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ABSTRACT. Let E, F be two Hilbert C*-modules over C*-algebras A and B
respectively. In this paper, by the alternative fixed point theorem, we give the
Hyers-Ulam-Rassias stability of the equation

U(x), UW) =¢((z,y))  (z,y € E),
where U : E — F is a mapping and ¢ : A — B is an additive map.

1. INTRODUCTION AND PRELIMINARIES

A pre-Hilbert A-module is a right module E over C*-algebra A, with a map
(,.) : Ex E — A which is conjugate linear in the first, linear in its second
argument and satisfies
(i) (z,ya) = (z,y)a (x,y € E,a € A),
(i) (z,y)" = (y,z) (v,y € E),
(ili) (z,z) >0 (x€ E),
(iv) (z,z) =0=2=0.
A Hilbert A-module (briefly Hilbert module) is a pre-Hilbert A-module that is
complete in the norm defined by ||z|| = ||(z,2)||2. For more details about Hilbert
modules see [12].
Let E, F be two Hilbert modules over C*-algebras A and B respectively and
¢ : A — B beamap. A mapping U : £ — F is called a ¢-morphism if

({Ux),Uy)) =¢({z,y))  (z,y € E).
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This kind of mappings were introduced by Bakié¢ and Guljas [3]. The first author
together with Moslehian and Niknam [1] used this kind of mappings to introduce
dynamical systems on Hilbert modules. Also Abbaspour and Skeide in [2] inves-
tigated the relation between ¢-morphisms, where they called them generalized
module mappings, and ternary homomorphisms.

The stability problem of functional equations had been first raised by Ulam
[18] by the following question: For what metric groups G is it true that an
e-automorphism of G is necessarily near to a strict automorphism? A partial
answer to the above question has been given as follows. Suppose E; and F, are
two real Banach spaces and f : Fy — F5 is a mapping. If there exist § > 0 and
p >0, p#1such that

1f(z+y) = fl@) = fW)ll < o] + llyll")
for all z,y € Ey, then there is a unique additive mapping 1" : E; — FEs such that

2
I5@) =Tl < 515
This result is called the Hyers-Ulam-Rassias stability of the additive Cauchy equa-
tion. Indeed Hyers [10] obtained the above result for p = 0. Then Rassias [17]
generalized the result of Hyers to the case where 0 < p < 1. Gajda [9] solved
the problem for p > 1 and gave an example that a similar result does not hold
for p = 1. For the case p < 0, recently Lee [13] has shown that f should be
an additive map. Thus the Hyers-Ulam-Rassias stability of the additive Cauchy
equation holds for p € R\ {1}.

(ZL’ € El)

Let X be a set. A function d : X x X — [0,00] is called a generalized metric

on X if d satisfies

(1) d(z,y) = 0 if and only if z =y,

(2) d(z,y) =d(y,z),

(3) d(z,y) < d(z,z) +d(z, ).
Generalized metric space (X, d) is called complete if each Cauchy sequence con-
verges in X.

In 2003, Radu [16] employed the following theorem to prove the stability of a
Cauchy functional equation. Later many authors, [7, 11, 11, 15] used this strategy
to give the stability of functional equations. Before stating the theorem we recall
that a mapping J : X — X is called a strictly contractive operator with the
Lipschitz constant L, if

d(J(z), J(y)) < Ld(x,y) (z,y € X).

Theorem 1.1. ([3]) Let (X,d) be a generalized complete metric space and J :
X — X be a strictly contractive operator with the Lipschitz constant L < 1. If
there exists a nonnegative integer k such that d(J**1x, J*x) < oo for some x € X,
then the following are true:

(a) The sequence {J"x} converges to a fized point x* of J,

(b) z* is the unique fixed point of J in

X' ={y e X | d(J'z,y) < oo},
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(c) ify € X*, then
. 1
d(y, ") < 7—7d(Jy,y).

In [1], Badora and Chmieliniski, investigated the stability and superstability of
inner product preserving mappings on Hilbert spaces. After then Chmielinski and
Moslehian [0] investigated this problem in the framework of Hilbert C*-modules;
see also [5]. We mention that each p-morphism is in fact a mapping preserving
inner product modulo ¢. In this paper, by using the alternative fixed point
theorem for generalized metric spaces, the stability of ¢-morphisms on Hilbert
C*-modules is considered. Throughout the paper we assume that F and F' are
two Hilbert C*-modules over C*-algebras A and B respectively and ¢ : A — B
is an additive map.

2. MAIN RESULTS

Definition 2.1. A mapping U : E — F is called an approximate p-morphism if
there exists a control function 7 : E? — R such that

U (), Uy)) — e((z, )l < 7(x,y)

holds for each z,y € E.
As a consequence of Theorem 2.4 we will show that under some conditions on
control function 7 each approximate @-morphism is near to a p-morphism.

Example 2.2. We know that each C*-algebra A is a Hilbert C*-module over
itself with the inner product defined by (a,b) = a*b. Let A be a unital C*-

algebra , a € A, € = |la*a — 1]| and ¢ : A — A be a x-homomorphism. If we
define U(z) = ap(x) then we have
KU (), Uy)) = (@ u)ll = lle(®)aapy) = o(@)e ()]l
= lle(z")(a’a = Dey)|
< ellz(lyl
€
< el + )

If @ is an unitary element then U is a ¢-morphism, otherwise U is an approximate
¢-morphism with control function 7(xz,y) = §(||z[|* + ||y|*).

Lemma 2.3. IfU : E — F is a mapping such that ||U(x+y) —U(z) — U(y)|| <
7(x,y) for some control function T : E* — R and there is 0 < L < 1 with
7(22,2y) < 2L7(x,y), then there ezists a unique additive map 1 : E — F such

that |U(z) — ()| <

5 2LT(£L‘,Z‘).

Proof. Let X ={g: E — F :g is a mapping} and define
d(g,h) =inf{c >0 :||g(z) — h(z)|| < cr(x,z) Vr e E},

for g,h € X. Then (X,d) is a complete generalized metric space. Now we
consider the mapping J : X — X by J(g)(z) = 1g(2z). We can write for any
g,heX,

lg(x) = h(z)|| < d(g, h)r(z,2)  (z € E),
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therefore for z € F,

1(9)(x) ~ T @) = ll59(22) ~ 5h(20)] < Sd(g, hyr(2r, 20) < Ld(g, hyr(a, ).

Hence d(.J(g), J(h)) < Ld(g,h). Since d(J(U),U) < 3 < oo, Theorem 1.1 implies
that

(i) J has a unique fixed point ¢ : F — F in the set X* = {g € X :d(g,U) <

00}

(i) d(J™(U),v) — 0 as n — oo. This implies that lim,, % = 1 (x) for
all z € E.

(iii) d(U,v) < W8I < 1 That is, ||U(z) — 1(2)|| < 555 7(x, =) for all
r e L.

Moreover, for each xz,y € F we have,

[6a +9) — v(@) — v = 1 | LEELTI) T T,

1
< lim 2—7(2"33, 2"y)

< lim L"7(z,y)

n—oo

=0.

Hence ¢ is an additive map. Now let ¢/ : E — F be another additive map such
that

1
2-2L

1U(z) = /()] < T(z,z) (v € E),

so J(¢') =" and d(U, ') < . In other words v’ is a fixed point of J in X*.
Thus ¢ = 1. OJ

Theorem 2.4. Let U : E — F be a mapping and ¢ : A — B be an additive map
such that for some control function p: E* — R, |[(Uz, Uy) — o({z, )| < p(z,y)
forall x,y € E. Let

r(w,y) = (oo +y.7+y) + plo +y.2) + pla,a + 1) + pla +9,9) + ply,7 + )

1

+ p(z, ) + p(y,y) + p(x,y) + p(y, m))

and suppose there is 0 < L < 1 such that 7(2x,2y) < 2L7(x,y). Then there exists
T(z,x) for

a unique p-morphism T : E — F such that |U(z) — T(z)|| <
allz € X.

2-2L
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Proof. For all z,y, 2z € ' we have

KUz +y) = U(x) = Uly), U(2)) |l
= [[{U(z +y) = U(z) =U(y), U(2)) = o((z +y,2)) + ¢({z, 2))
+o(y, 2)ll
< KU +y), U(2)) = p({z +y, )| + [{U(2), U(2)) = o({z, 2))|
—((y,2)ll

+
<

—
+
)
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=
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It follows that
[U(z +y) = Ulz) = Uyl < 7(z,y).
By Lemma 2.3, there is a unique additive map 7' : E — F' such that

1
V@)~ T@)| < gogrr(es)  (zeE)
Then
T(x) = lim U(22n:v)‘
Now for each z,y € E we have
: 1 n n n n
(T, Ty) — o((z,y) | = lim —2[|{U(2"2), U(2")) — o((2"2,2"y))|

n—oo 4n

1 1
< lim 4—n,0(2":c,2"y) < lim 4—n7'(2”:c,2"y)2

n—oo n—oo

(1 Loy 2
= lim ( -7(2"z,2"y) S(hm L”T(J:,y))

n—oo 2 n—oo
= 0.
This shows that T' is a ¢p-morphism. Since each ¢-morphism is an additive map
Lemma 2.3 implies that T" is the unique ¢-morphism as desired. 0

One can replace the condition 7(2z,2y) < 2L7(x,y) on the control function 7
by

1
T(l’, y) < 5[/7'(21‘, 2y)

and obtain the following results.
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Lemma 2.5. IfU : E — F is a mapping such that ||[U(x+y) —U(z) — U(y)|| <
7(x,y) for some control function T : E* — R and there is 0 < L < 1 with
T(z,y) < %LT(2$, 2y), then there exists a unique additive map ¢ : E — F such

that [|U(z) — (2)] <

5= 2L7’(£IT,ZE).

Theorem 2.6. Let U : E — F be a mapping and ¢ : A — B be an additive map

such that for some control function p: E*> — R, |[(Ux, Uy) — o({(z, )| < p(z,y)
forall x,y € E. Let

7(z,y) = (p(:v+y,x+y)+p(w+y,x)+p(w,:1:+y)+p(x+y,y)+p(y,x+y)

1

+ p(x,3) + ply y) + play) + ply. 7))
and suppose there is 0 < L < 1 such that 7(x,y) < %LT(QQ;, 2y). Then there exists

a unique @-morphism T : E — F such that |U(z) — T(z)] <
allz € X.

For a real number p let E, denote either the whole space F if p > 0 or E'\ {0}
if p<0.

5 2L7(x,w) for

Corollary 2.7. Let U : E — F be a mapping and ¢ : A — B be an additive map
such that for some p # 2,

Uz, Uy) — e((z,y) | < cllzl” + lyl")  (z,y € Ep).
Then there exists a unique p-morphism T : E — F' such that
6e(2r + 2)

J0@) Tl < Y=o

lzllZ (2 € EBp).

Proof. Define p : E, x E, — R by p(x,y) = c(||z||” + ||y|[?), then apply Theorems
2.4 and 2.6 with

7(z,y) = 6|z + yl7 + [|z[|F + y[7)
0J

Remark 2.8. If £ and F are two Hilbert C*-modules over the same C*-algebra
Aand ¢ : A— Ais the identity map, then [0, Corollary 4.2] is a consequence
of the above corollary.

Applying Theorem 2.4 and 2.6 with p(z,y) = c||z|[?||y||” we have the next
result.

Corollary 2.9. Let U : E — F be a mapping and ¢ : A — B be an additive map
such that for some p # 1,

Uz, Uy) = e((z, )| < cll=Pllyl” (2,5 € Ep).
Then there exists a unique p-morphism T : EE — F' such that

V(2 +2)

U@ =Tl < =5

[P (€ Ep).
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