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ABSTRACT. It is shown that a) it is possible to define the topology of any
topological algebra by a collection of F-seminorms, b) every complete locally
uniformly absorbent (complete locally A-pseudoconvex) Hausdorff algebra is
topologically isomorphic to a projective limit of metrizable locally uniformly
absorbent algebras (respectively, A-(k-normed) algebras, where k € (0, 1] varies,
¢) every complete locally idempotent (complete locally m-pseudoconvex) Haus-
dorff algebra is topologically isomorphic to a projective limit of locally idempo-
tent Fréchet algebras (respectively, k-Banach algebras, where k € (0, 1] varies)
and every m-algebra is locally m-pseudoconvex. Condition for submultiplica-
tivity of F-seminorm is given.

1. INTRODUCTION

1. Let K be the field R of real numbers or C of complex numbers and X a
topological linear space over K. A neighbourhood O C X of zero is absolutely
k-convez, if Mu+ pv € O for all u,v € O and A\, u € K with [A|* + |u[* < 1 and
is absolutely pseudoconver, if O is absolutely k-convex for some k € (0, 1], which
depends on O. Then every such neighbourhood O of zero is balanced (that is,
nO C O for |u| < 1) and pseudoconvez (that is, O defines a number ko € (0, 1]
such that

0+0c200).
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A topological algebra A over K with separately continuous multiplication (in
short, a topological algebra) is locally pseudoconver if it has a base L4 of neigh-
bourhoods of zero, consisting of absolutely pseudoconvex subsets. Herewith, when

inf{k‘oiOE,CA}:k’>O,

then A is is a locally k-convex algebra and when k = 1, then a locally convex
algebra. A locally pseudoconvex algebra A is locally absorbingly pseudoconvex
(in short locally A-pseudoconvez), if A has a base L4 of absorbent (that is, for
each a € A and each O € L, there exists a number N(a,O) > 0 such that
aOUOa C N(a,0)0) and pseudoconvex neighbourhoods of zero, and is a locally
multiplicatively pseudoconvez (in short locally m-pseudoconver) algebra, if every
O € L4 is idempotent (that is, OO C O). Locally A-(k-convex) and locally
m-(k-convex) algebras are defined similarly. In case &k = 1 these algebras are
locally A-convex and locally m-conver algebras.

It is well-known (see, for example, [18, pp. 3-6] or [, pp. 189 and 195]) that
it is possible to define the topology of every locally pseudoconvex algebra A by a
collection Py = {py : A € A} of ky-homogeneous seminorms, where k) € (0, 1] for
each A € A. Recall that a seminorm p on A is k-homogeneous if p(ua) = |u|*p(a)
for each a € A. In case when for any a € A and every py € P, there exist
positive numbers M = M(a, \) and N = N(a, \) such that py(ab) < Mp,(b) and
pa(ba) < Npy(b) for each b € A, then A is a locally A-pseudoconvex algebra, and
when M(a,\) = N(a,\) = px(a) for each a € A and A € A, then a locally
m-pseudoconvex algebra. Moreover, A is a A-(k-normed) algebra, when the
topology of A is defined by a k-homogeneous norm || - ||, & € (0,1], such that
for any a € A there exists positive numbers M (a) and N(a) such that |Jab|| <
M (a)||b]] and ||ba|| < N(a)||b|| for each b € A, and an m-(k-normed) algebra, if
N(a) = M(a) = ||a|| for each a € A.

2. A topological algebra A is a locally idempotent algebra if it has a base
of idempotent neighbourhoods of zero. This class of topological algebras has
been introduced in [21, p. 31]. Locally m-convex algebras (see, for example,
[9, 10, 14, 15, 21, 22]) and locally m-pseudoconvex algebras (see, for example, [3,

, 8]) have been well studied, locally idempotent algebras (without any additional
requirements) have been studied only in [16, 21, 4].

We shall say that a topological algebra A is

a) a locally absorbent algebra if A has a base of absorbent neighbourhoods of
Zero.

b) a locally uniformly absorbent algebra if A has a base of uniformly absorbent
neighbourhoods of zero (that is, for each fixed a € A and each neighbourhood O
of zero in A there exists a positive number A(a) (which does not depend on O)
such that aO U Oa C A\(a)O);

3. It is well-known (it was first published in 1952 in [15, p. 17]) that every
complete locally m-convex Hausdorff algebra is topologically isomorphic to the
projective limit of Banach algebras. This result has been generalized to the case
of complete locally m-(k-convex) Hausdorff algebras in [2, Theorem 5|, to the
case of complete locally A-convex Hausdorff algebras in [7, Theorem 2.2], and
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to the case of complete locally m-pseudoconvex Hausdorff algebras in [3, pp.
202-204]. Moreover, it is known (see [17, Theorem 1]) that every complete topo-
logical Hausdorft algebra with jointly continuous multiplication is topologically
isomorphic to a projective limit of Fréchet algebras and every complete locally
convex Hausdorff algebra with jointly continuous multiplication is topologically
isomorphic to a projective limit of locally convex Fréchet algebras.

Similar representations of topological algebras (not necessarily with jointly con-
tinuous multiplication) by projective limits are considered in the present paper.

2. TOPOLOGY DEFINED BY A COLLECTION OF F'-SEMINORMS

1. Let X be a linear space over K. By F-seminorm on X we mean a map
q : X — R* which has the following properties:

(q1) g(\x) < gq(x) for each x € X and A\ € K with [A\| < 1;
(g2) lim,, .o q(%:v) = 0 for each =z € X;
(¢3) g(z +y) < q(z) +g(y) for each z,y € X.

If from ¢(x) = 0 follows that z = x, then ¢ is called an F-norm on X. In this
case d(z,y) = q(x —y) for each z,y € X defines a metric d on A which has the
property d(x + z,y + z) = d(x,y) for each x,y,z € X.

2. Tt is well-known (see, for example, [12, p. 39, Theorem 3]) that the topology
of any topological linear space X coincides with the initial topology defined by a
collection of F-seminorms on X. To show that the same situation takes place in
case of topological algebras, we prove first the following result.

Proposition 2.1. Let A be an algebra over K, Q@ = {q\ : A € A} a non-empty
collection of F-seminorms on A and Tg the initial topology on A, defined by the
collection Q. Then (A, Tg) is a topological algebra if Q satisfies the condition

(qa) for each fized a € A and for any € > 0 and any A € A there exist 6, > 0
and A\, € A such that g\(ab) < € and q\(ba) < €, whenever gy, (b) < dq.

Moreover, (A, 1g) is a topological algebra with jointly continuous multiplication if
Q satisfies the condition

(g5) for any € > 0 and any A € A there exist 6 > 0 and N € A such that
qr(ab) < e, whenever qy(a) < 0 and gy (b) < 0,

and (A, 71g) is a locally idempotent algebra if Q satisfies the condition

(gs) for any e > 0 and any A € A holds q\(ab) < €, whenever q\(a) < € and
qr(b) < e.

Proof. Since 7¢ is the initial topology on A defined by the collection Q, then
{Oxe : X € A,e > 0} is a subbase of neighbourhoods of zero in (A, 7o), where
O)e ={a € A: gq\(a) < e} is a balanced and absorbent set by (¢;) and (go) for
each ¢ > 0 and each A\ € A. It is easy to see that the addition (a,b) — a + b
in (A, 7g) is continuous by (¢3) and the multiplication over K is continuous in
(A, 7g) by (q1). Therefore, (A, 7o) is a topological linear space.
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If now, in addition, Q satisfies the condition (q4), then the multiplication
(a,b) — ab in (A, 7o) is separately continuous. To show this, let O be an ar-
bitrary neighbourhood of zero in the topology 7o on A. Then there exist ¢ > 0,
n € Nand Aq,...,\, € A such that

() Ox:CO. (2.1)
k=1

For each fixed a € A and each k € N,, there are, by the condition (g4), a number
da(k) > 0 and an index A\, (k) € A such that gy, (ab) < € and gy, (ba) < € whenever
Do (k) (D) < da(k). Let now 0, = min{d,(1),...,0,(n)} and

Vo= ﬂ O (k)50 -
k=1

Then V, is a neighbourhood of zero in A in the topology 7¢ and

aVy,UVa C ﬂ[aoAa(k)&z(k) U O,\a(k)(sa(k)a] C ﬂ Oy, C O.
k=1 k=1

Hence, the multiplication in (A, 7o) is separately continuous. Consequently,
(A, o) is a topological algebra.

If, next, Q satisfies the condition (gs), then the multiplication (a,b) — ab is
jointly continuous in (A, 7g). To show this, let again O be an arbitrary neigh-
bourhood of zero in the topology 79 on A. Then there are ¢ > 0, n € N and
ALy -y Ay € A such that holds (2.1). Now, for each k € N,, = {1,2,...,n} there
are, by the condition (¢;), a number d; > 0 and an index A, € A such that
qr, (ab) < e, whenever gy (a) < d; and gy (b) < dy. Let now § = min{dy,...,d,}

and
V= m O)\;c(g.
k=1

Then V is again a neighbourhood of zero in A in the topology 7o and

VV C ﬂ OAMOAM C ﬂ OAka C O.

k=1 k=1

It means that the multiplication in (A, 7¢) is jointly continuous. Consequently, in
this case (A, Tg) is a topological algebra with jointly continuous multiplication.
Let, in the end, Q satisfies the condition (gs). Then 0,.0,. C O,. for each
e > 0and A € A. Therefore, (A, 7o) has a base of idempotent neighbourhoods of
zero. Consequently, (A, 7o) is a locally idempotent algebra. O

Theorem 2.2. FEvery topological algebra (A,T) defines a collection Q of
F-seminorms on A such that (A, o) is a topological algebra (in particular, when
(A, 7) is a topological algebra with jointly continuous multiplication, then (A, Tg)
is a topological algebra with jointly continuous multiplication) and T = Tg.

Proof. Let M be the dense subset of Rt which consists of all non-negative rational
numbers, having a finite dyadic expansions, i.e, we may write every such number
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p on the form
P = Z5n(p) 277,
n=0

where dy(p) € Ng := NU {0}, d,.(p) € {0,1} for each n € N and §,(p) = 0 for n
sufficiently large.

Let L(a,7) be a base of neighbourhoods of zero in (A, 7), consisting of closed
balanced sets and S = {S) : A € A} the set of all strings Sy = (U,())) in Lar,
that is, U,(A) € Liar) and Upy1(A) + Upga(X) C Un(A) for each n € Ny (see [0,
p. 5]). For each A € A, Sy = (U,(N\)) € S and p € M let

Valp) = Uo(\) + -+ + Us(\) + Y 6(p) - Un(N) (2.2)
So(p) summands n=1
and
g(a) =inf{pe M :a € V\(p)}
for each a € A and A € A. Then every ¢, is a F-seminorm on A (see [12, pp.
39-40]) and

ker ¢y = ﬂ Un(N).
n=0
Indeed, if a € ker gy, then ¢y(a) < 27" for each n € Ny. Therefore, a € V\(27") =
Un(X) for each n € Ny. On the other hand, if a € U,()\) for each n € Ny, then
gr(a) < 27 for each n € Ny. Hence ¢y\(a) = 0 or a € ker g,.
To show that @ = {g\» : A € A} satisfies the condition (q4), let a € A,
A € A (by this we fix a string Sy = (Un()\)) in La,s)) and € > 0. Then there
exists a number n. € N such that 5i- < e. Since the multiplication (a,b) — ab
in (A, 7) is separately continuous, then there exists a neighbourhood V, € L1
such that aV,UV,a C U,_(A). Let (U,) be the string in L4 -y, which is generated
by V,, that is, Uy = V, and other members U, of this string are defined by V.
Hence, there exists an index A\, € A such that Sy, = (U, (\,)), where Up(A,) =V,
and U,(A\,) = U,, if n > 1. Now, V, =V, (1) and

aV, UV,a C U, (N) = VA<QL>.

Therefore, for every fixed a € A and for any A € A and any € > 0 there exist an
index A\, € A and a number ¢, > 0 such that ¢\(ab) < 27" < ¢ and ¢)(ab) <
27" < ¢ whenever ¢y, (b) < 1 (in the present case, ¢, = 1). Hence, the collection
Q satisfies the condition (g4). Consequently, (A, 7o) is a topological algebra by
Proposition 2.1.

In particular, when (A, 7) is a topological algebra with jointly continuous multi-
plication, then the multiplication in (A, 7g) is also jointly continuous. Indeed, let
A € A (by this we fix again a string S\ = (Un())) in £L(4,5)) and € > 0. Then there
is again a number n. € N such that 27115 < e. Since the multiplication (a, b) — abin
(A, 7) is jointly continuous, then there exists an element V' € L4 such that V'V C
Un.(A). Let now (Uy,) be the string in L4 ) for which Uy = V. Then there exists
an index X' € A such that Sy, = (U,(X)), where Uy(N) = V. If a,b € V = V) (1),
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then gy (a) < 1, gu(b) < 1 and from ab € VV C U,_(\) = Vi(5t=) follows that

gne

gr(ab) < 5= < . Hence, for each A € A and € > 0 there exist \' € A and &' > 0
such that ¢y(ab) < e, whenever gy (a) < 1 and ¢y (b) < 1 (in the present case,
¢’ =1). This shows that Q satisfies the condition (gs5). Consequently, (A, 7o) is
a topological algebra with jointly continuous multiplication by Proposition 2.1.

Next we show that 7 = 79. For it let U € Lar), Sy, = (Un(Xo)) be the
string in L4 for which Uy(Ag) = U and let u € Oyy1. Then ¢y, (u) < 1. Hence
u € V(1) = Up(Ng) = U. It means that O,,; C U. Since O,,1 belongs to the
base of neighbourhoods of zero in (A, 7g), then 7 C 7g. Let now O € L4 ).
Then there are ¢ > 0, m € N and Aq,...,\,, € A (with this we fix m strings

Sy = (Un(M)), -+, S5, = (Un(An)) in Lar) such that

ﬁ O>\k5 C O.

k=1

Again, there is a number n. € N such that 2% < e. Now,

U= ﬁ U (Ar)

k=1
is a neighbourhood of zero of A in the topology 7o. Since

U ) = Vi (57

one
for each k € N,,,, then from u € U follows that g, (u) < 2%5 < ¢ for each k € N,,.
Hence, U C O. It means that 79 C 7. Consequently, 7 = 7¢. O

Corollary 2.3. Let (A, 7) be a locally pseudoconvex algebra; P = {p, : a € A}
the collection of nonhomogeneous seminorms on A, which defines the topology T;
Tp the topology on A, defined by the collection P; L the base of neighbourhoods
of zero in A, which are closed and balanced sets; @ = {qs : S is a string in La}
and Tg the topology on A, defined by the collection Q of F-seminorms on A.
Then T =Tp = Tg.

Proof. 1t is well-known that 7 = 7p and 7 = 79 by Theorem 2.2. Hence, all these
three topologies coincide. 0

3. In point of view of algebra it is important to know, when every F-seminorm,
defined by a string from L4, is submultiplicative.

Proposition 2.4. Let A be a topological algebra, L the base of all closed and
balanced neighbourhoods of zero in A, and S = (U,) a string in L. Then the
F-seminorm qg, defined by S, is submultiplicative if and only if the knots U, of
S satisfy the condition

for all n,m € N.

Proof. Let S = (U,,) be a string in £ 4 such that the F-seminorm gg, defined by S,
is submultiplicative (that is gs(ab) < gs(a)gs(b) for all a,b € A). Let n,m € N be
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fixed, a € U, = Vg(%) and b e U, = Vs(zm) Then gg(a) < 2—n and ¢s(b) < 2%”

Therefore

or

ab € V5< Qnim

Hence, U,U,,, C Up4p,-

Let now S = (U,) be a string in £, such that the knots U,, of S satisfy the
condition (2.3) for all n,m € N. Moreover, let p and o be dyadic numbers such
that a € Vs(p), p < gs(a)+e,b € Vs(o) and o < gs(b)+0. Then ab € Vs(p)Vs(o).
For every s > 1 and [ > 0 let

UI(S):U1+"'+UZ.
s summands

Since
VS(p>VS( ) UO 50 "‘Z(S Uo 50 + Zé

Uo(50(0)50(0)) + T+ T+ T;
by (2.2), where

25 Un[Uo(do(0 CZ(S o)) =T,

Ty = [Us(6o(p Za UCZ& o(p))] = T}

and
n

Z [Zék On—t+1(0) UpUn— k+1} Ci [Z On—k41(0) Unsa | = T3

n=1 n=1 k=1

by the condition (2.3). Hence,
ab € Uy(do(p)do(0)) +T7 + T + T3 C
Vs(bo(p)do(o)) + Vs(K,) + - + Ve(K,) + Vs(Ky) + -+ + VS(KU)/—FVS(KM) C

do(0) summands d0(p) summands

Vs(00(p)do(0)) + do(0) Vs (K,) + 60 (p) Vs (Ko) + Vs(Kpe)
= Vs([do(p) + K,][00(0) + K,]) = Vs(po)

because Vs(a) + Vs(5) C Vs(a + ) for each dyadic numbers v and [ (see [12, p.
39], where

Klzz_;én(z% and Klm—Z;[Z&g Suka(m)] s

Therefore,
gs(ab) < po < (gs(a) +¢€)(gs(b) +¢),
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from which follows that gg is submultiplicative (because ¢ is an arbitrary positive
number). O

Corollary 2.5. Let A be a topological algebra, L 4 the base of closed and balanced
neighbourhoods of zero in A and Qa = {qs : S is a string in L4} be the collection
of submultiplicative F-seminorms on A, which defines the topology of A. Then A
15 a locally tdempotent algebra.

Proof. Let A be a topological algebra such that every F-seminorm ¢g in Q4 is
submultiplicative, O € L4 an arbitrary element and S = (U,) the string in £4
with Uy = O. Since gg is submultiplicative, then all knots U, of the string S
satisfy the condition (2.3), by Proposition 2.4. Hence O is an idempotent set.
Therefore, A is a locally idempotent algebra. O

Remark 2.6. Recall that a topological algebra, for which every F-seminorm in Q4
is submultiplicative, is an m-algebra in [16, p. 767], and an m-convex topological
algebra in [20, p. 335]. W. Zelazko in [21, p. 39] and V. Murali in [16, p. 766]
asked whether every locally idempotent algebra is an m-algebra? By Proposition
2.4, the answer is no, because idempotent knots of a string do not necessarily
satisfy the condition (2.3).

3. MAIN RESULTS
To represent topological algebras by projective limits, we need

Lemma 3.1. Let A be a locally uniformly absorbent (locally idempotent) Haus-
dorff algebra over K, L the base of all closed, balanced and uniformly absorbent
(respectively, closed, balanced and idempotent) neighbourhoods of zero in A and
Sa = (Uy,) a string in La. Then the kernel

o0

N(Sa) = ﬂ U,

n=1

of Sa is a closed two-sided ideal in A.

Proof. When N(S4) = {04}, then N(S4) is a closed two-sided ideal in A. Suppose
now that N(S4) # {04}. Then there are elements a,b € N(S4)\{0a}. Letn € N
be an arbitrary fixed number. Since N(S4) C U,41 and U, 41 + U,y C Uy, then
a+be U, for each n € N. Hence, a +b € N(S4).

Let next A € K and a € N(S4). Then a € U, for each n € N. If |A\| < 1, then
Aa € U, for each n € N, because U, is balanced. If |A\| > 1, let np € N be a
natural number such that [|[A[]4+1 < 2™ and n an arbitrary fixed natural number
(Here [r] denotes the entire part of a real number r). Since

A A
Aa = “AHITIG + (A= [WDWG € Uning + =+ & Uniny C Up,
[IAl]+1 s‘ljmmands
because ’ﬁ| =1, [(J]\ — [|/\|])ﬁ’ < 1 and every U, is balanced. Hence, Aa € U,

for each n € N. Thus, Aa € N(S4).
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First, we assume that A is a locally uniformly absorbent algebra, a € A and
b€ N(S4). Since A is a locally uniformly absorbent algebra, then there exists a
positive number A(a) such that aU, € A(a)U,. Therefore, % € U, for each n €
N. Hence, ab € A(a)N(S4) C N(S4). Similarly, we can show that ba € N(S4).
Consequently, N(S4) is a two-sided ideal in A.

Let now A be a locally idempotent algebra, a € A, b € N(S4) and n € N.
Then there exists a positive number ¢, such that a € €,U,, (because every neigh-
bourhood of zero absorbs points). If |&,| < 1, then ¢,U, C U, because U, is

balanced, and if |¢,| > 1, then, from ¢,b C &, N(S4) C N(S4) C U, follows that
ab € (,U,)(e,'U,) € U,U, C U,.

Hence, ab € N(S4). Similarly, we can show that ba € N(S4). Consequently,
N(S4) is again a two-sided ideal in A. O

Theorem 3.2. For any (real or complex) locally uniformly absorbent Hausdorff
algebra A there exists a projective system {Ax; hau, A} of metrizable locally uni-
formly absorbent algebras and continuous homorphisms hy,, from Ay to A,, (when-
ever X < 1) such that A is topologically isomorphic to a dense subalgebra of the
projective limit imAy of this system. In particular case, when, in addition, A is
complete, then A and @AA are topologically isomorphic.

Moreover, if A is a locally A-pseudoconvex (locally A-convex) Hausdorff alge-
bra, then A is topologically isomorphic to a dense subalgebra of the projective
limit im Ay of A-(kx-normed) algebras (respectively, A-normed algebras). In par-
ticular, when, in addition, A is complete, then A and imAy are topologically
1somorphic.

Proof. 1) Let A be a locally uniformly absorbent Hausdorftf algebra, £, the base
of closed, balanced and uniformly absorbent neighbourhoods of zero in A and
Sa = {S\: X € A} the collection of all strings in £4. That is, every Sy € S4 is a
sequence (O)) in L4, members O} of which satisfy the condition
Opi1 + 04y C O,

for each n € N (see [0, p. 5]). We define the ordering < in A in the following
way: we say that A < g in A if and only if S, C S, that is, if Sy = (O,) and
S, = (O#), then O* C O) for each n € N. It is easy to see that (A, <) is a
partially ordered set. To show that (A, <) is a directed set let Sy, = (O}) and
Sy, = (072) be arbitrary fixed strings in S4 and let S, = (O¥) be the string in L4,
which we define in the following way: let O% € £4 be such that O c O} N O,

Further, for each n > 1, let U, be a neighbourhood of zero in £4 such that
Unt1 + Upy1 C OF and OZH be a neighbourhood in £, such that

Oh ) CUpi N0 MO
Then
Opi1+ 05 CUpi N 02}&-1 N Oiil +Uns1 N Oiil N 0211 CUny1 +Upyr C O}

for each n € N. Since S, € Sx and O* C O} N O for each n € N, then A\; < u
and Ay < p. It means that (A, <) is a directed set.
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For each A € A, let ¢y be the F-seminorm on A, defined by the string S\ = (O)),
Ny=()0)
n=1

(N is a closed two-sided ideal in A by Lemma 3.1), Ay = A/ker ¢, and m the
canonical homomorphism of A onto A,. Moreover, let ,(mx(a)) = gx(a) for each
a € A. Since ker gy = N, (see the proof of Theorem 2.2), then g, is a F-norm on
A,. Let 74, be the topology on A, defined by g,. Thus, (A, 74,) is a metrizable
locally uniformly absorbent algebra for all A € A.

For any A, u € A with A < p let hy,, be the map defined by h,(7,(a)) = m(a)
for each a € A. Then hy, is a continuous homomorphism from A,, onto Ay, hy, is
the identity mapping on A for each A € A and hy,0h,, = hy, for each A\, u,v € A
with A < o <. Hence, {A); hy,, A} is a projective system of metrizable locally
uniformly absorbent algebras A, with continuous homomorphisms hy, and

limAy = {(ma(a@))aea € [[ Ax ¢ hau(mu(a)) = 7a(a), whenever A < u}
AEA
is the projective limit of this system.

Let e be the mapping defined by e(a) = (mx(a))rea for each a € A and pr, the
projection of [],c, A, onto Ay for each A € A. Since pr,(e(a)) = mx(a) for each
a € Aand \ € A and 7, is continuous for each A\ € A, then e is a continuous map
from A into [[,., Ay (see, for example, [19, Theorem 8.8]). Moreover, if a,b € A
are such that e(a) = e(b), then m(a) = m\(b) for each A € A. Therefore,

a—be[\Na= () O=04

AEA O€eLy
because A is a Hausdorff space. It means that a = b. Hence, e is a one-to-one
map.
Let now O be any neighbourhood of zero in A, « an arbitrary fixed index in A

and
U= [H UA} Ne(A),

where U, = 1,(0) and U, = A,, if A # a. Then U is a neighbourhood of zero in
e(A). Since

pro(U) C ma(0) = pr,(e(0))
and « is arbitrary, then U C e(O). Hence, e is an open map. Taking this into
account, e is a topological isomorphism from A into [],., Ax.

To show that e(A) is dense in limA), let (a))ren € limAy be an arbitrary
element and O an arbitrary neighbourhood of (ay)xea in @AA. Then there is a
neighbourhood U of (ax)xea in [ .4 A such that O = U N @AA. Now, there
is a finite subset H C A such that H/\EA Uy C U, where U, is a neighbourhood
of ay in Ay, if A€ H,and Uy, = A,,if A€ A\ H. Let u € A be such that A\ < p
for every A € H and

V= hyt(Uy).

AeH
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Then V' is a neighbourhood of a, in A,. Take an element a € W;l(V). Then
mu(a) € V. Therefore, my(a) = hyu(mu(a)) € Uy for each A € H. It means that
e(a) € UNe(A) = O. Consequently, e(A) is dense in limA,.

2) Let next A be a complete locally uniformly absorbent Hausdorff algebra,
(e(aq))aca a Cauchy net in e(A) and O any neighbourhood of zero in (A, 7).
Since e is an open map from A onto e(A), then e(O) is a neighbourhood of zero
in e(A). Thus, there exists an index oy € A such that e(ag) — e(a,) € e(O) or
ag — a, € O, whenever 3,7 € A, oy < f and ap < 7. It means that (aq)aca is
a Cauchy net in A. Since A is complete, then there is an element ay € A such
that (aq)aca converges to ag in A . Thus (e(aq))aeca converges to e(ag) in e(A)
because e is continuous. Consequently, e(A) is complete and, therefore, is closed
in @AA

3) Let now A be a locally A-pseudoconvex (locally A-convex) Hausdorff algebra
and P = {px : A € A} a saturated collection of ky-homogeneous seminorms on
A with k) € (0,1] for each A € A (respectively, a collection of homogeneous
seminorms on A) which defines the topology of A. We put Ay = A/kerp, and
norms p, on A, we define by p,(ma(a)) = pa(a) for each a € A and A € A, where
7y is the canonical homomorphism from A onto A,. Then ker p, is a two-sided
ideal in A and A, is an A-(ky-normed) algebra (if A is a locally A-convex algebra,
then A, is an A-normed algebra) for each fixed A € A. The ordering < in A we
define as follows: A < p if and only if py(a) < p,(a) for each a € A. Then (A, <)
is a directed set. Similarly as above, for each \,u € A with A < u, we define
homomorphisms hy, from A, into Ay by hy,(m,(a)) = mi(a) for each a € A.
Then hy, with A < p is a continuous map, because

Pa(hau(mu(@))) = Pr(ma(a)) = pa(a) < pula) = P (mu(a))

for each a € A. Again, similary as above, {Ay; hy,, A} is a projective system of
A-(ky-normed) algebras (respectively, A-normed algebras) A, and A is topologi-
cally isomorphic to a dense subalgebra of the projective limit lim Ay of this system
and in the complete case A and liLnA A are topologically isomorphic. O

Theorem 3.3. For any (real or complex) locally idempotent Hausdorff algebra A
there exists a projective system {AA, h,\u, A} of locally idempotent Fréchet algebras
and continuous homomorphisms hA# from A to A, (whenever A < p) such that
A s topologically isomorphic to a dense subalgebm of the projective limit @AA
of this system. In particular case, when, in addition, A is complete, then A and
liLnfl,\ are topologically isomorphic.

Moreover, if A is a locally m-pseudoconvex (locally m-convex) Hausdorff al-
gebra, then A is topologically isomorphic to a dense subalgebra of the projective
limat yinfl,\ of kx-Banach (respectively, Banach) algebras. In particular, when,

in addition, A is complete, then A and @AA are topologically isomorphic.
Proof. a) Let A be a locally idempotent Hausdorff algebra, £4 the base of closed

and balanced neighbourhoods of zero in A and Sy = {S) : A € A} the collection
of all strings in L£4. Similarly as in the proof of Theorem 3.2, we define the
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ordering < in A in the following way: we say that A < p in A if and only if
S,, C Sx. Then (A, <) is a directed set.

For each \ € A, let gy be the F-seminorm on A, defined by the string Sy = (O)),
Ny={Ox
n=1

(N is a closed two-sided ideal in A by Lemma 3.1), Ay = A/N, and let 7 be the
canonical homomorphism of A onto Ay. Moreover, let G, (m\(a)) = gx(a) for each
a € A, Ay be the completion of Ay, vy the topological isomorphism from Ay onto
a dense subalgebra of Ay (defined by the completion of Ay), ¢\ the extension of
gy ovy ' to A, and 7, the topology on A,, defined by §,. Then

A\ [(va 0o m)(a)] = 7(ma(a)) = gx(a)
for each @ € A and kergy, = N,. Therefore, ¢, is an F-norm on fb\. Since
A, is a metrizable locally idempotent algebra, then the multiplication in Ay is
jointly continuous, because of which A, is an algebra. Hence, (121,\, 7)) is a locally
idempotent Fréchet algebra for each A\ € A.

Similarly as in the proof of Theorem 3.2, for each A\, u € A with A\ < 1 we define
the map hy, by hy.(m.(a)) = mr(a) for each a € A. Then hy, is a continuous
homomorphism from A, into Ay, hy, is the identity mapping on A for each A € A
and hy, o hyy = hyy for each A\, p,v € A with A < pu <. Since vy o hy, o yfl is
a continuous homomorphism from v,(4,) into Ay, then (by | Prop081t10n 5],
h,\u is continuous and linear and by the continuity of rnultlphcatlon in Au, hw
is submultiplicative similarly as in the proof of [13, Proposition 1, pp. 4-5] or in
the proof of [1, Proposition 3]) there exists a continuous extension hy,, from A,
into /Nl)\ such that iL,\M is a homomorphism and

ﬁku[”u(”u(a))] = u[hau(mu(a))] = va[ma(a)]

for each a € A and A\, € A with A < p. Since hy, is the identity map on A,
for each A € A and h/\u o h,w = h,\,y, whenever A\, ,v € A and A < p < 7, then
{AA, h,\u, A} is a projective system of locally idempotent Fréchet algebras A, with
continuous homomorphisms BM from fl# into AA and

liﬂlfl,\ = {(va[mr(a)])ren € H Ay hau[va(mu(a)] = va(ma(a)), whenever A < p}
AEA
is the projective limit of this system.
Let € be the mapping which is defined by é(a) = (va[mr(a)])rea from A into
H#G A A, for each A € A. Similarly as in the proof of Theorem 3.2, we can
show that é is a topological isomorphism from A onto a dense subset of lianZb\-

Moreover, A and linlfl,\ are topologically isomorphic, if A is complete.

2) Let now A be a locally m-pseudoconvex (locally m-convex) Hausdorff alge-
bra. Then every algebra A, in the first part of the proof is a ky-normed (respec-
tively, normed) algebra, because of which the completion A, of A, is a ky-Banach
(respectively, Banach) algebra. Similarly as in the first part of the proof, we can
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show that A is topologically isomorphic to a dense subalgebra of the projective
limit lim Ay of ky-Banach (respectively, Banach) algebras. Moreover, A and lim A,
are topologicaly isomorphic if A is complete. O

Remark 3.4. Theorem 3.3 in the case where A is complete is well known. For the
sake of completeness, this case has been added.

Corollary 3.5. Let A be a unital Hausdorff algebra, L the base of closed and
balanced neighbourhoods of zero in A and Qa = {qs : S 1is a string in La}
the collection of F-seminorms, which defines the topology of A. If every qs is
submultiplicative, then A is locally m-pseudoconvex.

Proof. Let A be a Hausdorff algebra with unit element e, such that every
F-seminorm ¢gg in Q4 is submultiplicative. Then A is a locally idempotent al-
gebra, by Corollary 2.5. For any S in L4, let As = A/kerqs, mg the canonical
homomorphism from A onto Ag and G4 the map defined by G¢(ms(a)) = gg(a) for
each a € A. Then g4 is a submultiplicative F-norm on Ag. Hence, the extension
Gs (see the proof of Theorem 3.3) is a submultiplicative F-norm on the comple-
tion Ag. To show that Ag is a locally bounded algebra (that is, Ag contains a
bounded neighbourhood of zero), let

Og = {37 S AS : (jg((l}) < 1},

xo an arbitrary element in Og and (a;) an arbitrary sequence in K which con-
verges to zero. We can assume that |a,n| < 1 for each n € N (otherwise, we can
use instead of («y,) the subsequence (ay, ), for which |ag,n| < 1, because (ay,,)
converges to zero as well). Since

- 1 1

0 < gs(anro) = Gs((anea)ro) < S((ann)ﬁeA)(jS(xO) < ~s(ﬁeA),

then from
1
0 < lim gs(Anzo) < lim gs(—eq) =0
n—oo n—oo n
follows that (av,z0) converges to the zero element of A. It means (see, for exam-
ple, [12, Proposition 1, p. 34]) that Og is a bounded neighbourhood of zero in Ag.
Hence, Ag is a locally bounded algebra, and therefore, locally m-pseudoconvex.

Consequently, by Theorem 3.3, A is topologically isomorphic to a dense subalge-
bra W of the projective limit limAg of complete locally m-pseudoconvex algebras

Ag. Hence, W is a subalgebra of the product [Isc £ Ag. Since any product of
locally m-pseudoconvex algebras is locally m-convex in the product topology and
any subalgebra of a locally m-pseudoconvex algebra is locally m-pseudoconvex
in subset topology, then W is locally m-pseudoconvex. Consequently, A is also
locally m-pseudoconvex. O

Corollary 3.6. Every unital m-algebra is locally m-pseudoconvex.

Acknowledgement. This Research is in part supported by Estonian Science
Foundation grant 7320 and by Estonian Targeted Financing Project SF0180039s08



[1]

8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]

REPRESENTATIONS OF TOPOLOGICAL ALGEBRAS 157

REFERENCES

M. Abel and M. Abel, Pairs of topological algebras, Rocky Mountain J. Math. 37 (2007),
no. 1, 1-16.

M. Abel, Projective limits of topological algebras, Tartu Ul Toimetised 836 (1989), 3-27
(in Russian).

M. Abel, Gelfand-Mazur algebras, In ” Topological vector spaces, algebras and related areas.
Pitman Research Notes in Math. Series 316, Longman Group Ltd., Harlow, 1994”7 116—
129.

M. Abel, Structure of locally idempotent algebras, Banach J. Math. Anal. 1 (2007), no. 2,
195-207.

M. Abel and A. Kokk, Locally pseudoconver Gelfand-Mazur algebras, Eesti NSV Tead.
Akad. Toimetised, Fiiiis.-Mat., 37, 1988, 377-386 (Russian).

N. Adasch, B. Ernst and D. Keim, Topological vector spaces. The theory without converity
conditions, Springer-Verlag, Berlin Heidelberg New York, 1978.

M. Akkar, O.H. Cheikh, M. Oudadess, Sur la structure des algébres localement A-convezes,
Bull. Polish Acad. Sci. Math. 37 (1989), no. 7-12, 567-570.

V.K. Balachandran, Topological Algebras. North-Holland Math. Studies 185, Elsevier, Am-
sterdam, 2000.

E. Beckenstein, L. Narici and Ch. Suffel, Topological algebras, North-Holland Mathematics
Studies 24, North-Holland Publ. Co., Amsterdam-New York-Oxford (1977).

H.G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs.
New Series 24, Oxford Univ. Press, New York, 2000.

J. Horvath, Topological vector spaces and distributions, I. Addison-Wesley Publ. Co., Read-
ing, Mass.-London-Don Mill, Ont., 1966.

H. Jarchow, Locally Convexr Spaces, Mathematische Leitfaden, B. G. Teubner, Stuttgart,
1981.

A. Kokk, Description of the homomorphisms of topological module-algebras, (Russian) Eesti
ENSV Tead. Akad. Toimetised Fiiiis.-Mat. 36 (1987), no. 1, 1-7.

A. Mallios, Topological Algebras. Selected Topics, North-Holland Mathematics Studies 124,
North-Holland Publishing Co., Amsterdam, 1986.

E.A. Michael, Locally multiplicatively-convez topologial algebras, Mem. Amer. Math. Soc.,
no. 11 (1952).

V. Murali, Locally idempotent algebras, Math. Japon. 30 (1985), no. 5, 736-776.

T. Miildner, Projective limits of topological algebras, Colloq. Math. 33 (1975), no. 2, 291—
294.

L. Waelbroeck, Topological vector spaces and algebras, Lecture Notes in Math. 230,
Springer-Verlag, Berlin-New York, 1971.

S. Willard, General topology, Addison-Wesley Publ. Company, Reading-Ontario, 1970.
W. Zelazko, On the locally bounded algebras and m-convex topological algebras, Studia
Math. 19 (1960), 333-356.

W. Zelazko, Metric generalizations of Banach algebras, Rozprawy Mat. 47, Warszawa,
1965.

W. Zelazko, Selected topics in topological algebras, Lect. Notes Ser. 31, Aarhus Univ., 1971.

L INSTITUTE OF MATHEMATICS, UNIVERSITY OF TARTU, 2 J. LIIvIi STR., ROOM 614,
50409 TARTU, ESTONIA.
E-mail address: mati.abel@ut.ee



	1. Introduction
	2. Topology defined by a collection of F-seminorms
	3. Main results
	References

