-1}(v) \backslash\left\{\left\{y, y^{\prime}\right\}\right\}\right) \cup\left\{\left\{x, y^{\prime}\right\}\right\} & \text { for } v=z \\ P_{k-1}^{n-1}(v) & \text { for } v \in D_{k-1}^{n-1} \backslash\{y, z\} .\end{cases}
$$

Let $\left(t_{1}, t_{2}\right) \in J_{k-1}^{n-1}(\{y, z\})$. We set

$$
I_{k, 0}^{n-1}=J_{1} \cup\left\{t_{1}+w_{k}^{n-1}\left(\left\{f_{k-1}^{n-1}\left(t_{1}\right), x\right\}\right)\right\} \cup J_{2},
$$

where $J_{1}=I_{k-1}^{n-1} \cap\left[0, t_{1}\right]$ and $J_{2}=\left(I_{k-1}^{n-1} \cap\left[t_{2}, \infty[)+l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right.\right.$, and define $f_{k, 0}^{n-1}: I_{k, 0}^{n-1} \rightarrow D_{k}^{n-1}$ by setting

$$
f_{k, 0}^{n-1}(s)= \begin{cases}f_{k-1}^{n-1}(s) & \text { for } s \in J_{1} \\ x & \text { for } s=t_{1}+w_{k}^{n-1}\left(\left\{f_{k-1}^{n-1}\left(t_{1}\right), x\right\}\right) \\ f_{k-1}^{n-1}\left(s-l\left(G_{k}^{n-1}\right)+l\left(G_{k-1}^{n-1}\right)\right) & \text { for } s \in J_{2}\end{cases}
$$

If $\# J_{k-1}^{n-1}(\{y, z\})=1$, we put $I_{k}^{n-1}=I_{k, 0}^{n-1}$ and $f_{k}^{n-1}=f_{k, 0}^{n-1}$. Else let $u_{1}, u_{2} \in I_{k, 0}^{n-1}$ such that $u_{2}-u_{1}=w_{k-1}^{n-1}(\{y, z\}), f_{k, 0}^{n-1}\left(\left\{u_{1}, u_{2}\right\}\right)=\{y, z\}$ and $\left.I_{k, 0}^{n-1} \cap\right] u_{1}, u_{2}[=\emptyset$. We set

$$
I_{k}^{n-1}=J_{1} \cup\left\{u_{1}+w_{k}^{n-1}\left(f_{k, 0}^{n-1}\left(u_{1}\right), x\right)\right\} \cup J_{2},
$$

where $J_{1}=I_{k, 0}^{n-1} \cap\left[0, u_{1}\right]$ and $J_{2}=\left(I_{k, 0}^{n-1} \cap\left[u_{2}, \infty[)+l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right.\right.$, and define f_{k}^{n-1} by setting

$$
f_{k}^{n-1}(s)= \begin{cases}f_{k, 0}^{n-1}(s) & \text { for } s \in J_{1} \\ x & \text { for } s=u_{1}+w_{k}^{n-1}\left(\left\{f_{k, 0}^{n-1}\left(u_{1}\right), x\right\}\right), \\ f_{k, 0}^{n-1}\left(s-l\left(G_{k}^{n-1}\right)+l\left(G_{k-1}^{n-1}\right)\right) & \text { for } s \in J_{2}\end{cases}
$$

Now $I_{k}^{n-1} \subset\left[0,2 l\left(T_{k}^{n-1}\right)\right]$ and f_{k}^{n-1} is surjective and 1-Lipschitz.
We next show that the $(n-1, k)$-property is satisfied at z. Suppose that $\left\{z_{1}, z_{2}\right\} \in P_{k}^{n-1}(z)$ such that $\left\{z_{1}, z_{2}\right\} \subset D_{k}^{n-1}(z)$ and $\max \left\{d\left(z, z_{1}\right), d\left(z, z_{2}\right)\right\}<$ $C_{2}\left(1+r_{1}\right) \delta^{n-1}$. If $x \notin\left\{z_{1}, z_{2}\right\}$, then $\left\{z_{1}, z_{2}\right\} \in P_{k-1}^{n-1}(z)$ and the $(n-1, k)$-property is satisfied at z by the $(n-1, k-1)$-property. Thus we may assume that $z_{1}=x$, which implies $\left\{y, z_{2}\right\} \in P_{k-1}^{n-1}(z)$. Since $d(y, z)<C_{2}\left(1+r_{1}\right) \delta^{n-1}$, we have $y z z_{2}$ by the ($n-1, k-1$)-property. By choosing

$$
\begin{aligned}
& R_{2} \leq 1-\frac{2 r_{1}}{1-\delta} \\
& R_{3} \geq \frac{\left(2 C_{2}-\varepsilon_{0}\right)\left(1+r_{1}\right)}{\delta}+\frac{r_{1}}{1-\delta}
\end{aligned}
$$

we have $\left\{y, q_{m_{1}, n}(x), q_{m, n}(z), q_{m_{2}, n}\left(z_{2}\right)\right\} \in \mathscr{O}\left(\varepsilon_{0}\right)$ for any $m, m_{1}, m_{2} \geq n-1$. Now $d\left(v_{1}, v_{2}\right)<K d\left(v_{3}, v_{4}\right)$ for all $v_{1}, v_{2}, v_{3}, v_{4} \in\left\{y, x, z, z_{2}\right\}, v_{3} \neq v_{4}$, where

$$
K=C_{2}\left(1+\frac{1+r_{1}}{\left(1-2 r_{1}\right) \delta}\right)
$$

We choose $\varepsilon_{0} \geq K /(K+1)$. Therefore, since $y x z$ and $y z z_{2},\left\{y, x, z, z_{2}\right\}$ has an order by Lemma 2.2 of [3]. So we must have $x z z_{2}$. Choosing $r_{1}<\varepsilon_{0}\left(1-\delta-2 r_{1}\right)$ the following lemma gives that the $(n-1, k)$-property is satisfied at z. Similarly we see that $(n-1, k)$ is satisfied at y and x.

Lemma 3.1. Let $\left\{\zeta, \eta, \xi, \xi_{1}\right\} \subset E$ such that $\{\zeta, \eta, \xi\},\left\{\zeta, \eta, \xi_{1}\right\} \in \mathscr{O}\left(\varepsilon_{0}\right)$.
(i) If $\zeta \eta \xi$ and $d\left(\xi, \xi_{1}\right)<\varepsilon_{0} \min \left\{d(\zeta, \eta), d(\eta, \xi)+d\left(\eta, \xi_{1}\right)\right\}$, then $\zeta \eta \xi_{1}$.
(ii) If $\zeta \xi \eta$ and $\left.d\left(\xi, \xi_{1}\right)<\varepsilon_{0} \min \left\{d(\xi, \zeta)+d\left(\xi_{1}, \zeta\right), d(\xi, \eta)+d\left(\xi_{1}, \eta\right)\right)\right\}$, then $\zeta \xi_{1} \eta$.

Proof. (i) By the assumptions we have

$$
\begin{aligned}
& d\left(\zeta, \xi_{1}\right)+\varepsilon_{0} d\left(\eta, \xi_{1}\right)-d(\zeta, \eta) \geq d(\zeta, \xi)-d\left(\xi, \xi_{1}\right)+\varepsilon_{0} d\left(\eta, \xi_{1}\right)-d(\zeta, \eta) \\
& \geq d(\zeta, \eta)+\varepsilon_{0} d(\eta, \xi)-d\left(\xi, \xi_{1}\right)+\varepsilon_{0} d\left(\eta, \xi_{1}\right)-d(\zeta, \eta) \\
& =\varepsilon_{0}\left(d(\eta, \xi)+d\left(\eta, \xi_{1}\right)\right)-d\left(\xi, \xi_{1}\right)>0
\end{aligned}
$$

and

$$
\begin{aligned}
& d\left(\zeta, \xi_{1}\right)+\varepsilon_{0} d(\zeta, \eta)-d\left(\eta, \xi_{1}\right) \geq d(\zeta, \xi)+\varepsilon_{0} d(\zeta, \eta)-d(\eta, \xi)-2 d\left(\xi, \xi_{1}\right) \\
& \geq \varepsilon_{0} d(\zeta, \eta)+d(\eta, \xi)+\varepsilon_{0} d(\zeta, \eta)-d(\eta, \xi)-2 d\left(\xi, \xi_{1}\right) \\
& =2 \varepsilon_{0} d(\zeta, \eta)-2 d\left(\xi, \xi_{1}\right)>0
\end{aligned}
$$

Therefore, since $\left\{\zeta, \eta, \xi_{1}\right\} \in \mathscr{O}\left(\varepsilon_{0}\right)$, we must have $\zeta \eta \xi_{1}$.
(ii) Now the assumption gives

$$
\begin{aligned}
& d(\zeta, \eta)+\varepsilon_{0} d\left(\xi_{1}, \eta\right)-d\left(\zeta, \xi_{1}\right) \\
& \geq d(\zeta, \xi)+\varepsilon_{0} d(\xi, \eta)+\varepsilon_{0} d\left(\xi_{1}, \eta\right)-d(\zeta, \xi)-d\left(\xi, \xi_{1}\right) \\
& =\varepsilon_{0}\left(d(\xi, \eta)+d\left(\xi_{1}, \eta\right)\right)-d\left(\xi, \xi_{1}\right)>0
\end{aligned}
$$

and similarly $d(\zeta, \eta)+\varepsilon_{0} d\left(\zeta, \xi_{1}\right)>d\left(\xi_{1}, \eta\right)$.
Since $R_{2} \leq 1-2 r_{1}$ and $\delta R_{3} \geq C_{2}\left(1+r_{1}\right)$, we have

$$
\begin{equation*}
l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right) \leq d(y, x)+d(x, z)-d(y, z) \leq\left(1-\varepsilon_{0}\right) d(y, x) \tag{9}
\end{equation*}
$$

Let us now assume that there is $m \geq n$ such that $\left\{\left\{q_{m, n}(y), q_{m, n}(x)\right\},\left\{q_{m, n}(x)\right.\right.$, $\left.\left.q_{m, n}(z)\right\}\right\} \cap F_{0}^{m}=\emptyset$. By the construction (see also Case 4 and Section 4) this implies that there exist $y_{1}, w_{1}, x_{1}, x_{2}, w_{2}, z_{2} \in E$ such that $y_{1} w_{1} x_{1}, x_{2} w_{2} z_{2}$,

$$
\begin{aligned}
& \max \left\{d\left(y, y_{1}\right), d\left(z, z_{2}\right)\right\} \leq \frac{r_{1} \delta^{n}}{1-\delta} \\
& \max \left\{d\left(x, x_{1}\right), d\left(x, x_{2}\right)\right\} \leq \frac{r_{1} \delta^{n+1}}{1-\delta} \\
& d\left(y_{1}, x_{1}\right)<C_{2} \min \left\{d\left(y_{1}, w_{1}\right), d\left(w_{1}, x_{1}\right)\right\}, \\
& d\left(x_{2}, z_{2}\right)<C_{2} \min \left\{d\left(x_{2}, w_{2}\right), d\left(w_{2}, z_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \min \left\{d\left(y_{1}, w_{1}\right), d\left(w_{1}, x_{1}\right), d\left(x_{2}, w_{2}\right), d\left(w_{2}, z_{2}\right)\right\} \\
& \leq \min \left\{d\left(w_{1}, w_{2}\right)+\frac{r_{1} \delta^{n+1}}{1-\delta}, d\left(w_{1}, z\right)+\frac{r_{1} \delta^{n}}{1-\delta}, d\left(y, w_{2}\right)+\frac{r_{1} \delta^{n}}{1-\delta}\right\} .
\end{aligned}
$$

Denote

$$
\begin{aligned}
r^{\prime} & =\frac{1}{C_{2}} d(y, x)-d_{0} \delta^{n} \\
C_{1}^{\prime} & =M_{0}^{2}\left(\frac{1+r_{1}}{\delta}\left(C_{2}-\varepsilon_{0}+\frac{1}{C_{2}}\right)-d_{0}\right),
\end{aligned}
$$

where

$$
d_{0}=\left(1+\frac{1+\delta}{C_{2}}\right) \frac{r_{1}}{1-\delta}
$$

Below we will use

$$
\begin{aligned}
& \max \left\{\frac{r_{1}}{1-\delta}, r_{5}\left(1-2 r_{1}\right)\right\} \leq \varepsilon_{0}\left(\frac{1}{C_{2}}\left(1-2 r_{1}\right)-d_{0}\right), \\
& \max \left\{\frac{r_{4}}{\delta}, R_{2}\right\} \leq\left(\frac{1}{C_{2}}-2 r_{5}\right)\left(1-2 r_{1}\right)-d_{0} \\
& r_{2} \leq \delta\left(\left(\frac{1}{C_{2}}-r_{5}\right)\left(1-2 r_{1}\right)-d_{0}\right)-r_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
r_{3} & \geq C_{1}^{\prime}+\frac{\left(C_{2}-\varepsilon_{0}+2 r_{5}\right)\left(1+r_{1}\right)}{\delta}+r_{1} \\
R_{3} & \geq C_{1}^{\prime}+\frac{2 r_{5}\left(1+r_{1}\right)}{\delta}+r_{1}
\end{aligned}
$$

By the first part of Lemma 3.1 we have $y w_{1} x$ and $x w_{2} z$. Let N_{1} be the smallest integer such that $C_{1}^{\prime} \delta^{N_{1}}<d(E)$ and assume that $n \geq N_{1}$. Denote $R^{\prime}=M_{0}^{2}\left(\left(C_{2}-\right.\right.$ $\left.\left.\varepsilon_{0}\right) d(y, x)+r^{\prime}\right)$. By the regularity

$$
\begin{aligned}
& \mu\left(B\left(x, R^{\prime}\right) \backslash B\left(x, d(x, z)+r^{\prime}\right)\right) \geq \mu\left(B\left(x, R^{\prime}\right)\right)-\mu\left(B\left(x, d(x, z)+r^{\prime}\right)\right) \\
& \geq M_{0}^{-1} R^{\prime}-M_{0}\left(d(x, z)+r^{\prime}\right)>0
\end{aligned}
$$

and so we find $w_{3} \in B\left(x, R^{\prime}\right) \backslash B\left(x, d(x, z)+r^{\prime}\right)$. Now $d\left(z_{1}, z_{2}\right)>r^{\prime}$ for any $z_{1}, z_{2} \in$ $\left\{y, w_{1}, x, w_{2}, z, w_{3}\right\}, z_{1} \neq z_{2}$. We may assume that $d\left(w_{3}, x\right) \leq d\left(w_{3}, z\right)$. The other case can be treated similarly.

Now $x=q_{n}\left(x^{\prime}\right)$ for some $x^{\prime} \in A_{n}^{\prime}$. Further by the construction there are $n_{2}, n_{3} \in\{n-1, n\}$ such that $y=q_{n_{2}}\left(y^{\prime}\right)$ and $z=q_{n_{3}}\left(z^{\prime}\right)$ for some $y^{\prime}, z^{\prime} \in E$. Denote $B_{i}=B\left(w_{i}, r_{5} d(y, x)\right)$ for $i=1,2,3$. Now

$$
B_{i} \times B_{j} \subset S_{n}\left(x^{\prime}\right) \cap S_{n_{2}}\left(y^{\prime}\right) \cap S_{n_{3}}\left(z^{\prime}\right)
$$

for $i, j \in\{1,2,3\}, i \neq j$. We also have

$$
\begin{aligned}
& \left(B_{y} \times B_{z}\right) \cup\left(\left(B_{y} \cup B_{z}\right) \times\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \subset S_{n}\left(x^{\prime}\right), \\
& \left(B_{x} \times B_{z}\right) \cup\left(\left(B_{x} \cup B_{z}\right) \times\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \subset S_{n_{2}}\left(y^{\prime}\right), \\
& \left(B_{x} \times B_{y}\right) \cup\left(\left(B_{x} \cup B_{y}\right) \times\left(B_{1} \cup B_{2} \cup B_{3}\right)\right) \subset S_{n_{3}}\left(z^{\prime}\right),
\end{aligned}
$$

where $B_{x}=B\left(x, r_{5} d(y, x)\right), B_{y}=B\left(y, r_{5} d(y, x)\right)$ and $B_{z}=B\left(z, r_{5} d(y, x)\right)$. Thus

$$
\min \left\{\mu^{2}\left(S_{n}\left(x^{\prime}\right)\right), \mu^{2}\left(S_{n_{2}}\left(y^{\prime}\right)\right), \mu^{2}\left(S_{n_{3}}\left(z^{\prime}\right)\right)\right\} \geq \frac{20 r_{5}^{2} d(y, x)^{2}}{M_{0}^{2}}
$$

Denote

$$
G=\frac{M_{0}^{4} r_{3}^{2}\left(2+\delta^{2}\right) \delta^{2 n-2}}{r_{5}^{2} d(y, x)^{2}}
$$

and let $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$, where

$$
\begin{aligned}
& \Gamma_{1}=\left\{(\zeta, \eta) \in S_{n}\left(x^{\prime}\right): \mu^{2}\left(S_{n}\left(x^{\prime}\right)\right) c(\zeta, \eta, x)^{2} \geq G \int_{S_{n}\left(x^{\prime}\right)} c\left(z_{1}, z_{2}, x\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)\right\}, \\
& \Gamma_{2}=\left\{(\zeta, \eta) \in S_{n_{2}}\left(y^{\prime}\right): \mu^{2}\left(S_{n_{2}}\left(y^{\prime}\right)\right) c(\zeta, \eta, y)^{2} \geq G \int_{S_{n_{2}\left(y^{\prime}\right)}} c\left(z_{1}, z_{2}, y\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)\right\}, \\
& \Gamma_{3}=\left\{(\zeta, \eta) \in S_{n_{3}}\left(z^{\prime}\right): \mu^{2}\left(S_{n_{3}}\left(z^{\prime}\right)\right) c(\zeta, \eta, z)^{2} \geq G \int_{S_{n_{3}\left(z^{\prime}\right)}} c\left(z_{1}, z_{2}, z\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)\right\} .
\end{aligned}
$$

If $c(x, y, z)=0$, we have $l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)=0$. Thus we may assume $c(x, y, z)>0$. Then, since $\left(z_{1}, z_{2}\right) \mapsto c\left(z_{1}, z_{2}, z_{3}\right)$ is continuous on $\left\{\left(z_{1}, z_{2}\right) \in E^{2}: z_{1} \neq z_{2} \neq z_{3} \neq\right.$ $\left.z_{1}\right\}$ in the product topology, we have by the regularity

$$
\begin{aligned}
& \int_{S_{n}\left(x^{\prime}\right)} c\left(z_{1}, z_{2}, x\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)>0, \\
& \int_{S_{n_{2}}\left(y^{\prime}\right)} c\left(z_{1}, z_{2}, y\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)>0, \\
& \int_{S_{n_{3}}\left(z^{\prime}\right)} c\left(z_{1}, z_{2}, z\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)>0 .
\end{aligned}
$$

Thus by the Tchebychev inequality

$$
\begin{align*}
\mu^{2}(\Gamma) & \leq \mu^{2}\left(\Gamma_{1}\right)+\mu^{2}\left(\Gamma_{2}\right)+\mu^{2}\left(\Gamma_{3}\right) \\
& \leq \frac{1}{G}\left(\mu^{2}\left(S_{n}\left(x^{\prime}\right)\right)+\mu^{2}\left(S_{n_{2}}\left(y^{\prime}\right)\right)+\mu^{2}\left(S_{n_{3}}\left(z^{\prime}\right)\right)\right) \\
& \leq \frac{1}{G}\left(M_{0} r_{3}-\frac{1}{M_{0}} r_{2}\right)^{2}\left(\delta^{2 n}+\delta^{2 n_{2}}+\delta^{2 n_{3}}\right) \tag{10}\\
& \leq \frac{1}{G}\left(M_{0} r_{3}-\frac{1}{M_{0}} r_{2}\right)^{2}\left(1+\frac{2}{\delta^{2}}\right) \delta^{2 n}<\frac{r_{5}^{2} d(y, x)^{2}}{M_{0}^{2}} .
\end{align*}
$$

Denote $U_{i}=\left\{w \in B_{1}:\{w\} \times B_{i} \subset \Gamma\right\}$ for $i=2,3$. We next show that there exists $\left(u_{1}, u_{2}, u_{3}\right) \in B_{1} \times B_{2} \times B_{3}$ such that $\left(u_{1}, u_{2}\right) \notin \Gamma$ and $\left(u_{1}, u_{3}\right) \notin \Gamma$. Suppose this is false. Then $B_{1}=U_{2} \cup U_{3}$. Letting

$$
p=\mu^{2}\left(S_{n}\left(x^{\prime}\right)\right)^{-1} G \int_{S_{n}\left(x^{\prime}\right)} c\left(z_{1}, z_{2}, x\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right)
$$

we have

$$
\begin{aligned}
\left\{w \in B_{1}:\{w\} \times B_{2} \subset \Gamma_{1}\right\} & =\left\{w \in B_{1}: c\left(w, z_{2}, x\right)^{2} \geq p \text { for all } z_{2} \in B_{2}\right\} \\
& =\bigcap_{z_{2} \in B_{2}}\left\{w \in B_{1}: c\left(w, z_{2}, x\right)^{2} \geq p\right\}
\end{aligned}
$$

which is a closed set. Similarly $\left\{w \in B_{1}:\{w\} \times B_{i} \subset \Gamma_{j}\right\}$ is closed for each $i \in\{2,3\}$ and $j \in\{1,2,3\}$. Thus U_{1} and U_{2} are closed and we get

$$
\begin{aligned}
\mu^{2}(\Gamma) & \geq \mu^{2}\left(U_{2} \times B_{2}\right)+\mu^{2}\left(U_{3} \times B_{3}\right) \\
& =\mu\left(U_{2}\right) \mu\left(B_{2}\right)+\mu\left(U_{3}\right) \mu\left(B_{3}\right) \\
& \geq\left(\mu\left(U_{2}\right)+\mu\left(U_{3}\right)\right) \min \left\{\mu\left(B_{2}\right), \mu\left(B_{3}\right)\right\} \\
& \geq \mu\left(B_{1}\right) \min \left\{\mu\left(B_{2}\right), \mu\left(B_{3}\right)\right\} \geq \frac{r_{5}^{2} d(y, x)^{2}}{M_{0}^{2}}
\end{aligned}
$$

which contradicts (10).
For any $z_{1}, z_{2} \in\left\{y, u_{1}, x, u_{2}, z, u_{3}\right\}, z_{1} \neq z_{2}$, we have $\left.\left.d\left(z_{1}, z_{2}\right) \in\right] r, R\right]$, where $r=r^{\prime}-2 r_{5} d(y, x)$ and $R=R^{\prime}+d(x, z)+2 r_{5} d(y, x)$. Now $R \leq K r$ for

$$
K=\frac{\left(\left(M_{0}^{2}+1\right)\left(C_{2}-\varepsilon_{0}\right)+M_{0}^{2} C_{2}^{-1}+2 r_{5}\right)\left(1-2 r_{1}\right)-M_{0}^{2} d_{0}}{\left(C_{2}^{-1}-2 r_{5}\right)\left(1-2 r_{1}\right)-d_{0}}
$$

Therefore, choosing $\varepsilon_{0}^{3} \geq(4 K-1) /(4 K+1)$, $\left\{y, u_{1}, x, u_{2}, z, u_{3}\right\}$ has an order by Lemma 2.3 of [3]. The latter part of Lemma 3.1 gives $y u_{1} x$ and $x u_{2} z$. So we have $y u_{1} x u_{2} z$. Since

$$
d\left(u_{3}, x\right) \geq d\left(w_{3}, x\right)-r_{5} d(y, x)>d(x, z)+r^{\prime}-r_{5} d(y, x)>d(x, z) \geq d(y, x)
$$

we must have $u_{3} y u_{1} x u_{2} z$ or $y u_{1} x u_{2} z u_{3}$. Using the assumption $d\left(w_{3}, x\right) \leq d\left(w_{3}, z\right)$ and Lemma 3.1 we get $u_{3} x z$. Thus we have $u_{3} y u_{1} x u_{2} z$.

Let $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right\}$, where $\varepsilon_{1}=-\cos \varangle u_{1} x u_{2}, \varepsilon_{2}=-\cos \varangle u_{3} y u_{1}, \varepsilon_{3}=$ $-\cos \varangle u_{1} u_{2} z$ and $\varepsilon_{4}=-\cos \varangle u_{3} u_{1} z$. Then

$$
\begin{aligned}
d(y, z) & \geq d\left(u_{3}, z\right)-d\left(u_{3}, y\right) \\
& \geq \varepsilon_{4} d\left(u_{3}, u_{1}\right)+d\left(u_{1}, z\right)-d\left(u_{3}, y\right) \\
& \geq \varepsilon_{4}\left(\varepsilon_{2} d\left(u_{3}, y\right)+d\left(y, u_{1}\right)\right)+d\left(u_{1}, u_{2}\right)+\varepsilon_{3} d\left(u_{2}, z\right)-d\left(u_{3}, y\right) \\
& \geq \varepsilon_{4}\left(\varepsilon_{2} d\left(u_{3}, y\right)+d\left(y, u_{1}\right)\right)+d\left(u_{1}, x\right)+\varepsilon_{1} d\left(x, u_{2}\right)+\varepsilon_{3} d\left(u_{2}, z\right)-d\left(u_{3}, y\right) \\
& \geq \varepsilon\left(d\left(y, u_{1}\right)+d\left(u_{1}, x\right)+d\left(x, u_{2}\right)+d\left(u_{2}, z\right)\right)+\left(\varepsilon^{2}-1\right) d\left(u_{3}, y\right) \\
& \geq \varepsilon(d(y, x)+d(x, z))+\left(\varepsilon^{2}-1\right) d\left(u_{3}, y\right) .
\end{aligned}
$$

Denote

$$
\begin{aligned}
& \lambda_{1}=c\left(x, u_{1}, u_{2}\right)^{2} d\left(u_{1}, u_{2}\right)^{2}, \\
& \lambda_{2}=c\left(y, u_{1}, u_{3}\right)^{2} d\left(u_{1}, u_{3}\right)^{2}, \\
& \lambda_{3}=c\left(z, u_{1}, u_{2}\right)^{2} d\left(u_{1}, z\right)^{2}, \\
& \lambda_{4}=c\left(z, u_{1}, u_{3}\right)^{2} d\left(u_{3}, z\right)^{2} .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \lambda_{1}<\frac{G d\left(u_{1}, u_{2}\right)^{2}}{\mu\left(B\left(x^{\prime}, r_{1} \delta^{n}\right)\right) \mu^{2}\left(S_{n}\left(x^{\prime}\right)\right)} \int_{B\left(x^{\prime}, r_{1} \delta^{n}\right)} \int_{S_{n}\left(x^{\prime}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) d \mu z_{3} \\
& \lambda_{2}<\frac{G d\left(u_{1}, u_{3}\right)^{2}}{\mu\left(B\left(y^{\prime}, r_{1} \delta^{n_{2}}\right)\right) \mu^{2}\left(S_{n_{2}}\left(y^{\prime}\right)\right)} \int_{B\left(y^{\prime}, r_{1} \delta^{\left.n_{2}\right)}\right.} \int_{S_{n_{2}\left(y^{\prime}\right)}} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) d \mu z_{3} \\
& \lambda_{3}<\frac{G d\left(u_{1}, z\right)^{2}}{\mu\left(B\left(z^{\prime}, r_{1} \delta^{n_{3}}\right)\right) \mu^{2}\left(S_{n_{3}}\left(z^{\prime}\right)\right)} \int_{B\left(z^{\prime}, r_{1} \delta^{\left.n_{3}\right)}\right.} \int_{S_{n_{3}\left(z^{\prime}\right)}} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) d \mu z_{3} \\
& \lambda_{4}<\frac{G d\left(u_{3}, z\right)^{2}}{\mu\left(B\left(z^{\prime}, r_{1} \delta^{n_{3}}\right)\right) \mu^{2}\left(S_{n_{3}}\left(z^{\prime}\right)\right)} \int_{B\left(z^{\prime}, r_{1} \delta^{n_{3}}\right)} \int_{S_{n_{3}\left(z^{\prime}\right)}} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{2}\left(z_{1}, z_{2}\right) d \mu z_{3}
\end{aligned}
$$

Using this we get

$$
\begin{align*}
& l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right) \\
& \leq d(y, x)+d(x, z)-d(y, z) \\
& \leq(1-\varepsilon)(d(y, x)+d(x, z))+\left(1-\varepsilon^{2}\right) d\left(u_{3}, y\right) \\
& \leq\left(1-\varepsilon^{2}\right)\left(d(y, x)+d(x, z)+d\left(u_{3}, y\right)\right) \tag{11}\\
& \leq \frac{1}{4} \max \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right\}\left(d(y, x)+d(x, z)+d\left(u_{3}, y\right)\right) \\
& \leq C_{4} \int_{B\left(x, R_{4} \delta^{n}\right)} \int_{T_{n}^{2}\left(z_{3}\right)} \int_{T_{n}^{2}\left(z_{3}\right) \backslash B\left(z_{2}, r_{4} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}
\end{align*}
$$

where

$$
\begin{aligned}
& R_{4}=\frac{\left(C_{2}-\varepsilon_{0}\right)\left(1+r_{1}\right)+2 r_{1}}{\delta} \\
& T_{n}^{2}\left(z_{3}\right)=B\left(z_{3},\left(r_{3}+r_{1}\right) \delta^{n-1}\right) \backslash B\left(z_{3},\left(r_{2}-r_{1}\right) \delta^{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{M_{0}^{3} G d\left(u_{3}, z\right)^{2}\left(d(y, x)+d(x, z)+d\left(u_{3}, y\right)\right)}{4 \cdot 20 r_{5}^{2} d(y, x)^{2} r_{1} \delta^{n}} \\
& \leq \frac{3 M_{0}^{7} r_{3}^{2}\left(2+\delta^{2}\right)}{80\left(1-2 r_{1}\right) r_{5}^{4} r_{1} \delta^{2}}\left(M_{0}^{2}\left(C_{2}-\varepsilon_{0}+\frac{1}{C_{2}}-\frac{d_{0}}{1-2 r_{1}}\right)+C_{2}-\varepsilon_{0}+2 r_{5}\right)^{3}=C_{4}
\end{aligned}
$$

Case 4. $d(y, z)<d(x, z)$ for all $z \in D_{k-1}^{n-1}(y)$.
Assume that $\left\{z_{1}, z_{2}\right\} \in P_{k-1}^{n-1}(y)$ such that $\left\{z_{1}, z_{2}\right\} \subset D_{k-1}^{n-1}(y)$. Now $d(y, v)<$ $C_{2}\left(1+r_{1}\right) \delta^{n-1}$ for all $v \in D_{k-1}^{n-1}(y)$. Thus by the $(n-1, k-1)$-property we have $z_{1} y z_{2}$. Since $\delta R_{3} \geq\left(1+C_{2}\right)\left(1+r_{1}\right)$ and $R_{2} \leq 1-2 r_{1}$, we have $\left\{y, x, z_{1}, z_{2}\right\} \in \mathscr{O}\left(\varepsilon_{0}\right)$. Now $d\left(v_{1}, v_{2}\right)<K d\left(v_{3}, v_{4}\right)$ for all $v_{1}, v_{2}, v_{3}, v_{4} \in\left\{z_{1}, x, y, z_{2}\right\}, v_{3} \neq v_{4}$, and $\varepsilon_{0} \geq K /(K+1)$ for $K=\max \left\{2 C_{2},\left(1+C_{2}\right)\left(1+r_{1}\right)\left(1-2 r_{1}\right)^{-1}\right\}$. Since now $x y z_{1}$ and $x y z_{2}$, it follows from Lemma 2.2 of [3] that $y z_{1} z_{2}$ or $y z_{2} z_{1}$, which is a contradiction. Thus the
assumption above is false and for fixed $z \in D_{k-1}^{n-1}(y)$ there exists $b \in V_{k-1}^{n-1} \backslash D_{k-1}^{n-1}$ such that $\{z, b\} \in P_{k-1}^{n-1}(y)$.

We set $V_{k}^{n-1}=V_{k-1}^{n-1} \cup\{x\}$ and define

$$
E_{k}^{n-1}=\left(E_{k-1}^{n-1} \backslash\{\{y, b\}\}\right) \cup\{\{x, y\},\{x, b\}\} .
$$

Further we define w_{k}^{n-1} and P_{k}^{n-1} by setting

$$
w_{k}^{n-1}(e)= \begin{cases}d(x, y) & \text { for } e=\{x, y\}, \\ w_{k-1}^{n-1}(\{y, b\}) & \text { for } e=\{x, b\}, \\ w_{k-1}^{n-1}(e) & \text { for } e \in E_{k-1}^{n-1} \backslash\{\{y, b\}\}\end{cases}
$$

and

$$
P_{k}^{n-1}(v)= \begin{cases}\{\{y, b\}\} & \text { for } v=x \\ \left(P_{k-1}^{n-1}(v) \backslash\{\{z, b\}\}\right) \cup\{\{x, z\}\} & \text { for } v=y \\ P_{k-1}^{n-1}(v) & \text { for } v \in D_{k-1}^{n-1} \backslash\{y\}\end{cases}
$$

Now

$$
\begin{equation*}
l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)=d(x, y) \tag{12}
\end{equation*}
$$

Since $x y z, \delta R_{3} \geq\left(1+C_{2}\right)\left(1+r_{1}\right) \delta^{-1}+r_{1}(1-\delta)^{-1}, R_{2} \leq 1-2 r_{1}(1-\delta)^{-1}$ and $r_{1}<\varepsilon_{0}\left(1-\delta-2 r_{1}\right)$, we have the $(n-1, k)$-property at y by Lemma 3.1. The construction will show that for each $m \geq n$ there is $v \in D_{0}^{m}$ such that $\{v, b\} \in E_{0}^{m}$ and $w_{0}^{m}(\{v, b\})=w_{k-1}^{n-1}(\{y, b\})$. We define I_{k}^{n-1} and f_{k}^{n-1} as in Case 1 .

4. Construction of G_{0}^{n}

Denote $D_{0}^{n-1}=\left\{x_{\# A_{n}+1}^{n}, \ldots, x_{\# D_{0}^{n}}^{n}\right\}$. We define inductively $D_{k}^{n-1}=\left(D_{k-1}^{n-1} \backslash\right.$ $\left.\left\{x_{k}^{n}\right\}\right) \cup\left\{q_{n}\left(x_{k}^{n}\right)\right\}$ for $k=\# A_{n}+1, \ldots, \# D_{0}^{n}$. Let $k \in\left\{\# A_{n}+1, \ldots, \# D_{0}^{n}\right\}$ and assume by induction that we have constructed a graph $G_{k-1}^{n-1}=\left(V_{k-1}^{n-1}, E_{k-1}^{n-1}\right)$ with a weight function $\left.w_{k-1}^{n-1}: E_{k-1}^{n-1} \rightarrow\right] 0, \infty\left[\right.$ and a 1 -Lipschitz surjection $f_{k-1}^{n-1}: I_{k-1}^{n-1} \rightarrow$ D_{k-1}^{n-1}, where $I_{k-1}^{n-1} \subset\left[0,2 l\left(T_{k-1}^{n-1}\right)\right]$. We also assume that we have defined a function P_{k-1}^{n-1}.

We denote $x=x_{k}^{n}$. We set $V_{k}^{n-1}=\left(V_{k-1}^{n-1} \backslash\{x\}\right) \cup\left\{q_{n}(x)\right\}$ and define

$$
E_{k}^{n-1}=\left(E_{k-1}^{n-1} \backslash\left\{\{x, v\}: v \in V_{k-1}^{n-1}(x)\right\}\right) \cup\left\{\left\{q_{n}(x), v\right\}: v \in V_{k-1}^{n-1}(x)\right\} .
$$

Further we define $\left.w_{k, 0}^{n-1}: E_{k}^{n-1} \rightarrow\right] 0, \infty[$ by setting

$$
w_{k, 0}^{n-1}(e)= \begin{cases}w_{k-1}^{n-1}(\{x, v\})+r_{1} \delta^{n} & \text { for } e=\left\{q_{n}(x), v\right\}, \text { where } v \in D_{k-1}^{n-1}(x), \\ w_{k-1}^{n-1}(\{x, v\}) & \text { for } e=\left\{q_{n}(x), v\right\}, \text { where } v \in V_{k-1}^{n-1}(x) \backslash E, \\ w_{k-1}^{n-1}(e) & \text { for } e \in E_{k-1}^{n-1} \backslash\left\{\{x, v\}: v \in V_{k-1}^{n-1}(x)\right\} .\end{cases}
$$

For any $v \in D_{k-1}^{n-1}(x)$ let $z(v) \in V_{k-1}^{n-1}(v)$ for which $\{x, z(v)\} \in P_{k-1}^{n-1}(v)$. We define P_{k}^{n-1} by setting

$$
P_{k}^{n-1}(v)= \begin{cases}P_{k-1}^{n-1}(x) & \text { for } v=q_{n}(x) \\ \left(P_{k-1}^{n-1}(v) \backslash\{\{x, z(v)\}\}\right) \cup\left\{\left\{q_{n}(x), z(v)\right\}\right\} & \text { for } v \in D_{n-1}^{k-1}(x) \\ P_{k-1}^{n-1}(v) & \text { for } v \in D_{k-1}^{n-1} \backslash\left(D_{n-1}^{k-1}(x)\right. \\ & \quad \cup\{x\})\end{cases}
$$

Further we set $I_{k, 0}^{n-1}=I_{k-1}^{n-1}$ and define $f_{k, 0}^{n-1}: I_{k, 0}^{n-1} \rightarrow D_{k}^{n-1}$ by setting

$$
f_{k, 0}^{n-1}(s)= \begin{cases}q_{n}(x) & \text { if } f_{k-1}^{n-1}(s)=x \\ f_{k-1}^{n-1}(s) & \text { if } f_{k-1}^{n-1}(s) \neq x\end{cases}
$$

Let $\left\{y_{1}, \ldots, y_{m}\right\}=D_{k-1}^{n-1}(x)$ and $i \in\{1, \ldots, m\}$, where $m=\# D_{k-1}^{n-1}(x)$. Assume by induction that we have defined a function $f_{k, i-1}^{n-1}: I_{k, i-1}^{n-1} \rightarrow D_{k}^{n-1}$. Let $\left(t_{1}, t_{2}\right) \in$ $J_{k-1}^{n-1}\left(\left\{x, y_{i}\right\}\right)$. We set

$$
I_{k, i, 0}^{n-1}=\left(I_{k, i-1}^{n-1} \cap\left[0, t_{1}\right]\right) \cup\left(\left(I_{k, i-1}^{n-1} \cap\left[t_{2}, \infty[)+r_{1} \delta^{n}\right)\right.\right.
$$

and define $f_{k, i, 0}^{n-1}: I_{k, i, 0}^{n-1} \rightarrow D_{k}^{n-1}$ by setting

$$
f_{k, i, 0}^{n-1}(s)= \begin{cases}f_{k, k}^{n-1}(s) & \text { for } s \in I_{k, i-1}^{n-1} \cap\left[0, t_{1}\right] \\ f_{k, i-1}^{n-1}\left(s-r_{1} \delta^{n}\right) & \text { for } s \in\left(I _ { k , i - 1 } ^ { n - 1 } \cap \left[t_{2}, \infty[)+r_{1} \delta^{n}\right.\right.\end{cases}
$$

If $\# J_{k-1}^{n-1}\left(\left\{x, y_{i}\right\}\right)=1$, we put $I_{k, i}^{n-1}=I_{k, i, 0}^{n-1}$ and $f_{k, i}^{n-1}=f_{k, i, 0}^{n-1}$. Else let $u_{1}, u_{2} \in I_{k, i, 0}^{n-1}$ such that $u_{2}-u_{1}=w_{k-1}^{n-1}\left(\left\{x, y_{i}\right\}\right), f_{k, i, 0}^{n-1}\left(\left\{u_{1}, u_{2}\right\}\right)=\left\{x, y_{i}\right\}$ and $\left.I_{k, i, 0}^{n-1} \cap\right] u_{1}, u_{2}[=\emptyset$. We set

$$
I_{k, i}^{n-1}=\left(I_{k, i, 0}^{n-1} \cap\left[0, u_{1}\right]\right) \cup\left(\left(I_{k, i, 0}^{n-1} \cap\left[u_{2}, \infty[)+r_{1} \delta^{n}\right)\right.\right.
$$

and define $f_{k, i}^{n-1}$ by setting

$$
f_{k, i}^{n-1}(s)= \begin{cases}f_{k, i, 0}^{n-1}(s) & \text { for } s \in I_{k, i, 0}^{n-1} \cap\left[0, u_{1}\right] \\ f_{k, i, 0}^{n-1}\left(s-r_{1} \delta^{n}\right) & \text { for } s \in\left(I _ { k , i , 0 } ^ { n - 1 } \cap \left[u_{2}, \infty[)+r_{1} \delta^{n}\right.\right.\end{cases}
$$

Denote

$$
\begin{aligned}
P=\left\{\left\{v_{1}, v_{2}\right\} \in P_{k-1}^{n-1}(x):\right. & \max \left\{d\left(q_{n}(x), q_{n, n}\left(v_{1}\right)\right), d\left(q_{n}(x), q_{n, n}\left(v_{2}\right)\right)\right\}<C_{2}\left(1+r_{1}\right) \delta^{n} \\
& \text { and } \left.\left\{v_{1}, v_{2}\right\} \subset D_{k-1}^{n-1}(x)\right\} .
\end{aligned}
$$

If $P=\emptyset$, we set $w_{k}^{n-1}=w_{k, 0}^{n-1}, I_{k}^{n-1}=I_{k, m}^{n-1}$ and $f_{k}^{n-1}=f_{k, m}^{n-1}$. From now on we assume that $\{y, z\} \in P$. Let us define w_{k}^{n-1} by setting

$$
w_{k}^{n-1}(e)= \begin{cases}\rho & \text { for } e=\left\{y, q_{n}(x)\right\} \\ \tau & \text { for } e=\left\{q_{n}(x), z\right\} \\ w_{k, 0}^{n-1}(e) & \text { for } e \in E_{k}^{n-1} \backslash\left\{\left\{y, q_{n}(x)\right\},\left\{q_{n}(x), z\right\}\right\}\end{cases}
$$

where

$$
\begin{aligned}
& \rho=\max \left\{w_{k-1}^{n-1}(\{y, x\})-r_{1} \delta^{n}, d\left(y, q_{n}(x)\right)\right\}, \\
& \tau=\max \left\{w_{k-1}^{n-1}(\{y, x\})+w_{k-1}^{n-1}(\{x, z\})-\rho, d\left(q_{n}(x), z\right)\right\} .
\end{aligned}
$$

Let $\left\{e_{1}, e_{2}\right\}=\left\{\left\{y, q_{n}(x)\right\},\left\{q_{n}(x), z\right\}\right\}$ and $i \in\{1,2\}$ and assume by induction that we have defined a function $f_{k, m+i-1}^{n-1}: I_{k, m+i-1}^{n-1} \rightarrow D_{k}^{n-1}$. Let $t_{1}, t_{2} \in I_{k, m+i-1}^{n-1}$ such that $t_{2}-t_{1}=w_{k, 0}^{n-1}\left(e_{i}\right), f_{k, m+i-1}^{n-1}\left(\left\{t_{1}, t_{2}\right\}\right)=e_{i}$ and $\left.I_{k, m+i-1}^{n-1} \cap\right] t_{1}, t_{2}[=\emptyset$. We set

$$
I_{k, m+i, 0}^{n-1}=J_{1} \cup J_{2},
$$

where $J_{1}=I_{k, m+i-1}^{n-1} \cap\left[0, t_{1}\right]$ and $J_{2}=\left(I_{k, m+i-1}^{n-1} \cap\left[t_{2}, \infty[)+w_{k}^{n-1}\left(e_{i}\right)+t_{1}-t_{2}\right.\right.$, and define $f_{k, m+i, 0}^{n-1}: I_{k, m+i, 0}^{n-1} \rightarrow D_{k}^{n-1}$ by setting

$$
f_{k, m+i, 0}^{n-1}(s)= \begin{cases}f_{k, m+i-1}^{n-1}(s) & \text { for } s \in J_{1} \\ f_{k, m+i-1}^{n-1}\left(s-w_{k}^{n-1}\left(e_{i}\right)-t_{1}+t_{2}\right) & \text { for } s \in J_{2}\end{cases}
$$

If there exist $u_{1}, u_{2} \in I_{k, m+i, 0}^{n-1}$ such that $u_{1} \neq t_{1}, u_{2}-u_{1}=w_{k, 0}^{n-1}\left(e_{i}\right), f_{k, m+i, 0}^{n-1}\left(\left\{u_{1}, u_{2}\right\}\right)$ $=e_{i}$ and $\left.I_{k, m+i, 0}^{n-1} \cap\right] u_{1}, u_{2}[=\emptyset$, we set

$$
I_{k, m+i}^{n-1}=J_{1} \cup J_{2},
$$

where $J_{1}=I_{k, m+i, 0}^{n-1} \cap\left[0, u_{1}\right]$ and $J_{2}=\left(I_{k, m+i, 0}^{n-1} \cap\left[u_{2}, \infty[)+w_{k}^{n-1}\left(e_{i}\right)+u_{1}-u_{2}\right.\right.$, and define $f_{k, m+i}^{n-1}: I_{k, m+i}^{n-1} \rightarrow D_{k}^{n-1}$ by setting

$$
f_{k, m+i}^{n-1}(s)= \begin{cases}f_{k, m+i, 0}^{n-1}(s) & \text { for } s \in J_{1} \\ f_{k, m+i, 0}^{n-1}\left(s-w_{k}^{n-1}\left(e_{i}\right)-t_{1}+t_{2}\right) & \text { for } s \in J_{2}\end{cases}
$$

Else we put $I_{k, m+i}^{n-1}=I_{k, m+i, 0}^{n-1}$ and $f_{k, m+i}^{n-1}=f_{k, m+i, 0}^{n-1}$.
We set $I_{k}^{n-1}=I_{k, m+2}^{n-1}$ and $f_{k}^{n-1}=f_{k, m+2}^{n-1}$. By the construction there exists $\left\{y^{\prime}, z^{\prime}\right\} \in P_{\# A_{n}}^{n-1}(x)$ such that $\left\{y^{\prime}, z^{\prime}\right\} \subset D_{\# A_{n}}^{n-1}, q_{n, n}\left(y^{\prime}\right)=q_{n, n}(y)$ and $q_{n, n}\left(z^{\prime}\right)=$ $q_{n, n}(z)$. Since $\delta \leq 1-2 r_{1}$, we have $\max \left\{d\left(x, y^{\prime}\right), d\left(x, z^{\prime}\right)\right\}<C_{2}\left(1+r_{1}\right) \delta^{n}+2 r_{1} \delta^{n} \leq$ $C_{2}\left(1+r_{1}\right) \delta^{n-1}$. Thus $y q_{n}(x) z \mid \varepsilon_{0}$ by the $\left(n-1, \# A_{n}\right)$-property and we have

$$
\begin{align*}
& w_{k}^{n-1}\left(\left\{y, q_{n}(x)\right\}\right)+w_{k}^{n-1}\left(\left\{q_{n}(x), z\right\}\right)-w_{k-1}^{n-1}(\{y, x\})-w_{k-1}^{n-1}(\{x, z\}) \\
& \leq \max \left\{d\left(y, q_{n}(x)\right)+d\left(q_{n}(x), z\right)-d(y, x)-d(x, z), 0\right\} \\
& \leq d\left(y, q_{n}(x)\right)+d\left(q_{n}(x), z\right)-d(y, z) \tag{13}\\
& \leq\left(1-\varepsilon_{0}\right) \min \left\{d\left(y, q_{n}(x)\right), d\left(q_{n}(x), z\right)\right\} .
\end{align*}
$$

If $\vartheta\left(q_{n}(x), n\right)<\varepsilon_{0}$ we get as in Case 1

$$
\begin{align*}
& w_{k}^{n-1}\left(\left\{y, q_{n}(x)\right\}\right)+w_{k}^{n-1}\left(\left\{q_{n}(x), z\right\}\right)-w_{k-1}^{n-1}(\{y, x\})-w_{k-1}^{n-1}(\{x, z\}) \leq h \delta^{n} \\
& \leq C_{5} \int_{B\left(q_{n}(x),\left(R_{3}+r_{0}\right) \delta^{n}\right)} \int_{T_{n}^{1}\left(z_{3}\right)} \int_{T_{n}^{1}\left(z_{3}\right) \cap T_{n}^{1}\left(z_{2}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}, \tag{14}
\end{align*}
$$

where $h=\min \left\{2 r_{1},\left(1-\varepsilon_{0}\right)\left(C_{2}\left(1+r_{1}\right)+r_{1}\right)\right\}$ and $C_{5}=M_{0}^{3} h c_{1}^{-1} r_{0}^{-3}$. We now assume that $\vartheta\left(q_{n}(x), n\right) \geq \varepsilon_{0}$ and there is $m \geq n$ such that $\left\{\left\{q_{m, n}(y), q_{m, n}(x)\right\},\left\{q_{m, n}(x)\right.\right.$, $\left.\left.q_{m, n}(z)\right\}\right\} \cap F_{0}^{m}=\emptyset$. Denote

$$
C_{2}^{\prime}=M_{0}^{2}\left(C_{2}\left(1+r_{1}\right)+r_{1}+d_{1}\right)
$$

where $d_{1}=C_{2}^{-1}\left(1-r_{1}\right)-d_{0}$. Let N_{2} be the smallest integer such that $C_{2}^{\prime} \delta^{N_{2}}<d(E)$. By assuming $n \geq N_{2}$ and using max $\left\{r_{1}(1-\delta)^{-1}, r_{5}\right\} \leq \varepsilon_{0} d_{1}, \max \left\{r_{4} \delta^{-1}, R_{2}\right\} \leq$ $d_{1}-2 r_{5}, r_{2} \leq \delta\left(d_{1}-r_{5}\right)-r_{1}, r_{3} \geq C_{2}^{\prime}+C_{2}\left(1+r_{1}\right)+2\left(r_{1}+r_{5}\right), R_{3} \geq C_{2}^{\prime}+r_{1}+2 r_{5}$ and $\varepsilon_{0}^{3} \geq(4 K-1) /(4 K+1)$, where

$$
K=\frac{C_{2}^{\prime}+C_{2}\left(1+r_{1}\right)+r_{1}+2 r_{5}}{d_{1}-2 r_{5}}
$$

we get as in Case 3

$$
\begin{align*}
& w_{k}^{n-1}\left(\left\{y, q_{n}(x)\right\}\right)+w_{k}^{n-1}\left(\left\{q_{n}(x), z\right\}\right)-w_{k-1}^{n-1}(\{y, x\})-w_{k-1}^{n-1}(\{x, z\}) \\
& \leq d\left(y, q_{n}(x)\right)+d\left(q_{n}(x), z\right)-d(y, z) \\
& \leq C_{6} \int_{B\left(q_{n}(x), R_{5} \delta^{n}\right)} \int_{T_{n}^{2}\left(z_{3}\right)} \int_{T_{n}^{2}\left(z_{3}\right) \backslash B\left(z_{2}, r_{4} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}, \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
R_{5} & =C_{2}\left(1+r_{1}\right)+\left(1+\frac{2}{\delta}\right) r_{1} \\
C_{6} & =\frac{3 M_{0}^{7} r_{3}^{2}\left(2+\delta^{2}\right)\left(C_{2}^{\prime}+C_{2}\left(1+r_{1}\right)+r_{1}+2 r_{5}\right)^{3}}{80 r_{5}^{4} r_{1} \delta^{2}}
\end{aligned}
$$

If $k=\# D_{0}^{n}$, we now set $V_{0}^{n}=V_{k}^{n-1}, E_{0}^{n}=E_{k}^{n-1}, w_{0}^{n}=w_{k}^{n-1}, P_{0}^{n}=P_{k}^{n-1}$, $I_{0}^{n}=I_{k}^{n-1}$ and $f_{0}^{n}=f_{k}^{n-1}$. Since $\left(C_{2}\left(1+r_{1}\right)+2 r_{1}\right) \delta \leq C_{2}\left(1+r_{1}\right)$, the $(n, 0)$ property is satisfied. Note also that $\left\{q_{m, n}\left(v_{1}\right), q_{m, n}\left(v_{2}\right)\right\} \in F_{0}^{m}$ for all $m \geq n$ if $\left\{v_{1}, v_{2}\right\} \in F_{0}^{n}$ such that $d\left(v_{1}, v_{2}\right) \geq C_{2}\left(1+r_{1}\right) \delta^{n}$.

5. End of the proof

By iterating the above algorithm, we construct a sequence $\left(G_{0}^{n}\right)_{n>n_{0}}$ of graphs and a sequence $f_{0}^{n}: I_{0}^{n} \rightarrow D_{0}^{n}$ of 1-Lipschitz surjections such that $I_{0}^{n} \subset\left[0,2 l\left(T_{0}^{n}\right)\right]$ for all $n>n_{0}$.

Let $n>n_{0}, k \in\left\{1, \ldots, \# A_{n}\right\}$ and $y \in D_{k-1}^{n-1}$. Denote

$$
\mathscr{I}=\left\{i \in\left\{k, \ldots, \# A_{n}\right\}: \vartheta\left(x_{i}^{n}, n\right) \geq \varepsilon_{0} \text { and } d\left(x_{i}^{n}, y\right)=d\left(x_{i}^{n}, D_{i-1}^{n-1}\right)\right\}
$$

and further for $j=0,1,2, \ldots$ set

$$
\mathscr{I}_{j}=\left\{i \in \mathscr{I}:\left(1+\varepsilon_{0}\right)^{-j-1} d<d\left(x_{i}^{n}, y\right) \leq\left(1+\varepsilon_{0}\right)^{-j} d\right\},
$$

where $d=\max \left\{d\left(x_{i}^{n}, y\right): i \in \mathscr{I}\right\} \leq\left(1+r_{1}\right) \delta^{n-1}$. Let $j \in\{0,1,2, \ldots\}$. We show that $\# \mathscr{I}_{j} \leq 2$. Suppose this fails and there exist $i_{1}, i_{2}, i_{3} \in \mathscr{I}_{j}$ with $i_{1}<i_{2}<i_{3}$.

Since $R_{2} \leq 1-2 r_{1}$ and $\delta R_{3} \geq 2\left(1+r_{1}\right)$, we have $\left\{y, x_{i_{1}}^{n}, x_{i_{2}}^{n}, x_{i_{3}}^{n}\right\} \in \mathscr{O}\left(\varepsilon_{0}\right)$. Denote $d_{l}=d\left(x_{i_{i}}^{n}, y\right)$ for $l=1,2,3$. Since $\varepsilon_{0} \geq 1 / 2$,

$$
d_{1}+\varepsilon_{0} d_{3}+\varepsilon_{0}\left(d_{2}+\varepsilon_{0} d_{3}\right)-\left(d_{1}+d_{2}\right)>\left(2 \varepsilon_{0}-1\right)\left(1+\varepsilon_{0}\right)^{-j} d \geq 0
$$

Thus we have $z_{1} z_{2} y$ for some $z_{1}, z_{2} \in\left\{x_{i_{1}}^{n}, x_{i_{2}}^{n}, x_{i_{3}}^{n}\right\}$. This implies $d\left(z_{1}, z_{2}\right) \leq d\left(z_{1}, y\right)-$ $\varepsilon_{0} d\left(z_{2}, y\right) \leq\left(1+\varepsilon_{0}\right)^{-j-1} d$, which is a contradiction. So we have

$$
\sum_{i \in \mathscr{I}} d\left(x_{i}^{n}, y\right)=\sum_{j=0}^{\infty} \sum_{i \in \mathscr{I}_{j}} d\left(x_{i}^{n}, y\right) \leq \sum_{j=0}^{\infty} 2\left(1+\varepsilon_{0}\right)^{-j} d=\frac{2\left(1+\varepsilon_{0}\right) d}{\varepsilon_{0}}
$$

Let $n_{0}<n^{\prime} \leq m, k^{\prime} \in\left\{1, \ldots, \# A_{n^{\prime}}\right\}$, and assume that $\left\{y^{\prime}, z^{\prime}\right\} \in F_{k^{\prime}-1}^{n^{\prime}-1}$. Then, since $\delta \leq 1-2 r_{1}$,

$$
\begin{equation*}
\frac{d\left(y^{\prime}, z^{\prime}\right)}{d\left(q_{m, n^{\prime}}\left(y^{\prime}\right), q_{m, n^{\prime}}\left(z^{\prime}\right)\right)}<\frac{(1-\delta)\left(1-r_{1}\right)}{1-\delta-2 r_{1}} \tag{16}
\end{equation*}
$$

Suppose that $C_{2} d\left(x_{k^{\prime}}^{n^{\prime}}, y^{\prime}\right) \leq d\left(y^{\prime}, z^{\prime}\right)$. If now $n^{\prime}<n \leq m$ and $x \in A_{n}$, we have

$$
d\left(x, D_{0}^{n-1}\right) \leq\left(1+r_{1}\right) \delta^{n-1}<\frac{\left(1+r_{1}\right) \delta^{n-n^{\prime}-1} d\left(x_{k^{\prime}}^{n^{\prime}}, y^{\prime}\right)}{1-2 r_{1}} \leq \frac{\left(1+r_{1}\right) \delta^{n-n^{\prime}-1} d\left(y^{\prime}, z^{\prime}\right)}{\left(1-2 r_{1}\right) C_{2}}
$$

Using these estimates and (8) we get

$$
\begin{aligned}
& \sum_{k \in \Lambda_{n^{\prime}}\left(y^{\prime}\right) \cup \Lambda_{n^{\prime}}\left(z^{\prime}\right), k \geq k^{\prime}}\left(l\left(G_{k}^{n^{\prime}-1}\right)-l\left(G_{k-1}^{n^{\prime}-1}\right)\right)+\sum_{n=n^{\prime}+1}^{m} \sum_{k \in \Lambda_{n}\left(y^{\prime}\right) \cup \Lambda_{n}\left(z^{\prime}\right)}\left(l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right) \\
& \leq M_{1} d\left(q_{m, n^{\prime}}\left(y^{\prime}\right), q_{m, n^{\prime}}\left(z^{\prime}\right)\right) \leq M_{1} w_{0}^{m}\left(\left\{q_{m, n^{\prime}}\left(y^{\prime}\right), q_{m, n^{\prime}}\left(z^{\prime}\right)\right\}\right)
\end{aligned}
$$

for all $m \geq n^{\prime}$, where
$\Lambda_{n}(v)=\left\{k \in\left\{1, \ldots, \# A_{n}\right\}: \vartheta\left(x_{k}^{n}, n\right) \geq \varepsilon_{0}\right.$ and $\left.d\left(x_{k}^{n}, q_{n-1, n^{\prime}}(v)\right)=d\left(x_{k}^{n}, D_{k-1}^{n-1}\right)\right\}$ for $v \in D_{\# A_{n^{\prime}}}^{n^{\prime}-1}$ and

$$
M_{1}=\frac{4\left(1+\varepsilon_{0}\right)\left(1+2 C_{1}\right)(1-\delta)\left(1-r_{1}\right)}{C_{2} \varepsilon_{0}\left(1-\delta-2 r_{1}\right)}\left(1+\frac{1+r_{1}}{\left(1-2 r_{1}\right)(1-\delta)}\right)
$$

From this we get

$$
\begin{equation*}
\sum_{n=n_{0}+1}^{m} \sum_{k \in \Lambda_{n}^{1}}\left(l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right) \leq M_{1} l\left(T_{0}^{m}\right) \tag{17}
\end{equation*}
$$

for all $m>n_{0}$, where

$$
\Lambda_{n}^{1}=\left\{k \in\left\{1, \ldots, \# A_{n}\right\}: \text { Case } 2 \text { applies to } x_{k}^{n} \text { at stage } n\right\}
$$

Let $n>n_{0}, k \in\left\{1, \ldots, \# A_{n}\right\}$ and $\{y, b\} \in E_{k-1}^{n-1}$, where $b \in V_{k-1}^{n-1} \backslash D_{k-1}^{n-1}$.
Denote

$$
\mathscr{I}=\left\{i \in\left\{k, \ldots, \# A_{n}\right\}:\left\{x_{i}^{n}, b\right\} \in E_{i}^{n-1}\right\}
$$

and further for $j=0,1,2, \ldots$ let

$$
\mathscr{I}_{j}=\left\{i \in \mathscr{I}:\left(1+\varepsilon_{0}\right)^{-j-1} d<d\left(x_{i}^{n}, D_{i-1}^{n-1}\right) \leq\left(1+\varepsilon_{0}\right)^{-j} d\right\}
$$

where $d=\max \left\{d\left(x_{i}^{n}, D_{i-1}^{n-1}\right): i \in \mathscr{I}\right\} \leq\left(1+r_{1}\right) \delta^{n-1}$. We show that $\# \mathscr{I}_{j} \leq 2$ for all j. Suppose that this fails and for some j there exist $i_{1}, i_{2}, i_{3} \in \mathscr{J}_{j}, i_{1}<i_{2}<i_{3}$, such that $d\left(x_{i_{l}}^{n}, x_{i_{l-1}}^{n}\right)=d\left(x_{i_{l}}^{n}, D_{i_{l}-1}^{n-1}\right)$ for $l=2,3$. Denote $x_{l}=x_{i_{l}}^{n}$ for $l=1,2,3$ and let $x_{0} \in E$ such that $d\left(x_{1}, x_{0}\right)=d\left(x_{1}, D_{i_{1}-1}^{n-1}\right)$. Now $x_{l} x_{l+1} x_{l+2}$ for $l=0,1$. Namely, if this is not true for fixed l, there exists a nonempty set $\left\{y_{1}, \ldots, y_{p}\right\} \subset D_{i_{l+2}-1}^{n-1}$ such that $y_{p} x_{l+1} x_{l+2}, x_{l} y_{1} x_{l+1}$ and $y_{q} y_{q+1} x_{l+1}$ for $q=1, \ldots, p-1$. Since $\left(1+\varepsilon_{0}\right)^{-j-1} d<$ $d\left(z_{1}, z_{2}\right) \leq 3\left(1+\varepsilon_{0}\right)^{-j} d$ for each distinct points $z_{1}, z_{2} \in\left\{x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{p}\right\} \subset$ $B\left(x_{1}, 2\left(1+\varepsilon_{0}\right)^{-j} d\right), \vartheta\left(x_{1}, n\right) \geq \varepsilon_{0}$ and we have chosen $\delta R_{3} \geq 2\left(1+r_{1}\right), R_{2} \leq 1-2 r_{1}$ and

$$
\varepsilon_{0}^{3} \geq \frac{12\left(1+\varepsilon_{0}\right)-1}{12\left(1+\varepsilon_{0}\right)+1}
$$

$\left\{x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{p}\right\}$ has an order by Lemma 2.3 of [3], from which we conclude $x_{l} x_{l+1} x_{l+2}$. Since $\max \left\{d\left(x, D_{i_{1}-1}^{n-1}\right): x \in A_{k}\right\}=d\left(x_{1}, x_{0}\right)<d\left(x_{2}, x_{0}\right)$, there exists $z \in D_{i_{1}-1}^{n-1} \backslash\left\{x_{0}\right\}$ such that $d\left(x_{2}, z\right) \leq d\left(x_{1}, x_{0}\right)$. As above, $\left\{x_{0}, x_{1}, x_{2}, x_{3}, z\right\}$ has an order. Since $d\left(x_{l}, x_{l-1}\right)=d\left(x_{i_{l}}^{n}, D_{i_{l}-1}^{n-1}\right)$ for $l=1,2,3$, we must have $x_{0} x_{1} x_{2} x_{3} z$. From this we get $d\left(x_{2}, z\right) \geq d\left(x_{2}, x_{3}\right)+\varepsilon_{0} d\left(x_{3}, z\right)>\left(1+\varepsilon_{0}\right)^{-j} d \geq d\left(x_{1}, x_{0}\right)$, which is a contradiction. Thus we have

$$
\sum_{i \in \mathscr{I}} d\left(x_{i}^{n}, D_{i-1}^{n-1}\right)=\sum_{j=0}^{\infty} \sum_{i \in \mathscr{I}_{j}} d\left(x_{i}^{n}, D_{i-1}^{n-1}\right) \leq \sum_{j=0}^{\infty} 2\left(1+\varepsilon_{0}\right)^{-j} d=\frac{2\left(1+\varepsilon_{0}\right) d}{\varepsilon_{0}}
$$

Using this and (12) we get

$$
\begin{equation*}
\sum_{n=n_{0}+1}^{m} \sum_{k \in \Lambda_{n}^{2}}\left(l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right) \leq M_{1}^{\prime}\left(l\left(G_{0}^{m}\right)-l\left(T_{0}^{m}\right)\right) \tag{18}
\end{equation*}
$$

for all $m>n_{0}$, where

$$
\begin{aligned}
\Lambda_{n}^{2} & =\left\{k \in\left\{1, \ldots, \# A_{n}\right\}: \text { Case } 4 \text { applies to } x_{k}^{n} \text { at stage } n\right\} \\
M_{1}^{\prime} & =\frac{2\left(1+\varepsilon_{0}\right)}{C_{1} \varepsilon_{0}}\left(1+\frac{1+r_{1}}{\left(1-2 r_{1}\right)(1-\delta)}\right)
\end{aligned}
$$

Since $\delta^{n_{0}+1}<d(E) \leq C_{1}^{\prime} \delta^{N_{1}-1}$ (see pages 102 and 109), we have $N_{1}-n_{0}<$ $2-\log C_{1}^{\prime} / \log \delta$. Using this and $\# A_{n} \leq 2 M_{0}^{2} \delta^{-n} d(E)$ we get

$$
\sum_{n=n_{0}+1}^{N_{1}-1} \# A_{n} \cdot\left(1-\varepsilon_{0}\right)\left(1+r_{1}\right) \delta^{n-1}<C_{1}^{\prime \prime} d(E)
$$

where

$$
C_{1}^{\prime \prime}=\left(1-\frac{\log C_{1}^{\prime}}{\log \delta}\right) \frac{2 M_{0}^{2}\left(1-\varepsilon_{0}\right)\left(1+r_{1}\right)}{\delta}
$$

Thus by using (9), (16) and (11) we get

$$
\begin{align*}
& \sum_{n=n_{0}+1}^{m} \sum_{k \in \Lambda_{n}^{3}}\left(l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right) \leq C_{1}^{\prime \prime} d(E)+M_{2} l\left(T_{0}^{m}\right) \\
& +C_{4} \sum_{n=N_{1}}^{m} \sum_{k \in \Lambda_{n}^{3}} \int_{B\left(x_{k}^{n}, R_{4} \delta^{n}\right)} \int_{T_{n}^{2}\left(z_{3}\right)} \int_{T_{n}^{2}\left(z_{3}\right) \backslash B\left(z_{2}, r_{4} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}, \tag{19}
\end{align*}
$$

for all $m>n_{0}$, where

$$
\begin{aligned}
& \Lambda_{n}^{3}=\left\{k \in\left\{1, \ldots, \# A_{n}\right\}: \text { Case } 3 \text { applies to } x_{k}^{n} \text { at stage } n\right\}, \\
& M_{2}=\frac{\left(1-\varepsilon_{0}\right)(1-\delta)\left(1-r_{1}\right)}{1-\delta-2 r_{1}}
\end{aligned}
$$

Since $N_{2}-n_{0}<2-\log C_{2}^{\prime} / \log \delta$ (see page 116) and $\# D_{0}^{n} \leq 2 M_{0}^{2} \delta^{-n} d(E)$ for $n>n_{0}$, we have

$$
\min \left\{2 r_{1}, 1-\varepsilon_{0}\right\} d(E)+\sum_{n=n_{0}+2}^{N_{2}-1} \# D_{0}^{n-1} \cdot h \delta^{n}<C_{2}^{\prime \prime} d(E),
$$

where

$$
C_{2}^{\prime \prime}=\min \left\{2 r_{1}, 1-\varepsilon_{0}\right\}-\frac{2 M_{0}^{2} h \delta \log C_{2}^{\prime}}{\log \delta}
$$

Let $n_{0}<n^{\prime} \leq m$ and assume that $b \in V_{0}^{n^{\prime}} \backslash D_{0}^{n^{\prime}}$. For any $n \geq n^{\prime}$ let $k_{n}^{1}(b) \in$ $\left\{1, \ldots, \# D_{0}^{n}\right\}$ be the unique index such that $b \in V_{\# A_{n}}^{n-1}\left(x_{k_{n}^{1}(b)}^{n}\right)$. Denote also by $y_{n}(b)$ the unique vertex in $D_{\max \left\{k_{n}^{1}(b), \# A_{n}\right\}}^{n-1}$ for which $\left\{q_{n, n}\left(y_{n}(b)\right), b\right\} \in P_{0}^{n}\left(q_{n, n}\left(x_{k_{n}^{1}(b)}^{n}\right)\right)$. We have

$$
\begin{aligned}
& \quad \sum_{n \geq n^{\prime}, k_{n}^{1}(b)>\# A_{n}}\left(w_{k_{n}^{1}(b)}^{n-1}\left(\left\{q_{n}\left(x_{k_{n}^{1}(b)}^{n}\right), y_{n}(b)\right\}\right)-w_{k_{n}^{1}(b)-1}^{n-1}\left(\left\{x_{k_{n}^{1}(b)}^{n}, y_{n}(b)\right\}\right)\right) \\
& \leq \\
& \leq \sum_{n=n^{\prime}}^{\infty} r_{1} \delta^{n}=\frac{r_{1} \delta^{n^{\prime}}}{1-\delta}
\end{aligned}
$$

and

$$
w_{0}^{m}\left(q_{m, m}\left(x_{k_{m}^{\prime}(b)}^{m}\right), b\right)=w_{0}^{n^{\prime}}\left(q_{n^{\prime}, n^{\prime}}\left(x_{k_{n^{\prime}}^{\prime}(b)}^{n^{\prime}}\right), b\right)>C_{1}\left(1-2 r_{1}\right) \delta^{n^{\prime}} .
$$

Assume now that $\{y, z\} \in F_{\# A_{n^{\prime}}}^{n^{\prime}-1}$ such that $\left\{q_{n, n^{\prime}}(y), q_{n, n^{\prime}}(z)\right\} \in F_{0}^{n}$ for all $n \geq n^{\prime}$. For $x \in D_{\# A_{n^{\prime}}}^{n^{\prime}-1}$ and $n \geq n^{\prime}$ let $k_{n}^{2}(x) \in\left\{1, \ldots, \# D_{0}^{n}\right\}$ such that $q_{n-1, n^{\prime}}(x)=x_{k_{n}^{2}(x)}^{n}$. Denote also

$$
n\left(x_{1}, x_{2}\right)=\inf \left\{n \geq n^{\prime}: v_{n}\left(x_{1}, x_{2}\right) \in E \text { and } q_{n-1, n^{\prime}}\left(x_{1}\right) \notin A_{n}\right\}
$$

for $\left\{x_{1}, x_{2}\right\} \in F_{\# A_{n^{\prime}}}^{n^{\prime}-1}$, where $v_{n}\left(x_{1}, x_{2}\right)$ is the unique vertex in $V_{\max \left\{k_{n}^{2}\left(x_{1}\right), \# A_{n}\right\}}^{n-1}$ such that $\left\{q_{n, n^{\prime}}\left(x_{2}\right), q_{n, n^{\prime}}\left(v_{n}\left(x_{1}, x_{2}\right)\right)\right\} \in P_{0}^{n}\left(q_{n, n^{\prime}}\left(x_{1}\right)\right)$. Now

$$
\begin{aligned}
& \sum_{n=n(y, z)}^{m}\left(w_{k_{n}^{2}(y)}^{n-1}\left(\left\{q_{n, n^{\prime}}(y), v_{n}(y, z)\right\}\right)+w_{k_{n}^{2}(y)}^{n-1}\left(\left\{q_{n, n^{\prime}}(y), p_{n}(z, y)\right\}\right)\right. \\
& \left.-w_{k_{n}^{2}(y)-1}^{n-1}\left(\left\{q_{n-1, n^{\prime}}(y), v_{n}(y, z)\right\}\right)-w_{k_{n}^{2}(y)-1}^{n-1}\left(\left\{q_{n-1, n^{\prime}}(y), p_{n}(z, y)\right\}\right)\right) \\
+ & \sum_{n=n(z, y)}^{m}\left(w_{k_{n}^{2}(z)}^{n-1}\left(\left\{q_{n, n^{\prime}}(z), v_{n}(z, y)\right\}\right)+w_{k_{n}^{2}(z)}^{n-1}\left(\left\{q_{n, n^{\prime}}(z), p_{n}(y, z)\right\}\right)\right. \\
& \left.\quad-w_{k_{n}^{2}(z)-1}^{n-1}\left(\left\{q_{n-1, n^{\prime}}(z), v_{n}(z, y)\right\}\right)-w_{k_{n}^{2}(z)-1}^{n-1}\left(\left\{q_{n-1, n^{\prime}}(z), p_{n}(y, z)\right\}\right)\right) \\
\leq & M_{3} w_{0}^{m}\left(\left\{q_{m, n^{\prime}}(y), q_{m, n^{\prime}}(z)\right\}\right)
\end{aligned}
$$

where $p_{n}\left(x_{1}, x_{2}\right) \in D_{k_{n}^{2}\left(x_{2}\right)}^{n-1}$ such that $q_{n, n}\left(p_{n}\left(x_{1}, x_{2}\right)\right)=q_{n, n^{\prime}}\left(x_{1}\right)$ for $\left\{x_{1}, x_{2}\right\} \in F_{\# A_{n^{\prime}}}^{n^{\prime}-1}$ and

$$
M_{3}=\frac{4 r_{1}}{1-\delta+2 r_{1}} .
$$

Using these estimates, (13), (14) and (15) we get

$$
\begin{align*}
& \sum_{n=n_{0}+1}^{m} \sum_{k=\# A_{n}+1}^{\# D_{0}^{n}}\left(l\left(G_{k}^{n-1}\right)-l\left(G_{k-1}^{n-1}\right)\right) \tag{20}\\
& \leq C_{2}^{\prime \prime} d(E)+M_{3} l\left(T_{0}^{m}\right)+M_{2}^{\prime}\left(l\left(G_{0}^{m}\right)-l\left(T_{0}^{m}\right)\right) \\
& +C_{5} \sum_{n=n_{0}+1}^{m} \sum_{x \in H_{n}^{1}} \int_{B\left(x,\left(R_{3}+r_{0}\right) \delta^{n}\right)} \int_{T_{n}^{1}\left(z_{3}\right)} \int_{T_{n}^{1}\left(z_{3}\right) \cap T_{n}^{1}\left(z_{2}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3} \\
& +C_{6} \sum_{n=N_{2}}^{m} \sum_{x \in H_{n}^{2}} \int_{B\left(x, R_{5} \delta^{n}\right)} \int_{T_{n}^{3}\left(z_{3}\right)} \int_{T_{n}^{3}\left(z_{3}\right) \backslash B\left(z_{2}, r_{4} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3}
\end{align*}
$$

for all $m>n_{0}$, where

$$
\begin{aligned}
M_{2}^{\prime} & =\frac{r_{1}}{C_{1}\left(1-2 r_{1}\right)(1-\delta)}, \\
H_{n}^{1} & =\left\{x \in q_{n}\left(D_{0}^{n-1}\right): \vartheta(x, n)<\varepsilon_{0}\right\}, \\
H_{n}^{2} & =\left\{x \in q_{n}\left(D_{0}^{n-1}\right): \vartheta(x, n) \geq \varepsilon_{0}\right\} .
\end{aligned}
$$

Combining the estimates (6), (7), (17), (18), (19), and (20) we get for all $m>n_{0}$

$$
\begin{aligned}
& l\left(T_{0}^{m}\right) \leq\left(1+2 C_{1}+C_{1}^{\prime \prime}+C_{2}^{\prime \prime}\right) d(E)+\left(M_{1}+M_{2}+M_{3}\right) l\left(T_{0}^{m}\right) \\
& +C_{0} \sum_{n=n_{0}+1}^{m} \sum_{x \in D_{0}^{n}} \int_{B\left(x, R_{0} \delta^{n}\right)} \int_{T_{n}\left(z_{3}\right)} \int_{T_{n}\left(z_{3}\right) \backslash B\left(z_{2}, \rho_{0} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3} \\
& +\left(M_{1}^{\prime}+M_{2}^{\prime}-1\right)\left(l\left(G_{0}^{m}\right)-l\left(T_{0}^{m}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
C_{0} & =\max \left\{C_{3}, C_{4}, C_{5}, C_{6}\right\}, \\
R_{0} & =\max \left\{R_{3}+r_{0}, R_{4}, R_{5}\right\}, \\
\rho_{0} & =\min \left\{R_{2}-2 r_{0}, r_{4}\right\}, \\
T_{n}(z) & =B\left(z, R_{1} \delta^{n}\right) \backslash B\left(z, \rho_{1} \delta^{n}\right)
\end{aligned}
$$

for $z \in E$, where

$$
\begin{aligned}
R_{1} & =\max \left\{2\left(R_{3}+r_{0}\right),\left(r_{3}+r_{1}\right) \delta^{-1}\right\}, \\
\rho_{1} & =\min \left\{R_{2}-2 r_{0}, r_{2}-r_{1}\right\} .
\end{aligned}
$$

Let $n>n_{0}, y \in E$ and $D=B\left(y,\left(R_{0}+r_{1}\right) \delta^{n}\right) \cap\left(A_{n}^{\prime} \cup D_{0}^{n-1}\right)$. Then

$$
\begin{aligned}
& M_{0}\left(\left(R_{0}+r_{1}\right) \delta^{n}+\delta^{n} / 2\right) \geq \mu\left(B\left(y,\left(R_{0}+r_{1}\right) \delta^{n}+\delta^{n} / 2\right)\right) \\
& \geq \sum_{x \in D} \mu\left(B\left(x, \delta^{n} / 2\right)\right) \geq \frac{\# D \cdot \delta^{n}}{2 M_{0}}
\end{aligned}
$$

from which we get

$$
\#\left(B\left(y, R_{0} \delta^{n}\right) \cap D_{0}^{n}\right) \leq \# D \leq M_{0}^{2}\left(2\left(R_{0}+r_{1}\right)+1\right)
$$

Suppose now that $k_{1}<k_{2}$ and $T_{k_{1}}(y) \cap T_{k_{2}}(y) \neq \emptyset$. Then $\rho_{1} \delta^{k_{1}}<R_{1} \delta^{k_{2}}$, which gives

$$
k_{2}-k_{1}<\frac{\log R_{1}-\log \rho_{1}}{-\log \delta}
$$

Thus we have for all $m>n_{0}$

$$
\begin{aligned}
& \sum_{n=n_{0}+1}^{m} \sum_{x \in D_{0}^{n}} \int_{B\left(x, R_{0} \delta^{n}\right)} \int_{T_{n}\left(z_{3}\right)} \int_{T_{n}\left(z_{3}\right) \backslash B\left(z_{2}, \rho_{0} \delta^{n}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3} \\
& \leq C_{0}^{\prime} \int_{E} \sum_{n=n_{0}+1}^{m} \int_{T_{n}\left(z_{3}\right)} \int_{\mathscr{T}\left(z_{2}, z_{3}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3} \\
& \leq C_{0}^{\prime} C_{0}^{\prime \prime} \int_{E} \int_{E} \int_{\mathscr{T}\left(z_{2}, z_{3}\right)} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu z_{1} d \mu z_{2} d \mu z_{3} \\
& =C_{0}^{\prime} C_{0}^{\prime \prime} \int_{\mathscr{T}} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{3}\left(z_{1}, z_{2} z_{3}\right),
\end{aligned}
$$

where $C_{0}^{\prime}=M_{0}^{2}\left(2\left(R_{0}+r_{1}\right)+1\right), C_{0}^{\prime \prime}=\left(\log \rho_{1}-\log R_{1}\right) / \log \delta$ and

$$
\begin{aligned}
& \mathscr{T}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in E^{3}: d\left(z_{i}, z_{j}\right)<K_{0} d\left(z_{k}, z_{l}\right) \text { for all } i, j, k, l \in\{1,2,3\}, k \neq l\right\}, \\
& \mathscr{T}\left(z_{2}, z_{3}\right)=\left\{z \in E:\left(z, z_{2}, z_{3}\right) \in \mathscr{T}\right\}
\end{aligned}
$$

where

$$
K_{0}=\frac{R_{1} \max \left\{2 \rho_{0}, \rho_{1}\right\}}{\rho_{0} \rho_{1}}
$$

By choosing the constants suitably we have $M_{1}+M_{2}+M_{3}<1$ and $M_{1}^{\prime}+M_{2}^{\prime} \leq 1$. Thus there exists a constant C (depending on M_{0}) such that

$$
2 l\left(T_{0}^{m}\right) \leq C\left(c^{2}(E)+d(E)\right)
$$

for all $m>n_{0}$. We denote $I_{n}=I_{0}^{n}$ and $f_{n}=f_{0}^{n}$ for $n>n_{0}$. Since now $I_{n} \subset$ $\left[0, C\left(c^{2}(E)+d(E)\right)\right]$ for all $n>n_{0}$, there exists a compact set $I \subset\left[0, C\left(c^{2}(E)+d(E)\right)\right]$ such that $I_{n} \rightarrow I$ in the Kuratowski sense:
(i) If $a=\lim _{k \rightarrow \infty} a_{n_{k}}$ for some subsequence $\left(a_{n_{k}}\right)$ of a sequence $\left(a_{n}\right)$ such that $a_{n} \in I_{n}$ for any n, then $a \in I$.
(ii) If $a \in I$, then there exists a sequence $\left(a_{n}\right)$ such that $a_{n} \in I_{n}$ for any n and $a=\lim _{n \rightarrow \infty} a_{n}$.
Let $a \in I$ and let $\left(a_{n}\right)_{n}$ be a sequence such that $a_{n} \in I_{n}$ for any n and $a_{n} \rightarrow a$ as $n \rightarrow \infty$. Let $m \geq n>n_{0}$. By the construction there is $b \in I_{m}$ such that

$$
-\frac{2 r_{1} \delta^{n+1}}{1-\delta}<-\sum_{k=n+1}^{m} 2 r_{1} \delta^{k} \leq b-a_{n} \leq 2\left(l\left(T_{0}^{m}\right)-l\left(T_{0}^{n}\right)\right)+\frac{2 r_{1} \delta^{n+1}}{1-\delta}
$$

and $d\left(f_{m}(b), f_{n}\left(a_{n}\right)\right) \leq r_{1} \delta^{n+1}(1-\delta)^{-1}$. Using this we get

$$
\begin{aligned}
d\left(f_{m}\left(a_{m}\right), f_{n}\left(a_{n}\right)\right) & \leq d\left(f_{m}\left(a_{m}\right), f_{m}(b)\right)+d\left(f_{m}(b), f_{n}\left(a_{n}\right)\right) \\
& \leq\left|a_{m}-b\right|+d\left(f_{m}(b), f_{n}\left(a_{n}\right)\right) \\
& \leq\left|a_{m}-a_{n}\right|+\left|a_{n}-b\right|+r_{1} \delta^{n+1}(1-\delta)^{-1} \\
& \leq\left|a_{m}-a_{n}\right|+2\left(l\left(T_{0}^{m}\right)-l\left(T_{0}^{n}\right)\right)+3 r_{1} \delta^{n+1}(1-\delta)^{-1}
\end{aligned}
$$

From this we see that $\left(f_{n}\left(a_{n}\right)\right)$ is a Cauchy sequence in E. Thus we can define $f: I \rightarrow \bar{E}$, where \bar{E} is the completion of E, by setting for $a \in I$

$$
f(a)=\lim _{n \rightarrow \infty} f_{n}\left(a_{n}\right)
$$

where $\left(a_{n}\right)$ is a sequence such that $a_{n} \in I_{n}$ for any n and $a_{n} \rightarrow a$ as $n \rightarrow \infty$. Clearly $f(a)$ does not depend on the choice of the sequence $\left(a_{n}\right)$. Let $a, b \in I$ and let $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ such that $a_{n}, b_{n} \in I_{n}$ for any n. Now, since f_{n} is 1-Lipschitz for each n,

$$
\begin{aligned}
d(f(a), f(b)) & \leq d\left(f(a), f_{n}\left(a_{n}\right)\right)+d\left(f_{n}\left(a_{n}\right), f_{n}\left(b_{n}\right)\right)+d\left(f_{n}\left(b_{n}\right), f(b)\right) \\
& \leq d\left(f(a), f_{n}\left(a_{n}\right)\right)+\left|a_{n}-b_{n}\right|+d\left(f_{n}\left(b_{n}\right), f(b)\right) \rightarrow|a-b|
\end{aligned}
$$

as $n \rightarrow \infty$. So f is 1-Lipschitz. It is also surjective. To check this let $x \in E$ and $r>0$. Let $k \geq n_{0}$ such that $\left(1+r_{1}\right) \delta^{k}+r_{1} \delta^{k+1}(1-\delta)^{-1}<r$. Now there is $c_{k} \in I_{k}$ such that $d\left(f_{k}\left(c_{k}\right), x\right) \leq\left(1+r_{1}\right) \delta^{k}$. By the construction we have a sequence
$\left(c_{n}\right)_{n \geq k}$ such that $c_{n} \in I_{n}, d\left(f_{n}\left(c_{n}\right), f_{k}\left(c_{k}\right)\right) \leq r_{1} \delta^{k+1}(1-\delta)^{-1}$ and $\left|c_{n+1}-c_{n}\right| \leq$ $2\left(l\left(T_{0}^{\grave{n}+1}\right)-l\left(T_{0}^{n}\right)+r_{1} \delta^{n+1}\right)$ for any $n \geq k$. From this we see that $\left(c_{n}\right)$ is a Cauchy sequence and thus there is $c \in\left[0, C\left(c^{2}(E)+d(E)\right)\right]$ such that $c_{n} \rightarrow c$. Now $c \in I$ by (i) and $d(f(c), x)<r$. Since $f(I)$ is compact, we deduce $E \subset f(I)$. Finally, we restrict f to $f^{-1}(E)$. The proof of Theorem 1.1 is now complete.

We actually showed that

$$
\begin{equation*}
\ell(E) \leq C\left(\int_{\mathscr{T}} c\left(z_{1}, z_{2}, z_{3}\right)^{2} d \mu^{3}\left(z_{1}, z_{2} z_{3}\right)+d(E)\right) . \tag{21}
\end{equation*}
$$

A slight modification of the proof gives that we can take K_{0} in the definition of \mathscr{T} as a universal constant such that (21) holds for some C depending only on the regularity constant of E.

Acknowledgements. The author likes to thank Professor Pertti Mattila for useful suggestions and for reading the manuscript.

References

[1] David, G., and S. Semmes: Singular integrals and rectifiable sets in \mathbf{R}^{n}. - Astérisque 193, 1991.
[2] Ferrari, F., B. Franchi, and H. Pajot: The geometric traveling salesman problem in the Heisenberg group. - Preprint.
[3] Hahlomaa, I.: Menger curvature and Lipschitz parametrizations in metric spaces. - Fund. Math. 185, 2005, 143-169.
[4] Jones, P. W.: Rectifiable sets and the traveling salesman problem. - Invent. Math. 102, 1990, 1-15.
[5] Léger, J.-C.: Rectifiability and Menger curvature. - Ann. of Math. 149, 1999, 831-869.
[6] Lerman, G.: Quantifying curvelike structures of measures by using L_{2} Jones quantities. Comm. Pure Appl. Math. 56, 2003, 1294-1365.
[7] Mattila, P., M. S. Melnikov, and J. Verdera: The Cauchy integral, analytic capacity, and uniform rectifiability. - Ann. of Math. 144, 1996, 127-136.
[8] Okikiolu, K.: Characterization of subsets of rectifiable curves in \mathbf{R}^{n}. - J. London Math. Soc. 46, 1992, 336-348.
[9] Pajot, H.: Sous-ensembles de courbes Ahlfors-régulières et nombres de Jones. - Publ. Mat. 40, 1996, 497-526.
[10] Pajot, H.: Analytic capacity, rectifiability, Menger curvature and the Cauchy integral. Lecture Notes in Math. 1799, Springer-Verlag, Berlin, 2002.
[11] Schul, R.: Subset of rectifiable curves in Hilbert space and the analyst's TSP. - PhD Thesis, Yale University, 2005.

[^0]: 2000 Mathematics Subject Classification: Primary 28A75; Secondary 51F99.
 Key words: Menger curvature, Lipschitz parametrization.
 The author was supported by the University of Jyväskylä.

