

Ann. Funct. Anal. 5 (2014), no. 2, 80–89

ANNALS OF FUNCTIONAL ANALYSIS

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY MULTIPLICATIVE HOLOMORPHIC FUNCTIONS OF MATRICES

QINGYING BU¹, CHINGJOU LIAO² AND NGAI-CHING WONG³*

This paper is dedicated to Professor Tsuyoshi Ando

Communicated by D. H. Leung

ABSTRACT. Let $H:M_m\to M_m$ be a holomorphic function of the algebra M_m of complex $m\times m$ matrices. Suppose that H is orthogonally additive and orthogonally multiplicative on self-adjoint elements. We show that either the range of H consists of zero trace elements, or there is a scalar sequence $\{\lambda_n\}$ and an invertible S in M_m such that

$$H(x) = \sum_{n \ge 1} \lambda_n S^{-1} x^n S, \quad \forall x \in M_m, \text{ or } H(x) = \sum_{n \ge 1} \lambda_n S^{-1} (x^t)^n S, \quad \forall x \in M_m.$$

Here, x^t is the transpose of the matrix x. In the latter case, we always have the first representation form when H also preserves zero products. We also discuss the cases where the domain and the range carry different dimensions.

E-mail address: qbu@olemiss.edu

E-mail address: wong@math.nsysu.edu.tw

Date: Received: August 13, 2013; Revised: October 16, 2013; Accepted: November 11, 2013.

ditive and multiplicative, zero product preserving, matrix algebras.

 $^{^{\}rm 1}$ Department of Mathematics, University of Mississippi, University, MS 38677, USA.

² DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, HONG KONG. *E-mail address*: cjliao@hkbu.edu.hk

 $^{^3}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

^{*} Corresponding author. 2010 Mathematics Subject Classification. Primary 46G25; Secondary 17C65, 46L05, 47B33. Key words and phrases. Holomorphic functions, homogeneous polynomials, orthogonally ad-