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Abstract. In this paper we study regularity and free boundary regularity, below the con-
tinuous threshold, for the p Laplace equation in Lipschitz and C1 domains. To formulate our
results we let Ω ⊂ Rn be a bounded Lipschitz domain with constant M . Given p, 1 < p < ∞,
w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic function in Ω ∩ B(w, 4r), that
u is continuous in Ω̄ ∩ B̄(w, 4r) and u = 0 on ∆(w, 4r). We first prove, Theorem 1, that
∇u(y) → ∇u(x), for almost every x ∈ ∆(w, 4r), as y → x non tangentially in Ω. Moreover,
‖ log |∇u|‖BMO(∆(w,r)) ≤ c(p, n, M). If, in addition, Ω is C1 regular then we prove, Theorem 2,
that log |∇u| ∈ V MO(∆(w, r)). Finally we prove, Theorem 3, that there exists M̂ , independent
of u, such that if M ≤ M̂ and if log |∇u| ∈ V MO(∆(w, r)) then the outer unit normal to ∂Ω, n,
is in V MO(∆(w, r/2)).

1. Introduction

In this paper, which is the last paper in a sequence of three, we complete our
study of the boundary behaviour of p harmonic functions in Lipschitz domains.
In [LN] we established the boundary Harnack inequality for positive p harmonic
functions, 1 < p < ∞, vanishing on a portion of the boundary of a Lipschitz
domain Ω ⊂ Rn and we carried out an in depth analysis of p capacitary functions in
starlike Lipschitz ring domains. The study in [LN] was continued in [LN1] where we
established Hölder continuity for ratios of positive p harmonic functions, 1 < p < ∞,
vanishing on a portion of the boundary of a Lipschitz domain Ω ⊂ Rn. In [LN1]
we also studied the Martin boundary problem for p harmonic functions in Lipschitz
domains. In this paper we establish, in the setting of Lipschitz domains Ω ⊂ Rn,
the analog for the p Laplace equation, 1 < p < ∞, of the program carried out in the
papers [D], [JK], [KT], [KT1] and [KT2] on regularity and free boundary regularity,
below the continuous threshold, for the Poisson kernel associated to the Laplace
operator when p = 2. Except for the work in [LN], where parts of this program
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were established for p capacitary functions in starlike Lipschitz ring domains, the
results of this paper are, in analogy with the results in [LN] and [LN1], completely
new in case p 6= 2, 1 < p < ∞. We also refer to [LN2] for a survey of the results
established in [LN], [LN1] and in this paper.

To put the contributions of this paper into perspective we consider the case of
harmonic functions and we recall that in [D] B. Dahlberg showed for p = 2, that if Ω
is a Lipschitz domain then the harmonic measure with respect to a fixed point, dω,
and surface measure, dσ, are mutually absolutely continuous. In fact if k = dω/dσ,
then Dahlberg showed that k is in a certain L2 reverse Hölder class from which
it follows that log k ∈ BMO(dσ), the functions of bounded mean oscillation with
respect to the surface measure on ∂Ω. Jerison and Kenig [JK] showed that if, in
addition, Ω is a C1 domain then log k ∈ V MO(dσ), the functions in BMO(dσ) of
vanishing mean oscillation. In [KT] this result was generalized to ‘chord arc domains
with vanishing constant’. Concerning reverse conclusions, Kenig and Toro [KT2]
were able to prove that if Ω ⊂ Rn is δ Reifenberg flat for some small enough δ > 0,
∂Ω is Ahlfors regular and if log k ∈ V MO(dσ), then Ω is a chord arc domain with
vanishing constant, i.e., the measure theoretical normal n is in V MO(dσ).

The purpose of this paper is to prove for p harmonic functions, 1 < p < ∞, and
in the setting of Lipschitz domains, Ω ⊂ Rn, the results stated above for harmonic
functions (i.e., p = 2). We also note that we intend to establish, in a subsequent
paper, the full program in the setting of Reifenberg flat chord arc domains.

To state our results we need to introduce some notation. Points in Euclidean
n space Rn are denoted by x = (x1, . . . , xn) or (x′, xn) where x′ = (x1, . . . , xn−1) ∈
Rn−1 and we let Ē, ∂E, diam E, be the closure, boundary, diameter, of the set
E ⊂ Rn. We define d(y, E) to equal the distance from y ∈ Rn to E and we let 〈·,·〉
denote the standard inner product on Rn. Moreover, |x| = 〈x, x〉1/2 is the Euclidean
norm of x, B(x, r) = {y ∈ Rn : |x − y| < r} is defined whenever x ∈ Rn, r > 0,
and dx denotes the Lebesgue n measure on Rn. If O ⊂ Rn is open and 1 ≤ q ≤ ∞
then by W 1,q(O) we denote the space of equivalence classes of functions f with
distributional gradient ∇f = (fx1 , . . . , fxn), both of which are q th power integrable
on O. We let ‖f‖1,q = ‖f‖q + ‖|∇f |‖q be the norm in W 1,q(O) where ‖ · ‖q denotes
the usual Lebesgue q norm in O, C∞

0 (O) denotes the class of infinitely differentiable
functions with compact support in O and we let W 1,q

0 (O) be the closure of C∞
0 (O)

in the norm of W 1,q(O).
Given a bounded domain G, i.e., a connected open set, and 1 < p < ∞ we say

that u is p harmonic in G provided u ∈ W 1,p(G) and provided

(1.1)
∫
|∇u|p−2〈∇u,∇θ〉 dx = 0

whenever θ ∈ W 1,p
0 (G). Observe that, if u is smooth and ∇u 6= 0 in G, then

(1.2) ∇ · (|∇u|p−2∇u) ≡ 0 in G

and u is a classical solution to the p Laplace partial differential equation in G. Here,
as in the sequel, ∇· is the divergence operator. We note that φ : E → R is said to
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be Lipschitz on E provided there exists b, 0 < b < ∞, such that

(1.3) |φ(z)− φ(w)| ≤ b|z − w|, whenever z, w ∈ E.

The infimum of all b such that (1.3) holds is called the Lipschitz norm of φ on E

and is denoted ‖φ‖̂E. It is well known that if E = Rn−1, then φ is differentiable
almost everywhere on Rn−1 and ‖φ‖̂Rn−1 = ‖|∇φ|‖∞.

In the following we let Ω ⊂ Rn be a bounded Lipschitz domain, i.e., we assume
that there exists a finite set of balls {B(xi, ri)}, with xi ∈ ∂Ω and ri > 0, such that
{B(xi, ri)} constitutes a covering of an open neighbourhood of ∂Ω and such that,
for each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y
′)} ∩B(xi, 4ri),

∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y
′)} ∩B(xi, 4ri),

(1.4)

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz
constant of Ω is defined to be M = maxi ‖|∇φi|‖∞. If the defining functions {φi}
can be chosen to be C1 regular then we say that Ω is a C1 domain. If Ω is Lipschitz
then there exists r0 > 0 such that if w ∈ ∂Ω, 0 < r < r0, then we can find points
ar(w) ∈ Ω ∩ ∂B(w, r) with d(ar(w), ∂Ω) ≥ c−1r for a constant c = c(M). In the
following we let ar(w) denote one such point. Furthermore, if w ∈ ∂Ω, 0 < r < r0,
then we let ∆(w, r) = ∂Ω ∩ B(w, r). Finally we let ei, 1 ≤ i ≤ n, denote the point
in Rn with one in the ith coordinate position and zeroes elsewhere and we let σ
denote surface measure, i.e., the (n− 1)-dimensional Hausdorff measure, on ∂Ω.

Let Ω ⊂ Rn be a bounded Lipschitz domain and w ∈ ∂Ω, 0 < r < r0. If
0 < b < 1 and x ∈ ∆(w, 2r) then we let

Γ(x) = Γb(x) = {y ∈ Ω: d(y, ∂Ω) > b|x− y|} ∩B(w, 4r).(1.5)

Given a measurable function k on
⋃

x∈∆(w,2r) Γ(x) we define the non tangential
maximal function N(k) : ∆(w, 2r) → R for k as

(1.6) N(k)(x) = sup
y∈Γ(x)

|k|(y) whenever x ∈ ∆(w, 2r).

We let Lq(∆(w, 2r)), 1 ≤ q ≤ ∞, be the space of functions which are integrable, with
respect to the surface measure, σ, to the power q on ∆(w, 2r). Furthermore, given
a measurable function f on ∆(w, 2r) we say that f is of bounded mean oscillation
on ∆(w, r), f ∈ BMO(∆(w, r)), if there exists A, 0 < A < ∞, such that

(1.7)
∫

∆(x,s)

|f − f∆|2 dσ ≤ A2σ(∆(x, s))

whenever x ∈ ∆(w, r) and 0 < s ≤ r. Here f∆ denotes the average of f on
∆ = ∆(x, s) with respect to the surface measure σ. The least A for which (1.7)
holds is denoted by ‖f‖BMO(∆(w,r)). If f is a vector valued function, f = (f1, . . . , fn),
then f∆ = (f1,∆, . . . , fn,∆) and the BMO-norm of f is defined as in (1.7) with
|f − f∆|2 = 〈f − f∆, f − f∆〉. Finally we say that f is of vanishing mean oscillation
on ∆(w, r), f ∈ V MO(∆(w, r)), provided for each ε > 0 there is a δ > 0 such that
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(1.7) holds with A replaced by ε whenever 0 < s < min(δ, r) and x ∈ ∆(w, r). For
more on BMO we refer to [S1, chapter IV].

In this paper we first prove the following two theorems.

Theorem 1. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic
function in Ω ∩ B(w, 4r), u is continuous in Ω̄ ∩ B̄(w, 4r) and u = 0 on ∆(w, 4r).
Then

lim
y∈Γ(x), y→x

∇u(y) = ∇u(x)

for σ almost every x ∈ ∆(w, 4r). Furthermore there exist q > p and a constant c,
1 ≤ c < ∞, which both only depend on p, n and M such that

(i) N(|∇u|) ∈ Lq(∆(w, 2r)),

(ii)
∫

∆(w,2r)

|∇u|q dσ ≤ cr(n−1)( p−1−q
p−1

)

( ∫

∆(w,2r)

|∇u|p−1 dσ

)q/(p−1)

,

(iii) log |∇u| ∈ BMO(∆(w, r)), ‖ log |∇u|‖BMO(∆(w,r)) ≤ c.

Theorem 2. Let Ω, M , p, w, r and u be as in the statement of Theorem 1. If,
in addition, Ω is C1 regular then

log |∇u| ∈ V MO(∆(w, r)).

Theorem 1 and Theorem 2 are proved in [LN] for p capacitary functions in
starlike Lipschitz ring domains. Moreover, using Theorem 2 in [LN1] we can argue
in a similar manner to obtain these theorems in general. Concerning converse results
we in this paper prove the following theorem.

Theorem 3. Let Ω, M , p, w, r and u be as in the statement of Theorem 1.
Then there exists M̂ , independent of u, such that if M ≤ M̂ and log |∇u| ∈
V MO(∆(w, r)), then the outer unit normal to ∆(w, r) is in V MO(∆(w, r/2)).

We let n denote the outer unit normal to ∂Ω. To briefly discuss the proof of
Theorem 3 we define

(1.8) η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃)).

To prove Theorem 3 it is enough to prove that η = 0. To do this we argue by
contradiction and assume that (1.8) holds for some η > 0. This assumption implies
that there exist a sequence of points {wj}, wj ∈ ∆(w, r/2), and a sequence of
scales {rj}, rj → 0, such that ‖n‖BMO(∆(wj ,rj)) → η as j → ∞. To establish a
contradiction we then use a blow-up argument. In particular, let u be as in the
statement of Theorem 3 and extend u to B(w, 4r) by putting u = 0 in B(w, 4r)\Ω.
For {wj}, {rj} as above we define Ωj = {r−1

j (x− wj) : x ∈ Ω} and

(1.9) uj(z) = λju(wj + rjz) whenever z ∈ Ωj
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where {λj} is an appropriate sequence of real numbers defined in the bulk of the
paper. We then show that subsequences of {Ωj}, {∂Ωj} converge to Ω∞, ∂Ω∞, in
the Hausdorff distance sense, where Ω∞ is an unbounded Lipschitz domain with
Lipschitz constant bounded by M . Moreover, by our choice of the sequence {λj} it
follows that a subsequence of {uj} converges uniformly on compact subsets of Rn to
u∞, a positive p harmonic function in Ω∞ vanishing continuously on ∂Ω∞. Defining
dµj = |∇uj|p−1 dσj, where σj is surface measure on ∂Ωj, it will also follow that a
subsequence of {µj} converges weakly as Radon measures to µ∞ and that

(1.10)
∫

Rn

|∇u∞|p−2〈∇u∞,∇φ〉 dx = −
∫

∂Ω∞

φ dµ∞

whenever φ ∈ C∞
0 (Rn). Moreover, we prove that the limiting measure, µ∞, and the

limiting function, u∞, satisfy,

(1.11) µ∞ = σ∞ on ∂Ω∞, c−1 ≤ |∇u∞(z)| ≤ 1 whenever z ∈ Ω∞.

In (1.11) σ∞ is surface measure on ∂Ω∞ and c is a constant, 1 ≤ c < ∞, depending
only on p, n and M . Using (1.11) and results of Alt, Caffarelli and Friedman [ACF]
we are then able to conclude that there exists M̂ , independent of u∞, such that if
M ≤ M̂ then (1.10) and (1.11) imply that Ω∞ is a halfplane. In particular, this will
contradict the assumption that η defined in (1.8) is positive. Hence η = 0 and we
are able to complete the proof of Theorem 3. Thus a substantial part of the proof of
Theorem 3 is devoted to appropriate limiting arguments in order to conclude (1.10)
and (1.11).

Of paramount importance to arguments in this paper is a result in [LN1] (listed
as Theorem 2.7 in section 2), stating that the ratio of two positive p harmonic
functions, 1 < p < ∞, vanishing on a portion of the boundary of a Lipschitz
domain Ω ⊂ Rn is Hölder continuous up to the boundary. This result implies (see
Theorem 2.8 in section 2), that if Ω, M , p, w, r and u are as in the statement of
Theorem 1, then there exist c3, 1 ≤ c3 < ∞, λ̂ > 0, (both depending only on p, n,
M) and ξ ∈ ∂B(0, 1), independent of u, such that if x ∈ Ω ∩B(w, r/c3), then

(1.12) (i) λ̂−1 u(x)

d(x, ∂Ω)
≤ |∇u(x)| ≤ λ̂

u(x)

d(x, ∂Ω)
, (ii) λ̂−1 u(x)

d(x, ∂Ω)
≤ 〈∇u(x), ξ〉.

If (1.12) (i) holds then we say that |∇u| satisfies a uniform non-degeneracy condition
in Ω ∩ B(w, r/c3) with constants depending only on p, n and M . Moreover, using
this non-degeneracy property of |∇u| it follows, by differentiation of (1.2), that if
ζ = 〈∇u, ξ〉, for some ξ ∈ Rn, |ξ| = 1, then ζ satisfies, at x and in Ω∩B(w, r/(2c3)),
the partial differential equation Lζ = 0, where

(1.13) L =
n∑

i,j=1

∂

∂xi

(
bij(x)

∂

∂xj

)

and

(1.14) bij(x) = |∇u|p−4[(p− 2)uxi
uxj

+ δij|∇u|2](x), 1 ≤ i, j ≤ n.
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In (1.14) δij denotes the Kronecker δ. Furthermore,

(1.15)
(

u(x)

c d(x, ∂Ω)

)p−2

|ξ|2 ≤
n∑

i,j=1

bij(x)ξiξj ≤
(

c u(x)

d(x, ∂Ω)

)p−2

|ξ|2.

To make the connection to the proof of Theorems 1–3 we first note that using (1.12)–
(1.15) and we can use arguments from [LN] and apply classical theorems for elliptic
PDE to get Theorems 1 and 2. The proof of Theorem 3 uses these results and the
blow-up argument mentioned above and in the proof particular attention is paid to
the proof of the refined upper bound for |∇u∞| stated in (1.11).

The rest of the paper is organized as follows. In section 2 we state estimates for
p harmonic functions in Lipschitz domains and we discuss elliptic measure defined
with respect to the operator L defined in (1.13), (1.14). Most of this material is from
[LN] and [LN1]. Section 3 is devoted to the proofs of Theorem 1 and Theorem 2. In
section 4 we prove Theorem 3. In section 5 we discuss future work on free boundary
problems beyond Lipschitz and C1 domains.

Finally, we emphasize that this paper is not self-contained and that it relies
heavily on work in [LN, LN1]. Thus the reader is advised to have these papers at
hand1.

2. Estimates for p harmonic functions in Lipschitz domains

In this section we consider p harmonic functions in a bounded Lipschitz domain
Ω ⊂ Rn having Lipschitz constant M . Recall that ∆(w, r) = ∂Ω∩B(w, r) whenever
w ∈ ∂Ω, 0 < r. Throughout the paper c will denote, unless otherwise stated,
a positive constant ≥ 1, not necessarily the same at each occurrence, which only
depends on p, n and M . In general, c(a1, . . . , an) denotes a positive constant≥ 1, not
necessarily the same at each occurrence, which depends on p, n, M and a1, . . . , an.
If A ≈ B then A/B is bounded from above and below by constants which, unless
otherwise stated, only depend on p, n and M . Moreover, we let max

B(z,s)
u, min

B(z,s)
u be

the essential supremum and infimum of u on B(z, s) whenever B(z, s) ⊂ Rn and u
is defined on B(z, s).

2.1. Basic estimates. For proofs and for references to the proofs of Lemma
2.1–2.5 stated below we refer to [LN].

Lemma 2.1. Given p, 1 < p < ∞, let u be a positive p harmonic function in
B(w, 2r). Then

(i) rp−n

∫

B(w,r/2)

|∇u|p dx ≤ c( max
B(w,r)

u)p,

(ii) max
B(w,r)

u ≤ c min
B(w,r)

u.

1For preprints we refer to www.ms.uky.edu/∼john and www.math.umu.se/personal/nystrom_kaj.



Regularity and free boundary regularity for the p Laplacian in Lipschitz and C1 domains 529

Furthermore, there exists α = α(p, n,M) ∈ (0, 1) such that if x, y ∈ B(w, r) then

(iii) |u(x)− u(y)| ≤ c

(
|x−y|

r

)α

max
B(w,2r)

u.

Lemma 2.2. Let Ω ⊂ Rn be a bounded Lipschitz domain and suppose that p
is given, 1 < p < ∞. Let w ∈ ∂Ω, 0 < r < r0 and suppose that u is a positive p
harmonic function in Ω ∩ B(w, 2r), continuous in Ω̄ ∩ B(w, 2r) and that u = 0 on
∆(w, 2r). Then

(i) rp−n

∫

Ω∩B(w,r/2)

|∇u|p dx ≤ c( max
Ω∩B(w,r)

u)p.

Furthermore, there exists α = α(p, n, M) ∈ (0, 1) such that if x, y ∈ Ω ∩ B(w, r)
then

(ii) |u(x)− u(y)| ≤ c

(
|x−y|

r

)α

max
Ω∩B(w,2r)

u.

Lemma 2.3. Let Ω ⊂ Rn be a bounded Lipschitz domain and suppose that p
is given, 1 < p < ∞. Let w ∈ ∂Ω, 0 < r < r0, and suppose that u is a positive p
harmonic function in Ω ∩ B(w, 2r), continuous in Ω̄ ∩ B(w, 2r) and that u = 0 on
∆(w, 2r). There exists c = c(p, n, M) ≥ 1 such that if r̄ = r/c, then

max
Ω∩B(w,r̄)

u ≤ cu(ar̄(w)).

Lemma 2.4. Let Ω ⊂ Rn be a bounded Lipschitz domain and suppose that
p is given, 1 < p < ∞. Let w ∈ ∂Ω, 0 < r < r0 and suppose that u is a positive
p harmonic function in Ω ∩ B(w, 4r), continuous in Ω̄ ∩ B(w, 4r) and that u = 0
on ∆(w, 4r). Extend u to B(w, 4r) by defining u ≡ 0 on B(w, 4r) \ Ω. Then u
has a representative in W 1,p(B(w, 4r)) with Hölder continuous partial derivatives
in Ω ∩ B(w, 4r). In particular, there exists σ ∈ (0, 1], depending only on p, n such
that if B(w̃, 4r̃) ⊂ Ω ∩B(w, 4r) and x, y ∈ B(w̃, r̃/2), then

c−1|∇u(x)−∇u(y)| ≤ (|x− y|/r̃)σ max
B(w̃,r̃)

|∇u| ≤ cr̃−1(|x− y|/r̃)σ max
B(w̃,2r̃)

u.

Lemma 2.5. Let Ω ⊂ Rn be a bounded Lipschitz domain. Given p, 1 < p < ∞,
w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic function in Ω∩B(w, 2r),
continuous in Ω̄∩B(w, 2r) with u = 0 on ∆(w, 2r). Extend u to B(w, 2r) by defining
u ≡ 0 on B(w, 2r) \ Ω. Then there exists a unique finite positive Borel measure µ
on Rn, with support in ∆(w, 2r), such that

(i)
∫

Rn

|∇u|p−2〈∇u,∇φ〉 dx = −
∫

Rn

φ dµ

whenever φ ∈ C∞
0 (B(w, 2r)). Moreover, there exists c = c(p, n, M) ≥ 1 such that if

r̄ = r/c, then

(ii) c−1r̄p−nµ(∆(w, r̄)) ≤ (u(ar̄(w)))p−1 ≤ cr̄p−nµ(∆(w, r̄)).
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2.2. Refined estimates. In the following we state a number of results and
estimates proved in [LN] and [LN1]. In particular, for the proof of Theorems 2.6–2.8
stated below we refer to [LN] and [LN1] and we note that Theorem 2.8 is referred
to as Lemma 4.28 in [LN1] while Theorem 2.6 and Theorem 2.7 are two of the main
results established in [LN] and [LN1] respectively.

Theorem 2.6. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant
M . Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u and v are
positive p harmonic functions in Ω ∩ B(w, 2r). Assume also that u and v are
continuous in Ω̄ ∩ B(w, 2r), and u = 0 = v on ∆(w, 2r). Under these assumptions
there exists c1, 1 ≤ c1 < ∞, depending only on p, n and M , such that if r̃ = r/c1,
u(ar̃(w)) = v(ar̃(w)) = 1, and y ∈ Ω ∩B(w, r̃), then

u(y)

v(y)
≤ c1.

Theorem 2.7. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u and v are positive p
harmonic functions in Ω ∩ B(w, 2r). Assume also that u and v are continuous in
Ω̄ ∩ B(w, 2r) and u = 0 = v on ∆(w, 2r). Under these assumptions there exist c2,
1 ≤ c2 < ∞, and α ∈ (0, 1), both depending only on p, n and M , such that if
y1, y2 ∈ Ω ∩B(w, r/c2) then

∣∣∣∣log

(
u(y1)

v(y1)

)
− log

(
u(y2)

v(y2)

)∣∣∣∣ ≤ c2

( |y1 − y2|
r

)α

.

Theorem 2.8. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Let w ∈ ∂Ω, 0 < r < r0, and suppose that (1.4) holds with xi, ri, φi replaced by
w, r, φ. Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p
harmonic function in Ω∩B(w, 2r). Assume also that u is continuous in Ω̄∩B(w, 2r)

and u = 0 on ∆(w, 2r). Then there exist c3, 1 ≤ c3 < ∞ and λ̂ > 0, depending only
on p, n and M , such that if y ∈ Ω ∩B(w, r/c3) then

λ̂−1 u(y)

d(y, ∂Ω)
≤ 〈∇u(y), en〉 ≤ |∇u(y)| ≤ λ̂

u(y)

d(y, ∂Ω)
.

We note that Lemmas 2.9–2.12 below are stated and proved, for p capacitary
functions in starlike Lipschitz ring domains, as Lemma 2.5 (iii), Lemma 2.39, Lemma
2.45 and Lemma 2.54 in [LN]. However armed with Theorem 2.8 the proofs of
these lemmas can be extended to the more general situation of positive p harmonic
functions vanishing on a portion of the boundary of a Lipschitz domain. Lemma
2.9 is only stated as it is used in the proof of Lemmas 2.10–2.12 as outlined in [LN],
while Lemmas 2.10-2.12 are used in the proof of Theorems 1–3. We refer to [LN]
for details (see also the discussion after Lemma 2.8 in [LN1]).

Lemma 2.9. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic
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function in Ω ∩ B(w, 2r) and that u is continuous in Ω̄ ∩ B(w, 2r) with u = 0 on
∆(w, 2r). Then there there exists a constant c = c(p, n,M), 1 ≤ c < ∞, such that

max
B(x, s

2
)

n∑
i,j=1

|uyiyj
| ≤ c

(
s−n

∫

B(x,3s/4)

n∑
i,j=1

|uyiyj
|2 dy

)1/2

≤ c2u(x)/d(x, ∂Ω)2

whenever x ∈ Ω ∩B(w, r/c) and 0 < s ≤ d(x, ∂Ω).

Lemma 2.10. Let Ω, M , p, w, r and u be as in the statement of Lemma 2.9.
Let µ be as in Lemma 2.5. Then there exists a constant c = c(p, n, M), 1 ≤ c < ∞,
such that dµ/dσ = kp−1 on ∆(w, 2r/c) and

∫

∆(w,r/c)

kp dσ ≤ cr−
n−1
p−1

( ∫

∆(w,r/c)

kp−1 dσ

)p/(p−1)

.

Recall that a bounded domain Ω ⊂ Rn is said to be starlike Lipschitz, with re-
spect to x̂ ∈ Ω, provided ∂Ω = {x̂+R(ω)ω : ω ∈ ∂B(0, 1)} where log R : ∂B(0, 1) →
R is Lipschitz on ∂B(0, 1). We refer to ‖ log R‖̂∂B(0,1) as the Lipschitz constant for
Ω and we observe that this constant is invariant under scalings about x̂.

Lemma 2.11. Let Ω, M , p, w, r and u be as in the statement of Lemma 2.9.
Then there exist a constant c = c(p, n, M), 1 ≤ c < ∞, and a starlike Lipschitz
domain Ω̃ ⊂ Ω∩B(w, 2r), with center at a point w̃ ∈ Ω∩B(w, r), d(w̃, ∂Ω) ≥ c−1r,
and with Lipschitz constant bounded by c, such that

cσ(∂Ω̃ ∩∆(w, r)) ≥ rn−1.

Moreover, the following inequality is valid for all x ∈ Ω̃,

c−1r−1u(w̃) ≤ |∇u(x)| ≤ cr−1u(w̃).

Lemma 2.12. Let Ω, M , p, w, r and u be as in the statement of Lemma 2.9.
Let Ω̃ be constructed as in Lemma 2.11. Define, for y ∈ Ω̃, the measure

dγ̃(y) = d(y, ∂Ω̃) max
B(y, 1

2
d(y,∂Ω̃))

{|∇u|2p−6

n∑
i,j=1

u2
xixj

} dy.

Then γ̃ is a Carleson measure on Ω̃ and there exists a constant c = c(p, n, M),
1 ≤ c < ∞, such that if z ∈ ∂Ω̃ and 0 < s < r, then

γ̃(Ω̃ ∩B(z, s)) ≤ csn−1(u(w̃)/r)2p−4.

Let u, Ω̃, be as in Lemma 2.12. We end this section by considering the divergence
form operator L defined as in (1.13), (1.14), relative to u, Ω̃. In particular, we state
a number of results for this operator which we will make use of in the following
sections. Arguing as above (1.13) we first observe that

(2.13) L(〈∇u, ξ〉) = 0 weakly in Ω̃
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whenever ξ ∈ ∂B(0, 1). Moreover, using Theorem 2.8, Lemma 2.11, and (1.15) we
see that L is uniformly elliptic in Ω̃. Using this fact it follows from [CFMS] that if
z ∈ ∂Ω̃, 0 < s < r, and if v is a weak solution to L in Ω̃ which vanishes continuously
on ∂Ω̃ ∩ B(z, s), then there exist τ , 0 < τ ≤ 1, and c ≥ 1, both depending only on
p, n, M , such that

(2.14) max
Ω̃∩B(z,t)

v ≤ c (t/s)τ max
Ω̃∩B(z,s)

v, whenever 0 < t ≤ s.

Moreover, using Lemma 2.12 we observe that if

d θ(y) = d(y, ∂Ω̃) max
B(y, 1

2
d(y,∂Ω̃))

{
n∑

i,j=1

|∇bij|2} dy,

where {bij} is the matrix defining L in (1.14), then θ is a Carleson measure on Ω̃
and

θ(Ω̃ ∩B(z, s)) ≤ csn−1(u(w̃)/r)2p−4

whenever z ∈ ∂Ω̃ and 0 < s < r. Let ω̃(·, w̃) be elliptic measure defined with respect
to L, Ω̃, and w̃ (see [CFMS] for the definition of elliptic measure). We note that
the above observation and the main theorem in [KP] imply the following lemma.

Lemma 2.15. Let u, Ω̃, w̃ be as in Lemma 2.12 and let L be defined as in (1.13),
(1.14), relative to u, Ω̃. Then ω̃(·, w̃) and the surface measure on ∂Ω̃ (denoted σ̃)
are mutually absolutely continuous. Moreover, ω̃(·, w̃) is an A∞ weight with respect
to σ̃. Consequently, there exist c ≥ 1 and γ, 0 < γ ≤ 1, depending only on p, n, M,
such that

ω̃(E, w̃)

ω̃(∂Ω̃ ∩B(z, s), w̃)
≤ c

(
σ̃(E)

σ̃(∂Ω̃ ∩B(z, s))

)γ

whenever z ∈ ∂Ω̃, 0 < s < r, and E ⊂ ∂Ω̃ ∩B(z, s) is a Borel set.

For several other equivalent definitions of A∞ weights we refer to [CF] or [GR].

3. Proof of Theorem 1 and Theorem 2

In this section we prove Theorem 1 and Theorem 2. Hence we let Ω ⊂ Rn be a
bounded Lipschitz domain with constant M and for given p, 1 < p < ∞, w ∈ ∂Ω,
0 < r < r0 we suppose that u is a positive p harmonic function in Ω ∩ B(w, 4r),
continuous in Ω̄ ∩ B̄(w, 4r) with u = 0 on ∆(w, 4r).

3.1. Proof of Theorem 1. We first note that we can assume, without loss of
generality, that

(3.1) max
Ω∩B(w,4r)

u = 1.

We extend u to B(w, 4r) by defining u ≡ 0 on B(w, 4r) \ Ω and we let µ be the
measure associated to u as in the statement of Lemma 2.5. Using Lemma 2.10,
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Lemma 2.5 (ii) and the Harnack inequality for p harmonic functions we see that if
y ∈ ∂Ω, s > 0 and B(y, 2cs) ⊂ B(w, 4r), then dµ/dσ = kp−1 on ∆(y, 2s) and

(3.2)
∫

∆(y,s)

kp dσ ≤ cs−
n−1
p−1

( ∫

∆(y,s/2)

kp−1 dσ

)p/(p−1)

.

(3.2) and Lemma 2.5 (ii) imply (see [G], [CF]) that for some q′ > p, depending only
on p, n and M , we have

(3.3)
∫

∆(w,3r)

kq′ dσ ≤ cr−
(n−1)(q′+1−p)

p−1

( ∫

∆(w,3r)

kp−1 dσ

)q′/(p−1)

.

Let y ∈ ∆(w, 2r) and let z ∈ Γ(y)∩B(y, r/(4c3)), where c3 is the constant appearing
in the statement of Theorem 2.8 and Γ(y), for y ∈ ∆(w, 2r), is defined in (1.5). Using
Theorem 2.8, with w replaced by y, s = |z − y| and Lemma 2.5 (ii) we obtain

|∇u(z)| ≤ c
u(z)

s
≤ c2s−1

(
sp−nµ(∆(y, s))

)1/(p−1)

= c2

(
s1−n

∫

∆(y,s)

kp−1dσ

)1/(p−1)

≤ c2(M(kp−1)(y))1/(p−1).
(3.4)

In (3.4),

M(f)(y) = sup
0<s<r/4

s1−n

∫

∆(y,s)

f dσ

whenever f is an integrable function on ∆(w, 3r). Next we define

N1(|∇u|)(y) = sup
Γ(y)∩B(y,r/(4c3))

|∇u| whenever y ∈ ∆(w, 2r).

Using (3.3), (3.4) and the Hardy–Littlewood maximal theorem we see that if q =
(q′ + p)/2 then

∫

∆(w,2r)

N1(|∇u|)qdσ ≤ c

∫

∆(w,2r)

M(kp−1)q/(p−1) dσ

≤ c2r−
(n−1)(q+1−p)

p−1

( ∫

∆(w,2r)

kp−1 dσ

)q/(p−1)

.

(3.5)

Using Lemma 2.4 and (3.1) we also see that |∇u(x)| ≤ cr−1 whenever x ∈ Γ(y) \
B(y, r/(4c3)) and y ∈ ∆(w, 2r). Thus N(|∇u|) ≤ N1(|∇u|) + cr−1 on ∆(w, 2r).
Therefore, using (3.5) as well as Lemma 2.5 (ii) and (3.1) once again we can conclude
that statement (i) of Theorem 1 is true.
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Next we prove by a contradiction argument that ∇u has non tangential limits
for σ almost every y ∈ ∆(w, 4r). To argue by contradiction we suppose

that there exists a set F ⊂ ∆(w, 4r), σ(F ) > 0, such that if y ∈ F

then the limit of ∇u(z), as z → y with z ∈ Γ(y), does not exist.
(3.6)

Assuming (3.6) we let y ∈ F be a point of density for F with respect to σ. Then

t1−nσ(∆(y, t) \ F ) → 0 as t → 0,

so we can conclude that if t > 0 is small enough, then

cσ(∂Ω̃ ∩∆(y, t) ∩ F ) ≥ tn−1

where Ω̃ ⊂ Ω is the starlike Lipschitz domain defined in Lemma 2.11 with w, w̃, r
replaced by y, ỹ, t. Using Lemma 2.11 we also see that |∇u| ≈ C in Ω̃ for some
constant C. Let L be defined as in (1.13), (1.14), relative to u, Ω̃. Then, from
(2.13), (1.15) and the fact |∇u| ≈ C in Ω̃, we have that L is uniformly elliptic
on Ω̃ and Luxk

= 0 weakly in Ω̃. Moreover, since uxk
is bounded on Ω̃ for 1 ≤

k ≤ n, we can therefore conclude, by well known arguments, see [CFMS], that
uxk

has non tangential limits at almost every boundary point of Ω̃ with respect
to elliptic measure, ω̃(·, ỹ), associated with the operator L, the domain Ω̃, and the
point ỹ. Now from Lemma 2.15 we see that ω̃(·, ỹ) and surface measure, σ̃, on
∂Ω̃ are mutually absolutely continuous. Hence uxk

has non tangential limits at σ̃

almost every boundary point. Since non tangential limits in Ω̃ agree with those in
Ω, for σ almost every point in F, we deduce that this latter statement contradicts
the assumption made in (3.6) that σ(F ) > 0. Hence ∇u has non tangential limits
for σ almost every y ∈ ∆(w, 4r).

In the following we let ∇u(y), y ∈ ∆(w, 2r), denote the non tangential limit of
∇u whenever this limit exists. To prove statement (ii) of Theorem 1 we argue as
follows. Let y ∈ ∆(w, 2r) and put r̃ = r/(4c3) where c3 is the constant appearing
in the statement of Theorem 2.8. Using Theorem 2.8 we note, to start with, that
B(y, 2r̃)∩ {u = t}, for 0 < t sufficiently small, can be represented as the graph of a
Lipschitz function with Lipschitz constant bounded by c = c(p, n, M), 1 ≤ c < ∞.
In particular, c can be chosen independently of t. In fact we can conclude, see
[LN, Lemma 2.4] for the proof, that u is infinitely differentiable and hence that
B(y, 2r̃) ∩ {u = t} is a C∞ surface. Let dµt = |∇u|p−1 dσt where σt is surface
measure on B(y, 2r̃) ∩ {u = t}. Using the definition of µ it is easily seen that µt

converges weakly to µ as defined in Lemma 2.5 on B(y, 2r̃) ∩ Ω. Using the implicit
function theorem, we can express dσt and also dµt locally as measures on Rn−1.
Doing this, using non tangential convergence of ∇u, Theorem 1 (i), and dominated
convergence we see first that

(3.7) k(y) = |∇u|(y) and dµ = |∇u|p−1 dσ.

Then, using (3.7), (3.3), Lemma 2.5 (ii) and the Harnack inequality for p harmonic
functions it follows that Theorem 1 (ii) holds. Finally, Theorem 1 (iii) follows from



Regularity and free boundary regularity for the p Laplacian in Lipschitz and C1 domains 535

Theorem 1 (ii) by standard arguments, see [CF]. The proof of Theorem 1 is therefore
complete. ¤

3.2. Proof of Theorem 2. Let Ω, M , p, w, r and u be as in the statement
of Theorem 1. We prove that there exist 0 < ε0 and r̃ = r̃(ε), for ε ∈ (0, ε0), such
that whenever y ∈ ∆(w, r) and 0 < s < r̃(ε) then

(3.8)
∫

∆(y,s)

− |∇u|p dσ ≤ (1 + ε)

( ∫

∆(y,s)

− |∇u|p−1 dσ

)p/(p−1)

.

Here ∫

E

− f dσ = (σ(E))−1

∫

E

f dσ

whenever E ⊂ ∂Ω is Borel measurable with finite positive σ measure and f is a σ
integrable function on E. Theorem 2 then follows, once (3.8) is established, from a
lemma of Sarason, see [KT]. To prove (3.8) we argue by contradiction. Indeed, if
(3.8) is false then

there exist two sequences {ym}∞1 , {sm}∞1 satisfying ym ∈ ∆(w, r)

and sm → 0 as m →∞ such that (3.8) is false with
y, s replaced by ym, sm for m ∈ Z+ = {1, 2, . . . }.

(3.9)

To continue we first note that using the assumption that Ω is C1 regular it follows
that ∆(w, 2r) is Reifenberg flat with vanishing constant. That is, for given ε̂ > 0,
small, there exists a r̂ = r̂(ε̂) < 10−6r, such that whenever y ∈ ∆(w, 2r) and
0 < s ≤ r̂, then

{z + tn ∈ B(y, s), z ∈ P, t > ε̂s} ⊂ Ω,

{z − tn ∈ B(y, s), z ∈ P, t > ε̂s} ⊂ Rn \ Ω̄.
(3.10)

In (3.10) P = P (y, s) is the tangent plane to ∆(w, 2r) relative to y, s, and n = n(y)
is the inner unit normal to ∂Ω at y ∈ ∆(w, 2r). We let, for each m ∈ Z+, P (ym) =
P (ym, sm) denote the tangent plane to ∆(w, 2r) relative to ym, sm where ym, sm are
as in (3.9).

In the following we let A = e1/ε and note that if we choose ε0, and hence ε,
sufficiently small then A is large. Moreover, for fixed A > 106 we choose ε̂ = ε̂(A) >
0 in (3.10) so small that if y′m = ym + Asmn(ym), then the domain Ω(y′m), obtained
by drawing all line segments from points in B(y′m, Asm/4) to points in ∆(ym, Asm),
is starlike Lipschitz with respect to y′m. We assume, as we may, that sm ≤ r̂(ε̂) for
m ∈ Z+ and we put Dm = Ω(y′m) \ B̄(y′m, Asm/8). From C1 regularity of Ω we also
see that Dm, for m ∈ Z+, has Lipschitz constant ≤ c where c is an absolute constant.
To continue we let um be the p capacitary function for Dm and we put um ≡ 0 on
Rn \ Ω̄(y′m). From Theorem 2.7 with w, r, u1, u2 replaced by ym, Asm/100, u, um
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we deduce that if w1, w2 ∈ Ω ∩B(ym, 2sm), then

(3.11)
∣∣∣∣log

(
um(w1)

u(w1)

)
− log

(
um(w2)

u(w2)

)∣∣∣∣ ≤ cA−α

whenever m is large enough. The constants c, α in (3.11) are the constants in
Theorem 2.7 and these constants are independent of m. If we let w1, w2 → z1, z2 ∈
∆(ym, 2sm) in (3.11) and use Theorem 1, we get, for σ almost all z1, z2 ∈ ∆(ym, 2sm),
that

(3.12)
∣∣∣∣log

( |∇um(z1)|
|∇u(z1)|

)
− log

( |∇um(z2)|
|∇u(z2)|

)∣∣∣∣ ≤ cA−α.

Therefore, taking exponentials in the inequality in (3.12) we see that, for A large
enough,

(3.13) (1− c̃A−α)
|∇um(z1)|
|∇um(z2)| ≤

|∇u(z1)|
|∇u(z2)| ≤ (1 + c̃A−α)

|∇um(z1)|
|∇um(z2)| ,

whenever z1, z2 ∈ ∆(ym, 2sm) and where c̃ depends only on p, n, and the Lipschitz
constant for Ω. Using (3.13) we first obtain that

(3.14)

−
∫

∆(ym,sm)

|∇um|p dσ

(
−
∫

∆(ym,sm)

|∇um|p−1 dσ

)p/(p−1)
≥ (1− cA−α)

−
∫

∆(ym,sm)

|∇u|p dσ

(
−
∫

∆(ym,sm)

|∇u|p−1 dσ

)p/(p−1)
.

Secondly, using the assumption that (3.8) is false and (3.9), we from (3.14) obtain
that

(3.15)

−
∫

∆(ym,sm)

|∇um|p dσ

(
−
∫

∆(ym,sm)

|∇um|p−1 dσ

)p/(p−1)
≥ (1− cA−α)(1 + ε).

Next for m ∈ Z+, let Tm be a conformal affine mapping of Rn which maps the
origin and en onto ym and y′m respectively and which maps W = {x ∈ Rn : xn = 0}
onto P (ym). Tm is the composition of a translation, rotation, dilation. Let D′

m, u′m
be such that Tm(D′

m) = Dm and um(Tmx) = u′m(x) whenever x ∈ D′
m. Since the

p Laplace equation is invariant under translations, rotations, and dilations, we see
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that u′m is the p capacitary function for D′
m. Also, as

−
∫

∂D′m∩B(0,1/A)

|∇u′m|p dσ′m

(
−
∫

∂D′m∩B(0,1/A)

|∇u′m|p−1 dσ′m

)p/(p−1)
=

−
∫

∆(ym,sm)

|∇um|p dσ

(
−
∫

∆(ym,sm)

|∇um|p−1 dσ

)p/(p−1)
,

where σ′m is the surface measure on ∂D′
m, we see, using (3.15), that

(3.16)

−
∫

∂D′m∩B(0,1/A)

|∇u′m|p dσ′m

(
−
∫

∂D′m∩B(0,1/A)

|∇u′m|p−1 dσ′m

)p/(p−1)
≥ (1− cA−α)(1 + ε).

Letting m →∞ we see from Lemmas 2.1, 2.2 and 2.3 that u′m converges uniformly
on Rn to u′ where u′ is the p capacitary function for the starlike Lipschitz ring
domain, D′ = Ω′ \B(en, 1/8). Also Ω′ is obtained by drawing all line segments con-
necting points in B(0, 1)∩W to points in B(en, 1/4). We can now repeat, essentially
verbatim, the argument in [LN, Lemma 5.28, (5.29)–(5.41)], to conclude that

(3.17) lim sup
m→∞

−
∫

∂D′m∩B(0,1/A)

|∇u′m|p dσ′m

(
−
∫

∂D′m∩B(0,1/A)

|∇u′m|p−1 dσ′m

)p/(p−1)
≤

−
∫

W∩B(0,1/A)

|∇u′|p dx′

(
−
∫

W∩B(0,1/A)

|∇u′|p−1 dx′
)p/(p−1)

.

Here dx′ denotes surface measure on W. To complete the argument we show that
(3.17) leads to a contradiction to our original assumption. Note that it follows from
Schwarz reflection that u′ has a p harmonic extension to B(0, 1/8) with u′ ≡ 0 on
W ∩B(0, 1/8). From barrier estimates we have c−1 ≤ |∇u′| ≤ c on B(0, 1/16) where
c depends only on p, n, and from Lemma 2.4 we find that |∇u′| is Hölder continuous
with exponent θ = θ(p, n) on W ∩ B̄(0, 1/16). In fact in this case we could take
θ = 1. Therefore, using these facts we first conclude that, for some c,

(1− cA−θ)|∇u′(0)| ≤ |∇u′(z)| ≤ (1 + cA−θ)|∇u′(0)|
whenever z ∈ B(0, 1/A) and then from (3.16), (3.17) that

(1 + cA−θ) ≥

−
∫

W∩B(0,1/A)

|∇u′|p dx′

(
−
∫

W∩B(0,1/A)

|∇u′|p−1 dx′
)p/(p−1)

≥ (1− cA−α)(1 + ε).
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As A = e1/ε the last inequality clearly can not hold if we choose ε0, and hence ε,
sufficiently small. From this contradiction we conclude that our original assumption
was false, i.e., (3.9) can not hold. Hence (3.8) holds. This completes the proof of
Theorem 2. ¤

4. Proof of Theorem 3

In this section we prove Theorem 3. Our argument is similar to the argument
in [KT2], in that we argue by way of contradiction to get a sequence of blow-ups
as in (1.8)–(1.10). We then use a theorem of [ACF] to show that a subsequence of
this sequence converges to a linear function which turns out to be a contradiction.
However, our argument is less voluminous and seems simpler to us than the one in
[KT2]. The following lemma plays a key role in our blow-up argument.

4.1. A refined version of Lemma 2.11.

Lemma 4.1. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p harmonic
function in Ω ∩ B(w, 2r), u is continuous in Ω̄ ∩ B(w, 2r) and u = 0 on ∆(w, 2r).
Suppose also that log |∇u| ∈ V MO(∆(w, r)). Given ε > 0 there exist r̃ = r̃(ε),
0 < r̃ < r, and c = c(p, n, M), 1 ≤ c < ∞, such that the following is true whenever
0 < r′ ≤ r̃. There exists a starlike Lipschitz domain Ω̃ ⊂ Ω∩B(w, cr′) ⊂ Ω∩B(w, r),
with center at a point ŵ ∈ Ω∩B(w, cr′), d(ŵ, ∂Ω) ≥ r′, and with Lipschitz constant
bounded by c, such that

(a)
σ(∂Ω̃ ∩∆(w, r′))

σ(∆(w, r′))
≥ 1− ε,

(b) (1− ε)bp−1 ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + ε)bp−1 whenever 0 < s < r′, y ∈ ∂Ω̃ ∩∆(w, r′).

Here µ is the measure associated with u as in Lemma 2.5 and log b is the average
of log |∇u| on ∆(w, 4r′). Moreover, for all x ∈ Ω̃

c−1u(ŵ)

r′
≤ |∇u(x)| ≤ c

u(ŵ)

r′
.

Proof. In the following we let ε̃ > 0 and r∗(ε̃) ¿ r be small positive num-
bers. For the moment we allow ε̃ and r∗ to vary but we shall later fix these
numbers to satisfy several conditions depending on ε. Using the assumption that
log |∇u| ∈ V MO(∆(w, r)) we see there exists r̂, 0 < r̂ ≤ r∗, such that log |∇u| ∈
BMO(∆(w, 8r̂)) with BMO norm less than or equal to ε̃3. Let A denote the average
of f = log |∇u| with respect to surface measure over ∆(w, 4r̂). Using the definition
of BMO, see (1.7), we have

(4.2)
ε̃ σ({x ∈ ∆(w, 4r̂) : |f(x)− A| > ε̃})

σ(∆(w, 4r̂))
≤ (σ(∆(w, 4r̂))−1

∫

∆(w,4r̂)

|f−A| dσ ≤ cε̃3.
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If b = eA, then from (4.2) we see
that there exists a set E ⊂ ∆(w, 4r̂) such that (1− cε̃)b ≤ |∇u| ≤ (1 + cε̃)b

on E and if F = ∆(w, 4r̂) \ E then σ(F ) ≤ cε̃2 σ(∆(w, 4r̂)).
(4.3)

In (4.3), c is a universal constant. We introduce, for σ integrable functions h defined
on ∆(w, 5r̂) and for x ∈ ∆(w, 4r̂), the maximal function

M(h)(x) = sup
0<s<r̂

1

σ(∆(x, s))

∫

∆(x,s)

h dσ.

Let G = {x ∈ ∆(w, 4r̂) : M(χF )(x) ≤ ε̃} where χF is the indicator functions for the
set F introduced in (4.3) and define K = ∆(w, 4r̂) \G. Using weak type estimates
for the maximal function, see [S], it then follows that

σ(K) ≤ cε̃σ(∆(w, 4r̂)).(4.4)

Let y ∈ G ∩∆(w, r̂), 0 < s ≤ r̂. Then from Lemma 2.10, Theorem 1 and (3.7) we
deduce

µ(∆(y, s)) =

∫

∆(y,s)

|∇u|p−1 dσ =

∫

E∩∆(y,s)

|∇u|p−1 dσ +

∫

F∩∆(y,s)

|∇u|p−1 dσ

= T1 + T2.

(4.5)

From the definitions of the sets E, F , G, we see that

(4.6) (1− cε̃) bp−1σ(∆(y, s)) ≤ T1 ≤ (1 + cε̃) bp−1σ(∆(y, s)),

for some c = c(p, n, M), provided ε̃ is sufficiently small. Also from Hölder’s inequal-
ity,

(4.7) (σ(∆(y, s)))−1T2 ≤
(

1

σ(∆(y, s))

∫

∆(y,s)

|∇u|p dσ

)(p−1)/p(
σ(F ∩∆(y, s))

σ(∆(y, s))

)1/p

.

Using y ∈ G and the reverse Hölder inequality for |∇u| in Theorem 1 we get from
(4.7) that

(4.8) T2 ≤ cε̃1/pµ(∆(y, s)).

Using (4.6) and (4.8) in (4.5), we obtain that

(4.9) (1− c ε̃1/p)bp−1 ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + cε̃1/p)bp−1.

To construct Ω̃ we assume, as we may, that
Ω ∩B(w, 4r) = {(x′, xn) : xn > φ(x′)} ∩B(w, 4r),

∂Ω ∩B(w, 4r) = {(x′, xn) : xn = φ(x′)} ∩B(w, 4r),
(4.10)

where φ : Rn−1 → R is Lipschitz with ‖|∇φ|‖∞ ≤ M. Let r′ = r̂/c and ŵ = w+1
4
r̂ en.

Let Ω̃ be the domain obtained from drawing all open line segments from points in
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B(ŵ, r′) to points in ∆(w, r′)∩G. If c is large enough and r̃ small enough, it follows
from Lipschitzness of Ω and elementary geometry that Ω̃ ⊂ Ω is a starlike Lipschitz
domain with center at ŵ and Lipschitz constant M̃ = M̃(M). Now from (4.9) we
see that if ε̃ = (ε/c)p and r̃(ε) = r∗(ε̃), then (b) of Lemma 4.1 is valid. Also, (a) is
an obvious consequence of (4.4) as r′ = r̂/c.

To prove the last display in Lemma 4.1 we first note from Theorem 2.8 that

(4.11) c−1 u(x)

d(x, ∂Ω)
≤ |∇u(x)| ≤ c

u(x)

d(x, ∂Ω)

whenever x ∈ Ω ∩B(w, r/c). Second we note that if x ∈ Ω̃, there exists y ∈ G with
d(x, ∂Ω) ≈ |x − y|. If s = |x − y|, then from (4.11), the definition of the set G,
Lemma 4.1 (b), Harnack’s inequality, and Lemma 2.5 we find that

(4.12) bp−1 ≈ µ(∆(y, s))

σ(∆(y, s))
≈

(
u(x)

d(x, ∂Ω)

)p−1

≈ |∇u(x)|p−1.

From (4.12) and the fact that ŵ ∈ Ω̃ we obtain the last display in Lemma 4.1. The
proof of Lemma 4.1 is now complete. ¤

4.2. The blow-up argument. To begin the blow-up argument in the proof
of Theorem 3 we first let

D(F1, F2) = max (sup{d(x, F2) : x ∈ F1}, sup{d(y, F1) : y ∈ F2})
be the Hausdorff distance between the sets F1, F2 ⊂ Rn. Second, recall from section 1
that to prove Theorem 3 it suffices to obtain a contradiction to the assumption that

(4.13) η = lim
r̃→0

sup
w̃∈∆(w,r/2)

‖n‖BMO(∆(w̃,r̃)) 6= 0

where n is the outer unit normal to Ω. Moreover if (4.13) is false then there exist
sequences, see the discussion after (1.8), {wj}, wj ∈ ∆(w, r/2), and {rj}, rj → 0,
such that

(4.14) η = lim
j→∞

(
1

σ(∆(wj, rj))

∫

∆(wj ,rj)

|n− n∆(wj ,rj)|2 dσ

)1/2

where n∆(wj ,rj) denotes the average of n on ∆(wj, rj) with respect to σ. Let Ω ∩
B(w, 4r) be as in (4.10) and let u be as in Theorem 3. Extend u to B(w, 4r) by
putting u = 0 in B(w, 4r) \ Ω. Let Tj(z) = wj + rjz and as in (1.9) we put, for
j = 1, 2, . . .,

Ωj = T−1
j (Ω ∩B(w, 4r)) = {r−1

j (x− wj) : x ∈ Ω ∩B(w, 4r)},
uj(z) = λj u(Tj(z)) whenever z ∈ T−1

j (B(w, 4r)).
(4.15)

The sequence {λj} used in (4.15) will be defined in (4.21) below. From translation
and dilation invariance of the p Laplace equation we see that uj is p harmonic in Ωj



Regularity and free boundary regularity for the p Laplacian in Lipschitz and C1 domains 541

and continuous in T−1
j (B(w, 4r)) with uj ≡ 0 in T−1

j (B(w, 4r) \ Ω). Also we note,
for j = 1, 2, . . . , that

Ωj = {(y′, yn) : yn > ψj(y
′)} ∩ T−1

j (B(w, 4r)),

∂Ωj = {(y′, yn) : yn = ψj(y
′)} ∩ T−1

j (B(w, 4r)),
(4.16)

where if wj = (w′
j, (wj)n), then

(4.17) ψj(y
′) = r−1

j [φ(rjy
′ + w′

j)− (wj)n] whenever y′ ∈ Rn−1.

Clearly, ψj is Lipschitz with

(4.18) ψj(0) = 0 and ‖|∇ψj|‖∞ = ‖|∇φ|‖∞ ≤ M for j = 1, 2, . . . .

Let µ, µj be the measures associated with u, uj as in Lemma 2.5 and let σ, σj be the
surface measures on ∂Ω and ∂Ωj respectively. From (4.16)–(4.18) and the definition
of uj, we see that if Hj is a Borel subset of ∂Ωj, then

(4.19) σj(Hj) = r1−n
j σ(Tj(Hj)), µj(Hj) = λp−1

j rp−n
j µ(Tj(Hj)).

We assume as we may that 2jrj→0 as j→∞. We now apply Lemma 4.1 to u

with w, r′ replaced by wj, 2jrj and with ε = 2−2j2
. Then for j large enough there

exists a starlike Lipschitz domain Ω̃ = Ω̃(j) ⊂ Ω ∩ B(wj, c2
jrj), with Lipschitz

constant M̃ = M̃(M) and center at ŵj, such that d(ŵj, ∂Ω) ≈ 2jrj and such that

(a’)
σ(∂Ω̃ ∩∆(wj, 2

jrj))

σ(∆(wj, 2jrj))
≥ 1− 2−2j2

,

(b’) (1− 2−2j2

)bp−1
j ≤ µ(∆(y, s))

σ(∆(y, s))
≤ (1 + 2−2j2

)bp−1
j whenever 0 < s < 2jrj

and y ∈ ∂Ω̃ ∩∆(w, 2jrj),

(c’) c−1u(ŵj)

2jrj

≤ |∇u(x)| ≤ c
u(ŵj)

2jrj

whenever x ∈ Ω̃.

(4.20)

In (4.20) (b’), log bj denotes the average of log |∇u| on ∆(wj, 2
j+2rj) with respect

to σ. From (4.15), (4.19) and (4.20) we see that if

(4.21) λj = (rjbj)
−1, Oj = T−1

j (Ω̃(j)), ζj = T−1
j (ŵj),

then Oj ⊂ Ωj∩B(0, c2j) is a starlike Lipschitz domain with center at ζj and Lipschitz
constant M̃ = M̃(M). Moreover, d(ζj, ∂Ωj) ≈ 2j and

(α)
σj(∂Oj ∩ ∂Ωj ∩B(0, 2j))

σj(∂Ωj ∩B(0, 2j))
≥ 1− 2−2j2

,

(β) (1− 2−2j2

) ≤ µj(∂Ωj ∩B(z, s))

σj(∂Ωj ∩B(z, s))
≤ (1 + 2−2j2

) whenever 0 < s < 2j

and z ∈ ∂Oj ∩ ∂Ωj,

(γ) c−1 ≤ |∇uj(x)| ≤ c whenever x ∈ Oj.

(4.22)
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In fact, (4.22) (α), (β) are straightforward consequences of (4.20) (a’), (b’) and
(4.21). (4.22) (γ) follows from (4.20) (c’), (4.22) (β), and the fact that by Lemma 2.5,

µj(∂Ωj ∩B(0, 2j))

σj(∂Ωj ∩B(0, 2j))
≈

(
uj(ζj)

2j

)p−1

.

Let σ̂j denote the surface measure on ∂Oj. We next show that the following holds
for j large enough,

(α̂) σ̂j

(
(∂Oj \ ∂Ωj) ∩B(0, 2j/2)

) ≤ c2−j2

,

(β̂) D(∂Ωj ∩B(0, 2j/2), ∂Oj ∩B(0, 2j/2)) ≤ c2−j2/(n−1).
(4.23)

To prove (4.23) we observe from (4.22) (α) that for large j,

(4.24) d(x, ∂Oj) ≤ 2−3j2/(2(n−1)) whenever x ∈ ∂Ωj ∩B(0, 2j/2).

In fact, if the statement in (4.24) is false then there exists x ∈ ∂Ωj ∩B(0, 2j/2) such
that B(x, 2−3j2/(2(n−1))) ∩ ∂Oj = ∅ and such that

σj(∂Oj ∩ ∂Ωj ∩B(0, 2j))

σj(∂Ωj ∩B(0, 2j))
≤

(
1− c2−(j(n−1)+3j2/2)

)
.

As 1 − c2−(j(n−1)+3j2/2) < 1 − 2−2j2 if j is large enough the statement in the last
display contradicts (4.22) (α) and hence (4.24) must hold. Moreover, if x ∈ (∂Oj \
∂Ωj) ∩ B(0, 2j/2), then we can project x onto x∗ ∈ ∂Ωj by way of radial projection
from ζj. From the construction of Oj and (4.22) (α) we again see for large j that

d(x, ∂Ωj) ≈ d(x∗, ∂Oj ∩ ∂Ωj) ≤ 2−3j2/(2(n−1)).

Thus using the inequality in the last display and (4.24) we see that (4.23) (β̂) is
true. (4.23) (α̂) also follows from this inequality and a covering argument.

From (4.18) and a standard compactness argument we see there exists a subse-
quence {ψ′j} of {ψj} with ψ′j → φ∞ uniformly on compact subsets of Rn−1 where
φ∞ is Lipschitz and

(∗) ‖|∇φ∞|‖∞ ≤ M and φ∞(0) = 0,

(∗∗)
∫

Rn−1

∂ψ′j
∂xi

f dx′→
∫

Rn−1

∂φ∞
∂xi

f dx′ as j→∞ for 1 ≤ i ≤ n

and f ∈ C∞
0 (Rn−1).

(4.25)

Let Ω′
j = {x ∈ Rn : xn > ψ′j(x

′)}, Ω∞ = {x ∈ Rn : xn > φ∞(x′)}, and let n′j, σ
′
j and

n∞, σ∞ denote, respectively, the outer unit normal and the surface measure to ∂Ω′
j

and ∂Ω∞. From (4.25) we find that
(+) D(∂Ω′

j ∩B(0, R), ∂Ω∞ ∩B(0, R)) → 0 as j →∞ for each R > 0,

(++)

∫
〈nj, F 〉 dσ′j→

∫
〈n, F 〉 dσ∞ as j→∞ whenever F = (F1, . . . , Fn)

with Fi ∈ C∞
0 (Rn) for 1 ≤ i ≤ n.

(4.26)
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In the last inequality we have used the fact that if y = (y′, ψ′j(y
′)) ∈ ∂Ω′

j ∩B(0, 2j),
then

n′j(y) dσ′j(y) = (∇ψj(y
′),−1).

(4.26) (++) and measure theoretic type arguments imply

(4.27)
∫

∂Ω∞

f dσ∞ ≤ lim inf
j→∞

∫

∂Ω′j

f dσ′j whenever f ≥ 0 ∈ C∞
0 (Rn).

Let {u′j}, {µ′j} be subsequences of {uj}, {µj}, corresponding to (Ω′
j). Then from

Lemmas 2.1–2.5 applied to u′j and (4.22) (β) we deduce that u′j is bounded, Hölder
continuous, and locally in W 1,p on compact subsets of Rn with norms of all functions
bounded above by constants which are independent of j. Also, if B(x, 2ρ) ⊂ Ω∞,

then for large j we see from (4.23)(β̂) and Lemma 2.4 that ∇u′j is Hölder continuous
and bounded on B(x, ρ) with constants independent of j. Thus we assume, as we
may, that {u′j} converges uniformly and weakly in W 1,p on compact subsets of Rn to
u∞ and that {∇u′j} converges uniformly to ∇u∞ on compact subsets of Ω∞. Also,
u∞ ≥ 0 is p harmonic in Ω∞ and continuous on Rn, with u∞ ≡ 0 on Rn \ Ω∞.
Furthermore, if µ∞ denotes the measure associated with u∞ as in Lemma 2.5 and
f ∈ C∞

0 (Rn), then

−
∫

Rn

f dµ∞ =

∫

Rn

|∇u∞|p−2〈∇u∞,∇f〉 dx

= lim
j→∞

∫

Rn

|∇u′j|p−2〈∇u′j,∇f〉 dx = − lim
j→∞

∫

Rn

f dµ′j.
(4.28)

Thus {µ′j} converges weakly to µ∞.
Next we show that

(4.29) σ∞ ≤ µ∞.

To do this we first observe from Theorem 1 and (3.7) that dµ′j = |∇u′j|p−1 dσ′j on
∂Ω′

j. Using this inequality, (4.22) (β), and differentiation theory we see that

(4.30) 1− 2−2j2 ≤ |∇u′j| ≤ 1 + 2−2j2

σ′j almost everywhere on ∂Ω′
j ∩ ∂O′

j ∩ B(0, 2j), where {O′
j} is the subsequence of

{Oj} corresponding to {Ω′
j}. Let f ∈ C∞

0 (Rn) and f ≥ 0. From (4.28), (4.27),
(4.30), and (4.22) (α) we find that∫

f dµ∞ = lim
j→∞

∫

∂Ω′j

f |∇u′j|p−1 dσ′j ≥ lim inf
j→∞

∫

∂O′j∩∂Ω′j

f |∇u′j|p−1 dσ′j

≥ lim inf
j→∞

(1− 2−2j)

∫

∂O′j∩∂Ω′j

f dσ′j = lim inf
j→∞

∫

∂O′j∩∂Ω′j

f dσ′j ≥
∫

f dσ∞.
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Thus (4.29) is true. We claim that

(4.31) c−1 ≤ |∇u∞| ≤ 1 on Ω∞.

We note that once (4.31) is proved we get from Theorem 1 and (3.7) that

dµ∞ = |∇u∞|p−1 dσ∞ ≤ dσ∞.

From this inequality and (4.29) we conclude

(4.32) σ∞ = µ∞.

To prove (4.31) let x ∈ Ω∞ and suppose that j is so large that |x| ≤ 2j/4 and
d(x, ∂O′

j) ≥ 1
2
d(x, ∂Ω∞). The last assumption is permissible as we see from (4.23)

and (4.26) (+). Let ξ ∈ ∂B(0, 1) and for fixed j we set v = 〈∇u′j, ξ〉. Let ω′j(·, x)
denote elliptic measure at x ∈ O′

j with respect to the operator L in (1.13), where u
in (1.14) is replaced by u′j. From (1.15) and (4.22) (γ) we see that

(4.33) |v| ≤ c and Lv ≡ 0 weakly in O′
j.

Let σ̂′j be surface measure on ∂O′
j. Using Lemma 2.15 and Harnack’s inequality

for the operator L we see that σ̂′j and ω′j(x, ·) are mutually absolutely continuous.
Hence, arguing as in [CFMS] we get that v has non-tangential limits σ̂′j almost
everywhere on ∂O′

j. Moreover, v can be interpreted as the ‘Poisson integral’ of its
boundary values. Using these facts, (4.33), (4.22) (α) and the maximum principle
for the operator L, we deduce that

(4.34) |v(x)| ≤ (1 + 2−2j2

)T1(x) + c(T2(x) + T3(x))

where

T1(x) = ω′j(∂O′
j ∩ ∂Ω′

j ∩B(0, 2j/2), x)

T2(x) = ω′j((∂O′
j \ ∂Ω′

j) ∩B(0, 2j/2), x)

T3(x) = ω′j(∂O′
j \B(0, 2j/2), x).

Next we estimate T1(x), T2(x) and T3(x) for |x| ≤ 2j/4. In particular, using (2.14)
we see that if |x| ≤ 2j/4 then

(4.35) T3(x) ≤ c2−jτ/4

where c ≥ 1, 0 < τ ≤ 1, depend only on p, n, M. Also from Lemma 2.15 and (4.23)
(α̂) we obtain

(4.36) T2(ζ
′
j) ≤ c

(
σ′j((∂O′

j \ ∂Ω′
j) ∩B(0, 2j/2))

σ′j(∂O′
j ∩B(0, 2j/2))

)γ

≤ c2−γj2/2

for j large enough. Here ζ ′j is the center of O′
j. Moreover, using Harnack’s inequality

for the operator L and the fact that d(ζ ′j, ∂O′
j) ≈ 2j we see there exist c ≥ 1 and

κ ≥ 1, depending only on p, n, M , such that

T2(x) ≤ cT2(ζ
′
j) (2j/d(x, ∂Ω∞))κ
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provided j is large enough. In view of this inequality and (4.36) we can conclude
that

(4.37) T2(x) ≤ 2−γj2/4 d(x, ∂Ω∞)−κ

for large j. Using (4.34), the fact that T1 ≤ 1, (4.37) as well as (4.35) we find, by
taking limits, that

|〈∇u∞, ξ〉|(x) = lim
j→∞

|〈∇u′j, ξ〉|(x) ≤ 1.

Since x ∈ Ω∞ and ξ ∈ ∂B(0, 1) are arbitrary, we conclude that the righthand
inequality in (4.31) is true. The lefthand inequality in (4.31) follows from (4.22) (γ)
and the fact that {∇u′j} converges to ∇u∞ uniformly on compact subsets of Ω∞.

4.3. The final proof. For those well versed in [ACF] we can now rapidly
obtain a contradiction to (4.14) and thus prove Theorem 3. Indeed from (4.31),
(4.32), (4.25) (∗), and [ACF] it follows, for M̂ small enough, that if M ≤ M̂ then

(4.38) u∞ = 〈x, ν〉 and Ω∞ = {x ∈ Rn : 〈x, ν〉} > 0 for some ν ∈ ∂B(0, 1).

Using (4.38) and (4.26) (++) we see that

(4.39) lim
j→∞

∫

∂Ω′j∩B(0,1)

〈n′j, ν〉 dσ′j = −σ∞(∂Ω∞ ∩B(0, 1)).

Also from (4.31), (4.22), and the fact that dσ∞ = dµ∞, see (4.32), we obtain for
f ≥ 0 and f ∈ C∞

0 (Rn), as in the argument leading to (4.29),
∫

f dσ∞ = lim
j→∞

∫

∂Ω′j

f |∇u′j|p−1 dσ′j ≥ lim sup
j→∞

∫

∂O′j∩∂Ω′j

f |∇u′j|p−1 dσ′j

≥ lim sup
j→∞

(1− 2−2j2

)

∫

∂O′j∩∂Ω′j

f dσ′j = lim sup
j→∞

∫

∂Ω′j

f dσ′j.
(4.40)

Combining (4.40) and (4.27) we see that

(4.41) σ′j → σ∞ weakly as j →∞.

Finally, let a′j denote the average of n′j on ∂Ω′
j∩B(0, 1) with respect to σ′j. From

(4.41) and (4.26) (++) we deduce that aj→− ν as j→∞. Using this fact, (4.41),
(4.39), the fact that (4.14) is scale invariant, and the triangle inequality, we get

0 < η = lim
j→∞

(
1

σ′j(∂Ω′
j ∩B(0, 1))

∫

∂Ω′j∩B(0,1)

|n′j − a′j|2dσ′j

)1/2

≤ lim sup
j→∞

(
1

σ′j(∂Ω′
j ∩B(0, 1))

∫

∂Ω′j∩B(0,1)

|n′j + ν|2dσ′j

)1/2

+ lim
j→∞

|aj + ν|(4.42)
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= lim sup
j→∞

(
1

σ′j(∂Ω′
j ∩B(0, 1))

∫

∂Ω′j∩B(0,1)

2(1 + 〈n′j, ν〉) dσ′j

)1/2

= 0.

We have therefore reached a contradiction and thus Theorem 3 is true. ¤
For the reader not so well versed in [ACF] we outline the proof of (4.38). First

we remark that from (4.31) it follows (see [LN, Lemma 2.4]) that u∞ is infinitely
differentiable in Ω∞. Using this fact and (4.31) once again it is easily checked that
the argument in sections 5 and 6 of [ACF] applies to u∞. To briefly outline these
sections in our situation we need a definition.

Definition 4.43. Let 0 ≤ σ+, σ− ≤ 1, ξ ∈ ∂B(0, 1) and λ ∈ (0, 1]. For fixed
p, 1 < p < ∞, we say that u belongs to the class F (σ+, σ−, R, ξ, λ), 0 < R, if the
following conditions are fulfilled,

(i) u(x) ≥ 〈x, ξ〉 − σ+R whenever x ∈ B(0, R) and 〈x, ξ〉 ≥ σ+R,

(ii) u(x) = 0 whenever x ∈ B(0, R) and 〈x, ξ〉 ≤ σ−R,

(iii) λ ≤ |∇u(x)| ≤ 1 whenever x ∈ Ω∞ ∩B(0, R),

(iv) u ≥ 0 is p harmonic in {u > 0} ∩ B(0, R) and continuous in B(0, R).

From (4.31), (4.32), one can deduce, as in the proof Theorem 5.1 and Lemma
5.6 in [ACF] (see also Lemma 7.2 and Lemma 7.9 in [AC]), that the following two
lemmas hold.

Lemma 4.44. There exist constants 0 < σ1 and 0 < c1 such that if 0 < σ ≤ σ1

and if u∞ ∈ F (1, σ, R, ξ, λ) then u∞ ∈ F (c1σ, 2σ,R/2, ξ, λ).

Lemma 4.45. Given θ ∈ (0, 1) there exist constants 0 < σ2 = σ2(θ) and
β = β(θ) ∈ (0, 1) such that if 0 < σ ≤ σ2 and if u∞ ∈ F (σ, σ,R, ξ, λ) then
u∞ ∈ F (1, θσ, βR, ξ̃, λ) for some ξ̃ ∈ ∂B(0, 1) with |ξ − ξ̃| ≤ cσ.

In the following we let θ̃ ∈ (0, 1/2) be a constant to be chosen. Let δ = σ2(θ̃)
where σ2 is as in Lemma 4.45. Note from (4.25)(∗) and (4.31), that there exists
M̂ = M̂(δ) such that if ξ0 = en, M ≤ M̂, and λ = c−1, c as in (4.31), then
u∞ ∈ F (δ, δ, R, ξ0, λ) for any R > 0. We can now apply Lemma 4.45 to conclude that
u∞ ∈ F (1, θ̃δ, β(θ̃)R, ξ1, λ) where |ξ0 − ξ1| ≤ cδ. Subsequently using Lemma 4.44
we also see that u∞ ∈ F (c1θ̃δ, 2θ̃δ, β(θ̃)R/2, ξ1, λ). We let θ = max{c1θ̃, 2θ̃} and
choose θ̃ ∈ (0, 1/2) so small that θ < 1. We also let β = β(θ̃)/2. Based on this
we can conclude that if u∞ ∈ F (δ, δ, R, ξ0, λ) then u∞ ∈ F (θδ, θδ, βR, ξ1, λ) and
|ξ0 − ξ1| ≤ cδ. By iteration we see that,

(4.46) u∞ ∈ F (θmδ, θmδ, βmR, ξm, λ) and |ξm − ξm−1| ≤ cθmδ for m = 1, 2, . . . .

If we let R = mβ−m for a fixed positive integer m, then we note from (4.46) that if
x ∈ ∂Ω∞ ∩B(0,m), then

(4.47) |〈x, ξm〉| ≤ cθmδ.
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Letting m →∞ in (4.47) we see that (4.38) is valid, where ν is the limit of a certain
subsequence of {ξm}.

5. Closing remarks

As noted in section 1, in a future paper, we shall prove Theorems 1–3 in the
setting of Reifenberg flat chord arc domains and thus carry out the full program in
[KT], [KT1], [KT2] when 1 < p < ∞, p 6= 2. We also plan to study and remove
the smallness assumption in Theorem 3 on M by generalizing the results in [C] for
harmonic functions (see also [C1], [C2], [J]) to p harmonic functions. We also note
that one can state interesting codimension problems similar to Theorems 1–3 for
certain values of p. For example if γ ⊂ B(0, 1/2) ⊂ R3 is a curve and p > 2, then
there exists a unique p harmonic function u in B(0, 1) \ γ which is continuous in
B̄(0, 1) with boundary values u = 0 on γ and u = 1 on ∂B(0, 1). Moreover, there
exists a unique measure µ with support ⊂ γ. If γ is Lipschitz, is it true that µ is
absolutely continuous with respect to Hausdorff one measure (H1) on γ? If so, we
next assume γ is C1, and put k = dµ/dσ. Is it true that log k ∈ V MO(γ), where
integrals are taken with respect to H1 measure? If µ = H1 measure on γ, is it true
that γ is a line segment or a circular arc? That is, to what extent do the theorems
of Caffarelli and coauthors generalize to the codimension > 1 case.

As for related problems, we note that in [LV], see also [LV1], Lewis and Vogel
study over-determined boundary conditions for positive solutions to the p Laplace
equation in a bounded domain Ω. They prove that conditions akin to (4.32) imply
uniqueness in certain free boundary problems. In particular, in [LV] the following
free boundary problem is considered. Given a compact convex set F ⊂ Rn, a > 0,
and 1 < p < ∞, find a function u, defined in a domain Ω = Ω(a, p) ⊂ Rn, such that
∇ · (|∇u|p−2∇u) = 0 weakly in Ω \ F , u(x) → 1 whenever x → y ∈ F , u(x) → 0
whenever x → y ∈ ∂Ω and such that µ = ap−1Hn−1 on ∂Ω. Here Hn−1 denotes
(n − 1)-dimensional Hausdorff measure on ∂Ω and µ is the unique finite positive
Borel measure associated with u as in Lemma 2.5. If in addition, µ is upper Ahlfors
regular, then the above authors show that this over-determined boundary value
problem has a unique solution. An important part of their argument is to show
that lim supx→∂Ω |∇u(x)| ≤ a. If ∂Ω is Lipschitz we note that this inequality is
an easy consequence of Theorem 1 and (3.7). However, in [LV] it is only assumed
that Ω is bounded, so a different argument, based on finiteness of a certain square
function, is used.
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