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SPECTRAL MAPPING THEOREMS AND STABILITY THEORY
IN LINEAR DYNAMICAL SYSTEMS
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Abstract. The spectral properties of the operators inducing linear dynamical
systems on Banach spaces determine the asymptotic properties of the systems.
In this note an interaction between the spectral mapping properties of operators
and stability properties of the corresponding dynamical systems is presented.

1. Introduction

As we all can visualise, Mathematics, in a broader sense is a study of measure-
ments, changes, forms and patterns. Study of changes created a system known
as dynamical system which has made contact with many areas of mathematics,
physics and social sciences. We shall present a concise historical development
of the evolution of the dynamical systems. It began in work of Newton in mid
1600’s as a branch of physics. He gave the laws of motion and solved the 2-body
problem involving Sun and Earth. He invented differential calculus for this pur-
pose which became starting point of modern mathematics. Later mathematicians
and physicists tried to solve 3-body problem involving Sun, Earth and Moon and
it was realised that it was impossible to solve it in sense of explicit formulas
for motion of the three bodies. At this juncture the situation became hopeless.
A break-through appeared in late 1800’s with the work of Poincare and Lia-
punov. Poincare considered qualitative rather than quantitative questions. They
asked about the stability of solar system and developed a powerful geometric
approach to analyse some questions. This became starting point of dynamical
systems where differential equations & iterated maps played main roles in the
study. Henri Poincare (1854-1912), Alexander Liapunov (1857-1918) and George
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Birkhoff (1884-1944) are regarded as founders of dynamical systems. Major work
on stability was done by A. Liapunov in his paper of 1892 ”General problem in
stability of movements”. Liapunov functions & Liapunov exponents are used in
the study of some dynamical systems. Concept of modern dynamical systems
as we know today was developed by Birkhoff in early part of the 20th century.
Around that time functional analysis was being developed in work of Hilbert,
Banach, Lebesgue etc. Functional analysis entered in a big way in study of dy-
namical systems. Infinite dimensional challenges came in dynamical systems.
Hilbert’s work and Banach’s book on the ”theory of linear operators” became
tools & base for infinite dimensional dynamical systems. In linear case the the-
ory of semi-groups of operators was developed to study evolutionary equations.
By 1930’s basic theory of dynamical systems was well in place and by 1970 or
so finite dimensional & infinite dimensional dynamical systems were united and
since then it became study of motions (dynamics) of evolutionary equations [22].
By middle of the 20th century it developed in many directions having rapport
with differential equations, operator theory, transformation groups, differential
geometry and having applications in engineering, biology, physics and social sci-
ences. For further details we refer to [4, 14, 22, 23]. In this more or less expository
article we demonstrate an interplay of operator theoretic properties and dynam-
ical properties of linear dynamical systems induced by operators. The spectral
mapping properties play significant role in this interplay.

2. Time dependent dynamical systems

A continuous dynamical system is a triple (π, R, X), where X is a topological
space, R is the additive group of real numbers with usual topology, and π :
R×X → X is a continuous mapping such that

(1) π(0, x) = x, for every x ∈ X.
(2) π(s + t, x) = π(s, π(t, x)) for every s, t ∈ R & x ∈ X.

X is called the phase space or state space and π is called flow, motion or action.
If t ∈ R, then πt : X → X defined as πt(x) = π(t, x), is a homeomorphism with
(πt)−1 = π−t. Let H1 = {πt : t ∈ R}. Then H1 is a subgroup of the group
H of all homeomorphisms of X. Let x ∈ X and let πx : R → X be defined as
πx(t) = π(t, x) for every t ∈ R. Then range πx = {π(t, x) : t ∈ R} is called the
orbit of x. If π(t, x) = x for every t ∈ R, then x is called a fixed point or an
equilibrium point of X(or of π). By a periodic point we mean a non-fixed point
x ∈ X such that π(t, x) = x, for some non-zero t ∈ R. If at place of R, we take
the discrete group Z, then what we get is known as discrete dynamical system.
Every homeomorphism φ of X gives rise to a discrete dynamical system given by

π(n, x) = φn(x); where φn = φ ◦ φ ◦ φ ◦ φ........... ◦ φ (iteration n times).

Actually every discrete dynamical system comes from a homeomorphism [8]. If
at place of R(or Z) we take R+(or Z+), the semigroups of numbers, then we get
semidynamical systems, whose evolution is future-dependent. In most of the work
they are taken to be dynamical systems. In this case every discrete semidynamical
system comes from a self continuous map of X.
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Note. If at place of R we take any topological group G, then the triple (π, G.X)
is called a transformation group and π is an action of G on X. This is a very
broad area and includes many algebraic and topological systems. To make contact
with reality we shall further specialize by taking X as a complex Banach space
and (π, R+, X) or (π, Z+, X) as linear semi dynamical system. The motion π :
R×X → X is linear if

π(t, αx + βy) = απ(t, x) + βπ(t, y) for t ∈ R and x, y ∈ X, α, β ∈ C.

Definition 2.1. Let x0 be a fixed point of the dynamical system (π, R, X) on a
Banach space X. Then

(1) x0 is called a stable fixed point if for every ε > 0, there exits δ > 0 such
that ‖x0 − x‖ < δ implies that ‖π(t, x)− x0‖ < ε for every t ∈ R+.

(2) x0 is called asymptotically stable if there exits δ > 0 such that ‖x0 − x‖ <
δ implies that lim

t→∞
‖π(t, x)− x0‖ = 0.

(3) x0 is exponentially stable if there exits δ > 0, α > 0 & M > 0 such
that ‖x− x0‖ < δ implies that ‖π(t, x)− x0‖ ≤ Me−αt ‖x− x0‖ for every
t ∈ R+.

For details on stable motions we refer to [2, 3, 4].
By B(X) we denote the Banach algebra of all bounded linear operators on

X. We shall concentrate on dynamical systems induced by operators and present
a relation between operator theoretic properties and dynamical concepts in the
induced system. Recall that if W is a Banach algebra with identity e and x ∈ W,
then spectrum of x, denoted by σ(x) is defined by

σ(x) = {λ ∈ C : x− λe is not invertible in W}.

It is known that σ(x) is a non-empty compact subset of C. The proof follows
from two important theorems, namely, Hahn–Banach theorem and Liouville’s
theorem. Let ρ(x) = C\σ(x) and let f : ρ(x) → W, be defined by

f(λ) = (x− λe)−1.

Then f is analytic W−valued and f́(λ) = −(x − λe)−2. If σ(x) is empty,
then φ ◦ f : C → C is a bounded entire function vanishing at infinity for every
φ ∈ W ∗, the dual of W . Thus it is constant 0, which is a contradiction since
f́(λ) = −(x − λe)−2 6= 0. Since σ(x) is closed and bounded, it is compact [7].
Theory of Banach algebra and C∗−algebra was developed extensively by Gelfand
and Naimark around middle of the last century. Among other things they proved
spectral mapping theorem, which became a powerful tool in study of stability
of dynamical systems induced by operators. Let E(C) denote the algebra of all
entire functions. Let x ∈ W, a Banach algebra, and define φx : E(C) → W as
φx(f) = f(x). Then φx is an algebra homomorphism. By H(σ(x)) we denote
the algebra of all holomorphic functions on open sets containing σ(x). Thus
f ∈ H(σ(x)) if there exists an open set G containing σ(x) and f : G → C is
holomorphic. The spectral mapping theorem is given in the following three cases.
Further details on spectral theory can be seen in [1, 6, 7].
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Theorem 2.2. (spectral mapping theorem): Let W be a complex Banach algebra
with identity. Then

(1) For every f ∈ E(C) and every x ∈ W,

σ(f(x)) = f(σ(x)) = {f(λ) : λ ∈ σ(x)}.
(2) For every f ∈ H(σ(x)),

σ(f(x)) = f(σ(x)) for x ∈ W.

(3) In case X is a C∗−algebra, and x is a normal element of W, we have

σ(f(x)) = f(σ(x)) for every f ∈ C(σ(x)),

where C(σ(x)) is the Banach algebra of all continuous functions on σ(x).

Outline of the proof.
(2) Let f ∈ H(σ(x)) and let λ ∈ σ(x). Then f(z) − f(λ) = (z − λ)g(z) for

some g ∈ H(σ(x)). In case f(λ) /∈ σ(f(x)), f(x)− f(λ)e is invertible, and hence
x − λe is invertible. Thus f(λ) ∈ σ(f(x)). This shows that f(σ(x)) ⊂ σ(f(x)).
If α /∈ f(σ(x)), then (f(z)−α)−1 ∈ H(σ(x)). Hence f(x)−αe is invertible. This
shows that σ(f(x)) ⊂ f(σ(x)). Thus σ(f(x)) = f(σ(x)). The proof of (1) follows
from proof of (2).

(3). If X is a C∗−algebra and x is a normal element, then the C∗−algebra
C∗(x) generated by x and x∗ is commutative and hence by Gelfand–Naimark
theorem the mapping φ : C(σ(x)) → C∗(x) defined by φ(f) = f(x) is ∗−isometric
isomorphism. Hence σ(f(x)) = σ(φ(f)) = σ(f). Since f ∈ C(σ(x)) and σ(f) =
f(σ(x)), we prove that σ(f(x)) = f(σ(x)). This proves (3).

3. Operator-induced dynamical systems on Banach spaces

Let X be a Banach space, and let A ∈ B(X), the Banach algebra of all bounded
linear operators on X. Let t ∈ R+. Let

etA =
∞∑

n=0

(tA)n

n!
∈ B(X).

Define πc
A : R+ × X → X by πc

A(t, x) = etA(x). Then (πc
A, R+, X) is a

continuous semidynamical system on X. If we define πd
A : Z+ × X → X as

πd
A(n,X) = An(x), then πd

A is a discrete dynamical system on X. Thus every
operator A on a Banach space gives rise to at least two linear dynamical systems.
If X = Cn, the Banach space of all n-tupples of complex numbers and A is an
n× n matrix, then A gives rise to a continuous motion and a discrete motion on
Cn. The study of these motions has been done in classical dynamical systems at
juncture of 19th and 20th centuries. A continuous function T : R+ → B(X) is
called a functional homomorphism if

T (s + t) = T (s)T (t) and T (0) = I for s, t ∈ R+.

If T is continuous with respect to strong operator topology on B(X), then it
is called c0−functional homomorphism [20]. It is well known that every norm
continuous functional homomorphism is of type T (t) = etA for some operator
A ∈ B(X). There are c0−functional homomorphisms which are not of this type.



SPECTRAL MAPPING THEOREMS 63

For details and examples we refer to [5] and [10]. A c0−functional homomorphism
T is also known as a c0−semigroup of operators on X and {T (t) : t ∈ R+} is a
commutative semigroup of B(X). Every c0−functional homomorphism T on X
induces a continuous dynamical system πT on X defined by

πT (t, x) = T (t)x for t ∈ R+ and x ∈ X.

Let T : R+ → B(X) be a c0−functional homomorphism. Then infinitesimal
generator A of T is defined as

Ax = lim
t→0+

T (t)x− x

t
,

wherever this limit exits. A is also a closed linear operator with dense domain
contained in X. This operator is not necessarily bounded [10]. If A ∈ B(X)
and T (t) = etA, then infinitesimal generator of T is A itself. If X = L2(R)
and (T (t)f)(s) = f(s + t) for s ∈ R, then infinitesimal generator of T is dif-
ferentiation operator i.e Af = f́ , which is not a bounded operator. Not every
unbounded operator on X is a generator of a c0−functional homomorphism. But
under certain conditions an unbounded operator is an infinitesimal generator of
a c0−functional homomorphism. In 1947 Hille and Yosida characterized gener-
ators of c0−functional homomorphisms. For details we refer to [11] and [13]. If
A is an unbounded generator of c0−functional homomorphism T : R+ → B(X),
then we also write T (t) = etA. Associated with an unbounded generator A of a
c0−functional homomorphism T , we get a dynamical system πA : R+ ×X → X
defined as

πT (t, x) = T (t)x = etA(x), t ∈ R, x ∈ X.

Abstract Cauchy Problem (ACP) associated with A is the following boundary-
value problem

dx
dt

= Ax
x(0) = x0

.

If x(t) = T (t)x0, then x is a solution of this Abstract Cauchy Problem. The
orbit function associated with x0 is a solution of ACP. There are several ways of
creating c0−functional homomorphism associated with generator A [10]. In order
to extend some of the results of dynamical systems induced by unbounded linear
operators the spectral mapping theorems for c0−functional homomorphisms are
useful. Before recording the results we shall need the following definitions

Definition 3.1. : Let A be a closed operator on X with domain D(A) and let

ρ(A) = {λ ∈ C : (λI − A)−1 ∈ B(X)}.

Then the set ρ(A) is called resolvent set and (λI−A)−1 is called resolvent operator
with respect to λ ∈ ρ(A). We denote (λI −A)−1 by R(λ, A). The complement of
ρ(A) in C is called the spectrum of A, denoted by σ(A) as usual. By σp(A) we
denote the point spectrum of A, i.e., the set of all eigenvalues of A. By σc(A) we
denote the continuous spectrum of A, which is defined as

σc(A) = {λ ∈ C : λ /∈ σp(A) and range of λI−A is a non-closed dense subset of X}.
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Let σap(A) = {λ ∈ C : λ ∈ σp(A) or range of λI−A is not closed}. The set σap(A)
is called approximate point spectrum of A. Unlike bounded operators σ(A) of an
unbounded operator A may be empty or unbounded subset of C. For example
and details we refer to [10]. The following theorem contains some results about
spectral mapping theorems for c0−functional homomorphisms.

Theorem 3.2. (spectral mapping theorem for c0−functional homomorphisms):
Let T : R+ → B(X) be a c0−functional homomorphism generated by a linear
operator A. Then

(1) etσ(A) ⊂ σ(T (t)) for every t ∈ R+.
(2) etσp(A) ⊂ σp(T (t)).
(3) If T is eventually norm continuous or uniformly continuous or eventually

compact, then T has spectral mapping property i.e

σ(T (t))\{0} = etσ(A).

(4) If X is a Hilbert space, then σ(T (t))\{0} = {eαt : α+2πik
t

∈ σ(A) for some

k ∈ Z or sequence (‖R(αk, A)‖) is unbounded , where αk = α+2πik
t

}.

Outline of the proof.

(1) Let x ∈ X. Then by definition of the infinitesimal generator A of T ,

A

t∫
0

T (u)xdu = lim
h→0+

T (h)
t∫
0

T (u)xdu−
t∫
0

T (u)xdu

h

= lim
h→0+

t∫
0

T (h + u)xdu−
t∫
0

T (u)xdu

h

= lim
h→0+

t+h∫
h

T (u)xdu−
t∫
0

T (u)xdu

h
= T (t)x− x.

It can also be shown that

A

t∫
0

T (u)xdu =

t∫
0

T (u)Axdu.

Let λ ∈ C. Then define S : R+ → B(X) by S(t) = e−λtT (t). Then S is also a
c0−functional homomorphism with generator A− λI. Hence by above result

e−λtT (t)x− x = S(t)x− x = (A− λI)

t∫
0

S(u)xdu

= (A− λI)

t∫
0

e−λuT (u)xdu =

t∫
0

e−λuT (u)(A− λI)xdu.
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Thus

(eλt − T (t))x =

t∫
0

e−λ(u−t)T (u)(λI − A)xdu.

From this it follows that eλt − T (t) is not a bijection whenever λI −A is not a
bijection. This proves (1)

(2) If λ ∈ σp(A), then there exits x ∈ D(A) such that Ax = λx
Now

(eλt − T (t))x =

t∫
0

e−λ(u−t)T (u)(λI − A)xdu = 0

if Ax = λx. Hence eλt ∈ σp(T (t)). For the proofs of (3) and (4) we refer to [10].

4. Asymptotic behaviour of dynamical systems induced by
operators

In a dynamical system (π, R, X) the orbit function Ox of a state x ∈ X is an
X−valued function on R given by Ox(t) = π(t, x) for every t ∈ R. The range
of Ox is called orbit of x and we denote it by Orb(x). The totality of all such
distinct orbits is called orbit space. The orbit function plays very important
role in exploration of some asymptotic properties of the system like stability and
cyclicity. Stability property has its origin in solutions of differential equations
and cyclicity is concerned with invariant sets and invariant subspaces of inducing
operators. If A ∈ B(X), then the origin (the zero vector) is a fixed point of con-
tinuous dynamical systems (πc

A, R+, X). The spectral theory plays pivotal role
in study of stability at origin. If T : R+ → B(X) is a c0−functional homomor-
phism, then define the function u : R+ → R+ as u(t) = ‖T (t)‖ and for x ∈ X,
define ux : R+ → R+ as ux(t) = ‖T (t)x‖ = ‖Ox(t)‖. Then u and ux are positive
real-valued continuous functions of variable t ∈ R+. Asymptotic behaviour of
these functions characterize the asymptotic properties of the system. We know
that the function u is dominated by a scalar multiple of exponential function [25].
The growth bound of T denoted as w0(T ) is defined as

w0(T ) = inf{w ∈ R : u(t) ≤ Mewt, for t ∈ R+}.

It follows that the spectral radius r(T (t)) of T (t) is equal to ew0(T )t [10]. In
light of Definition 2.1, we say that the dynamical system πT induced by T is
uniformly stable at 0 if

lim
t→∞

u(t) = 0.

It is called uniformly exponentially stable if for some ε > 0

lim
t→∞

eεtu(t) = 0.

It turns out that uniform stability and exponential stability are equivalent. If

lim
t→∞

ux(t) = 0 for every x ∈ X,
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then we say that the system is strongly stable. It is clear that uniform stability
implies strong stability. The c0−functional homomorphism induced by transla-
tions on L2(0,∞) are strongly stable but not uniformly stable. If the system is
strongly stable and each ux ∈ Lp[0,∞), then it turns out that it is uniformly
stable. We shall record all these results in the following theorem without giving
details of the proofs. The proofs can be seen in [5] and [10].

Theorem 4.1. Let T be a c0−functional homomorphism on a Banach space X
and let (πT , R+, X) be the dynamical system induced by T. Then

(1) πc
T is uniformly stable iff it is uniformly exponentially stable.

(2) w0(T ) < 0 iff πc
T is uniformly stable.

(3) {ux : x ∈ X} ⊂ Lp[0,∞), p ≥ 1(i.e
∞∫
0

|ux(t)|p dt < ∞ for every x ∈ X) iff

πc
T is uniformly stable in case it is strongly stable.

Initial work on stability theory was started by A. Liapunov at the end of the
19th century. The spectral properties of the inducing operator plays significant
role. In 1892 Liapunov proved that if the eigenvalues of the matrix lie in the open
left half plane, then the matrix induces uniformly stable dynamical system. In
the proof he used Jordon form of the matrix A. In begining of 20th century with
growth of the functional analysis the stability theorem of Liapunov was extended
to bounded linear operators on Banach spaces. In this extension the spectral
mapping theorem plays key part. In the following theorem uniform stability is
characterized in terms of the spectrum of the inducing operator.

Theorem 4.2. (Liapunov theorem for bounded operator) : Let X be a Banach
space and let A ∈ B(X). Let (πc

A, R+, X) and (πd
A, Z+, X) be the continuous and

discrete dynamical systems induced by A respectively. Then

(1) πc
A is uniformly stable at 0 iff Reλ < ∞ for every λ ∈ σ(A).

(2) πd
A is uniformly stable at 0 iff |λ| < 1 for every λ ∈ σ(A).

Proof. (1) We know that πc
A is uniformly stable iff

∥∥etA
∥∥ → 0 as t →∞. In light

of spectral radius formula [7] this is true iff σ(etA) is contained in the open unit
disc of C. By the spectral mapping theorem

σ(etA) = etσ(A) = {etλ : λ ∈ σ(A)}

Let λ = λ1 + λ2i. Then etλ = et(λ1+λ2i) = etλ1eλ2ti. Thus
∣∣etλ

∣∣ = etλ1 = etReλ.

Hence σ(etλ) is contained in the unit disc iff
∣∣etλ

∣∣ < 1 for every λ ∈ σ(A). This is
true iff Reλ < 0 for λ ∈ σ(A). This completes the proof of (1).

(2) It is clear that πd
A is uniformly stable iff lim

n→∞
‖An‖ = 0. Thus ‖An‖ < 1 for

n ∈ Z+. Thus ‖An‖ < 1 iff σ(An) is contained in the open unit disc. By spectral
mapping theorem σ(An) = (σ(A))n = {λn : λ ∈ σ(A)}. Let λ = reiθ be polar
represention of λ. Then λn = rneinθ. Now λ ∈ σ(A) iff λn ∈ σ(An). This is true
iff |λn| < 1. Hence rn < 1. This shows that r < 1. Hence σ(A) is contained in
the unit disc. This completes the proof of (2). �
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Note. In light of Liapunov theorem we see that solution of Abstract Cauchy
Problem

dx
dt

= Ax
x(0) = x0

.

is stable iff Reλ < ∞ for every λ ∈ σ(A). Using discrete dynamical system
induced by A we can see that A has a non-trivial invariant subspace iff orbit of
some non-zero vector of X has non-dense span.

5. Weighted composition operators and stability theorem for
unbounded operators

Let A be an unbounded operator on X. Then determination of the stabil-
ity of solutions of the autonomous Abstract Cauchy Problem is a very difficult
task. In this case spectral mapping theorem fails and we can not use Liapunov
stability theorem which was used in case of bounded operators. It turns out
that for some unbounded operators the Liapunov theorem is valid .The concrete
operators like the weighted composition operators on some function spaces are
helpful in extension of the Liapunov theorem for unbounded operators which are
infinitesimal generators of c0−functional homomorphisms. Thus in this section
we assume that A is an unbounded operator which generates a c0−functional
homomorphism T : R+ → B(X). For ∞ > p ≥ 1, let Lp(R, X) = {f , f : R → X,∫
‖f(t)‖p dt < ∞} with Lp−norm. Let C0(R, X) = {f : f ∈ C(R, X) and f

vanishes at infinity} and let Cb(R, X) = {f : f ∈ C(R, X) and f is bounded}
with sup norm. Then it is well known that above function spaces are Banach
spaces and C0(R, X) ⊂ Cb(R, X) [19]. We know that in Lp(R, X) f = g iff f = g
a.e. Let θ : R → B(X) be a function. Define Mθ on Lp(R, X) (or on Cb(R, X))
by

Mθf(t) = θ(t)f(t).

Then Mθ is called the multiplication operator induced by the operator-valued map
θ. Multiplication operator induced by scalar-valued maps can similarly be defined.
It is known that Mθ is a bounded operator on Lp(R, X)(orCb(R, X)) iff θ is a (es-
sentially) bounded map. For details we refer to [16] and [17]. Let g : R → C be a
bounded function and let A ∈ B(X). For t ∈ R, define θt(s) = etg(s)A. Then θt is
an operator-valued bounded map and hence induces a multiplication operator on
Lp(R, X)(orCb(R, X)). Clearly the map T : R+ → B(X) defined by T (t) = Mθt ,
is a c0−functional homomorphism and hence gives rise to a dynamical system
on Lp(R, X)(orCb(R, X)). For details of proof we refer to [15]. If φ : R → R
is a non-singular (or continuous) map, then define Cφ on Lp(R, X)(or Cb(R, X))
by Cφf = f ◦ φ. This map is a linear transformation. It has been proved that
Cφ is a bounded operator on Lp(R, X) iff µφ−1(E) ≤ bµ(E) for some b > 0 and
every measurable set E of R [16] & [24]. An operator of the type MθCφ is known
as a weighted composition operator and we denote it by θCφ. These operators
have been studied on different function spaces and play important role in study
of dynamical systems. For further details we refer to [9, 12, 18]. Let φt : R → R
be the map defined as φt(s) = s − t. Then Cφt is an isometry on Lp(R, X) for
every t ∈ R. Let T : R → B(Lp(R, X)) be defined as T (t) = Cφt . Then T is a c0−
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functional homomorphism and gives rise to a dynamical system on Lp(R, X). It is
clear that if θ : R → B(X) is a bounded map and φ : R → R induces a continuous
composition operator, then θCφ is a bounded operator on Lp(R, X). In particular
if θ is a constant map, then θCφ ∈ B(L2(R, X)). If A ∈ B(X), then we have seen
in Theorem 4.2 that asymptotic properties of dynamical system are influenced
by the spectral properties of the operator A. There are linear dynamical system
on X whose generators are unbounded operators. For example, the generator of
dynamical system induced by translations Cφt is the differential operator, which
is unbounded [5]. The spectral mapping theorem, which we used in the proof
of the Liapunov stability theorem fails. At this juncture the theory of weighted
composition operators help to extend Liapunov theorem for some unbounded op-
erators. This helps in study of the stability theory of solutions of the Abstract
Cauchy Problems induced by some unbounded generators of c0−functional homo-
morphisms. Let us assume that A is an unbounded operator which is infinitesimal
generator of a c0−functional homomorphism T : R+ → B(X). Thus

Ax = lim
t→0+

T (t)x− x

t
, x ∈ D(A),

and A is densely defined closed operator [13]. The solution of the Abstract
Cauchy Problem (ACP)

dx
dt

= Ax
x(0) = x0

is the orbit function of x0 in the dynamical system induced by T i.e x(t) =
πT (t, x0) = T (t)x0 is a solution of ACP for every x0 ∈ D(A). In case A is
bounded, Liapunov theorem determined the stability of solutions at the origin of
X in terms of the spectrum of A. Though the spectral mapping theorem fails for
unbounded operators, the Liapunov theorem has been extended to unbounded
operators with assistance of the weighted composition operators [21]. For every
t ∈ R we know that Cφt is a bounded composition operator on Lp(R, X). If T
is c0−functional homomorphism generated by unbounded operator A, then for
every t ∈ R+, define the map θt : R+ → B(X) by θt(s) = T (t) for every s ∈ R+.
Thus θt is the constant map, and hence it induces multiplication operator Mθt .
Since Mθtand Cφt commute for every t ∈ R+, we conclude that the mapping
E : R+ → B(Lp(R, X)) defined as E(t) = MθtCφt(= θtCφt) i.e

(E(t)f)(s) = T (t)f(s− t) for s ∈ R

is a functional homomorphism induced by T. It is called evolution homomorphism
induced by T (or A). We shall record some properties of E in the following
theorem.

Theorem 5.1. Let E : R+ → B(Lp(R, X)) be the evolution homomorphism
induced by an unbounded operator A which is the generator of the c0−functional
homomorphism T : R+ → B(X). Then

(1) E is a c0−functional homomorphism.
(2) Infinitesimal generator B of E is the closure of the operator MA− d

dt
, MA

being multiplication operator on Lp(R, X) induced by A.
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(3) The spectrum of E(t), is invariant under rotations around 0 of C.
(4) The spectrum of the generator B is invariant under translation parallel to

imaginary axis.
(5) σ(E(t))\{0} = etσ(B) = {etλ : λ ∈ σ(B)} (i.e E has spectral mapping

property).

Outline of the proof.
(1) Since E is the product of two commuting functional homomorphisms Mθt

& Cφt , E is a functional homomorphism [5]. Let f ∈ Lp(R, X) and let {tn} be a
sequence in R+ converging to t ∈ R+. Then

‖E(tn)f − E(t)f‖ =
∥∥θtnCφtn

− θtnCφtf + θtnCφtf − θtCφtf
∥∥

≤ ‖T (tn)‖
∥∥Cφtn

f − Cφtf
∥∥ + ‖T (tn)f ◦ φt − T (t)f ◦ φt‖ .

Using the uniform boundedness principle for {T (tn) : n ∈ N} we prove that E is
strongly continuous.

(2) If f is in domain of MA & in domain of d
dt

, then

lim
t→0+

E(t)f − f

t
= lim

t→0+

θtCφtf − f

t

= lim
t→0+

T (t)f ◦ φt − f

t
=

T (t)f ◦ φt − T (t)f + T (t)f − f

t

= lim
t→0+

T (t)(f ◦ φt − f)

t
+ lim

t→0+

T (t)f − f

t

= − d

dt
f + MAf .

Since D( d
dt

) ∩D(MA) is dense in Lp(R, X), the infinitesimal generator B of E

is closure of MA − d
dt

.
(3) Let u ∈ R and let wu : R → C be defined as wu(s) = eius. Consider the

multiplication operator Mwu on Lp(R, X) induced by the scalar-valued map wu.
Then Mwu is an onto isometry. It can be proved that

M−1
wu

E(k)Mwu = e−iutE(t)

and

M−1
wu

BMwu = B − iu.

From this we can conclude parts (3) and (4) (see [10] for details). Proof of (5)
is a special case of a general evolution semigroup induced by evolution family of
operators. For proof we refer to [5].

Note. :The evolution c0−functional homomorphism E has spectral mapping
property, whereas the c0−functional homomorphism generated by A may fail to
have this property. E consists of weighted composition operators and this saves
the Liapunov theorem for unbounded operators. The following theorem extends
the Liapunov theorem to unbounded operator.

Theorem 5.2. (Liapunov theorem for unbounded operators):
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Let A be an unbounded generator of a c0−functional homomorphism T, and let
E be the corresponding evolution c0−functional homomorphism with generator B.
Then the following are equivalent

(1) πT is uniformly stable on X.
(2) πE is uniformly stable on Lp(R, X).
(3) For λ ∈ σ(B), Reλ < 0 (i.e σ(B) is contained in the open left half-plane).

Proof. (1) =⇒ (2) Suppose ‖T (t)‖ → 0 as t →∞ .Then

‖E(t)‖ = ‖θtCφt‖ ≤ ‖T (t)‖ ‖Cφt‖ = ‖T (t)‖ .

This shows that ‖E(t)‖ → 0 as t →∞. Hence πE is uniformly stable.
(2) =⇒ (1) Now

‖T (t)‖ = ‖T (t)I‖ =
∥∥T (t).CφtCφ−t

∥∥
≤ ‖E(t)‖

∥∥Cφ−t

∥∥ = ‖E(t)‖ .

Hence ‖T (t)‖ → 0 whenever ‖E(t)‖ → 0 as t →∞.
(3) ⇔ (1) It can be shown that σ(B) is contained in the open left half-plane

iff σ(T (t)) is contained in the open unit disc for every t. Using spectral mapping
property of E, we can conclude that πT is uniformly stable. This completes the
proof of the theorem. �

Note. Stability of solutions of autonomous ACP is studied with help of a single
operator generating a c0−functional homomorphism. The characterization of sta-
bility of solutions of non-autonomous ACP requires a family of operators creating
an evolution family of operators on super function spaces Lp(R, X) or Cb(R, X)
[22]. The concrete operators like translations, multiplications and weighted com-
position operators play significant role here too. Besides stability, hyperbolicity
is another asymptotic property of a dynamical system. These simple looking
concrete operators of multiplication and composition are also helpful in study of
hyperbolicity. An interaction of these concrete operators and hyperbolicity prop-
erty of the system will be presented in another article.
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