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ITERATIVE METHODS FOR FIXED POINTS AND
EQUILIBRIUM PROBLEMS
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Communicated by G. López Acedo

Abstract. In this paper, a new iterative scheme by hybrid method is con-
structed. Strong convergence of the scheme to a common element of the set of
fixed points of an infinite family of relatively quasi-nonexpansive mappings and
set of common solutions to a system of equilibrium problems in a uniformly
convex real Banach space which is also uniformly smooth is proved. Our results
extend important recent results.

1. Introduction and preliminaries

Let E be a real Banach space and C be nonempty closed convex subset of E. A
mapping T : C → C is called nonexpansive if

||Tx− Ty|| ≤ ||x− y||, ∀x, y ∈ C.

A point x ∈ C is called a fixed point of T if Tx = x. The set of fixed points of T
is defined as F (T ) := {x ∈ C : Tx = x}.

Let F : C × C into R be an equilibrium bifunction. The equilibrium problem is
to find x ∈ C such that

F (x, y) ≥ 0,

for all y ∈ C. We shall denote the set of solutions of this equilibrium problem by
EP (F ). Thus

EP (F ) := {x∗ ∈ C : F (x∗, y) ≥ 0, ∀y ∈ C}.
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The equilibrium include fixed point problems, optimization problems and varia-
tional inequality problems as special cases (see, for example, [3]). Some methods
have been proposed to solve the equilibrium problem, see for example, [6, 13, 22].

In [11], Matsushita and Takahashi introduced a hybrid iterative scheme for ap-
proximation of fixed points of relatively nonexpansive mapping in a uniformly
convex real Banach space which is also uniformly smooth: x0 ∈ C,

yn = J−1(αnJxn + (1− αn)JTxn),
Hn = {w ∈ C : φ(w, yn) ≤ φ(w, xn)},
Wn = {w ∈ C : 〈xn − w, Jx0 − Jxn〉,
xn+1 = ΠHn∩Wnx0, n ≥ 0.

They proved that {xn}∞n=0 converges strongly to ΠF (T )x0, where F (T ) 6= ∅.

Recently, Takahashi and Zembayashi [19] introduced a hybrid iterative scheme
for approximation of fixed point of relatively nonexpansive mappings which is
also a solution to equilibrium problem in a uniformly smooth real Banach space
which is also uniformly convex. In particular, they proved the following theorem.

Theorem 1.1. Let E be a uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty closed convex subset of E. Let F be a
bifunction from C×C satisfying (A1)−(A4) and let T be a relatively nonexpansive
mappings of C into itself such that F := F (T )

⋂
EP (F ) 6= ∅. Let {xn}∞n=0 be

iteratively generated by x0 ∈ C, C1 = C
yn = J−1(αnJxn + (1− αn)JTxn), n ≥ 1,
F (un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0,∀y ∈ C

Cn+1 = {w ∈ Cn : φ(w, un) ≤ φ(w, xn)}, n ≥ 1,
xn+1 = ΠCn+1x0, n ≥ 1,

where J is the duality mapping on E. Suppose {αn}∞n=1 is a sequence in (0, 1)
such that lim inf

n→∞
αn(1 − αn) > 0 and {rn}∞n=1 ⊂ [a,∞) for some a > 0. Then,

{xn}∞n=0 converges strongly to ΠF x0.

Motivated by the results of Takahashi and Zembayashi [19] (Theorem 1.1 above)
and Matsushita and Takahashi [11], we prove a strong convergence theorem for
an infinite family of relatively quasi-nonexpansive mappings and system of equi-
librium problems in a uniformly convex real Banach space which is also uniformly
smooth. Our results extend the results of Takahashi and Zembayashi [19] and
Matsushita and Takahashi [11].

2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the function
ρE : [0,∞) → [0,∞) defined by

ρE(τ) := sup{1

2
(||x + y||+ ||x− y||)− 1 : ||x|| ≤ 1, ||y|| ≤ τ}.
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E is uniformly smooth if and only if

lim
τ→0

ρE(τ)

τ
= 0.

Let dimE ≥ 2. The modulus of convexity of E is the function δE : (0, 2] → [0, 1]
defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣ : ||x|| = ||y|| = 1; ε = ||x− y||
}

.

E is uniformly convex if for any ε ∈ (0, 2], there exists a δ = δ(ε) > 0 such that if
x, y ∈ E with ||x|| ≤ 1, ||y|| ≤ 1 and ||x−y|| ≥ ε, then ||1

2
(x+y)|| ≤ 1−δ. Equiv-

alently, E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2]. A normed
space E is called strictly convex if for all x, y ∈ E, x 6= y, ||x|| = ||y|| = 1, we
have ||λx + (1− λ)y|| < 1, ∀λ ∈ (0, 1).

Let E∗ be the dual space of E. We denote by J the normalized duality mapping
from E to 2E∗

defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ||x||2 = ||f ||2}.

The following properties of J are well known (The reader can consult [8, 16, 17]
for more details):

(1) If E is uniformly smooth, then J is norm-to-norm uniformly continuous
on each bounded subset of E.

(2) J(x) 6= ∅, x ∈ E.
(3) If E is reflexive, then J is a mapping from E onto E∗.
(4) If E is smooth, then J is single valued.

Throughout this paper, we denote by φ, the functional on E × E defined by

φ(x, y) := ||x||2 − 2〈x, J(y)〉+ ||y||2, ∀x, y ∈ E.

Let C be a nonempty subset of E and let T be a mapping from K into E. A
point p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence
{xn}∞n=0 which converges weakly to p and lim

n→∞
||xn−Txn|| = 0. The set of asymp-

totic fixed points of T is denoted by F̃ (T ). We say that a mapping T is relatively
nonexpansive (see, for example, [4, 5, 7, 11, 15]) if the following conditions are
satisfied:
(R1) F (T ) 6= ∅;
(R2) φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T );

(R3) F (T ) = F̃ (T ).

If T satisfies (R1) and (R2), then T is said to be relatively quasi-nonexpansive. It
is easy to see that the class of relatively quasi-nonexpansive mappings contains
the class of relatively nonexpansive mappings. Many authors have studied the
methods of approximating the fixed points of relatively quasi-nonexpansive map-
pings (see, for example, [12, 14, 20] the references contained therein).
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A mapping T : C → C is called quasi-nonexpansive if

||Tx− x∗|| ≤ ||x− x∗||, ∀x ∈ C, x∗ ∈ F (T ).

It is clear that every nonexpansive mapping with nonempty set of fixed points
is quasi-nonexpansive. Clearly, in Hilbert space H, relatively quasi-nonexpansive
mappings and quasi-nonexpansive mappings are the same, for φ(x, y) = ||x −
y||2, ∀x, y ∈ H and this implies that

φ(p, Tx) ≤ φ(p, x) ⇔ ||Tx− p|| ≤ ||x− p||, ∀x ∈ C, p ∈ F (T ).

Examples of relatively quasi-nonexpansive mappings are given in [14].

Let E be a smooth, strictly convex and reflexive real Banach space and let C
be a nonempty closed convex subset of E. Following Alber [2], the generalized
projection ΠC from E onto C is defined by

ΠC(x) := argmin
y∈C

φ(y, x) (x ∈ E).

The existence and uniqueness of ΠC follows from the property of the functional
φ(x, y) and strict monotonicity of the mapping J (see, for example, [1, 2, 9, 10,
17]). If E is a Hilbert space, then ΠC is the metric projection of H onto C. From
[10], in uniformly convex and uniformly smooth Banach spaces, we have

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x||+ ||y||)2, ∀x, y ∈ E.

We know that the following lemmas hold for generalized projections.

Lemma 2.1. (Alber [2], Kamimura and Takahashi [10]) Let C be a nonempty
closed convex subset of a smooth, strictly convex and reflexive Banach space E.
Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, ∀y ∈ E.

Lemma 2.2. (Alber [2], Kamimura and Takahashi [10]) Let C be a nonempty
closed convex subset of a smooth, strictly convex and reflexive Banach space E.
Let x ∈ E and z ∈ C. Then

z = ΠCx ⇔ 〈y − z, J(x)− J(z)〉 ≤ 0, ∀y ∈ C.

The fixed points set F (T ) of a relatively quasi-nonexpansive mapping is closed
convex as a consequence of the following lemma.

Lemma 2.3. (Qin et al. [14], Nilsrakoo and Saejung [12]) Let C be a nonempty
closed convex subset of a smooth, uniformly convex Banach space E. Let T be
a closed relatively quasi- nonexpansive mapping of C into itself. Then F (T ) is
closed and convex.

Also, this following lemma will be used in the sequel.

Lemma 2.4. (Kamimura and Takahashi [10]) Let C be a nonempty closed con-
vex subset of a smooth, uniformly convex Banach space E. Let {xn}∞n=1 and
{yn}∞n=1 be sequences in E such that either {xn}∞n=1 or {yn}∞n=1 is bounded. If
lim

n→∞
φ(xn, yn) = 0, then lim

n→∞
||xn − yn|| = 0.
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Lemma 2.5. ( Xu, [21]) Let E be a uniformly convex real Banach space. For
arbitrary r > 0, let Br(0) := {x ∈ E : ||x|| ≤ r} and λ ∈ [0, 1]. Then, there exists
a continuous strictly increasing convex function

g : [0, 2r] → R, g(0) = 0

such that for every x, y ∈ Br(0), the following inequality holds:

||λx + (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||).

Lemma 2.6. (Zegeye et al., [23]) Let C be a nonempty closed and convex subset
a real uniformly convex Banach space E, let Ti : C → E, i = 1, 2, ... be closed rel-
atively quasi-nonexpansive mappings such that ∩∞i=1F (Ti) 6= ∅. Then the mapping

T := J−1
( ∑∞

i=0 ζiJTi

)
: C → E is closed relatively quasi-nonexpansive mapping

and F (T ) = ∩∞i=1F (Ti), where
∑∞

i=0 ζi = 1, ζi > 0, ∀i ≥ 0 and T0 = I.

For solving the equilibrium problem for a bifunction F : C × C → R, let us
assume that F satisfies the following conditions:
(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y,∈ C;
(A3) for each x, y, z ∈ C, lim sup

t↓0
F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 2.7. (Blum and Oettli, [3]) Let C be a nonempty closed convex subset of
a smooth, strictly convex and reflexive Banach space E and let F be a bifunction
of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ E. Then, there exists
z ∈ C such that

F (z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0 for all y ∈ K.

Lemma 2.8. (Takahashi and Zembayashi, [18]) Let C be a nonempty closed
convex subset of a smooth, strictly convex and reflexive Banach space E. Assume
that F : C ×C → R satisfies (A1)-(A4). For r > 0 and x ∈ E, define a mapping
T F

r : E → C as follows:

T F
r (x) = {z ∈ C : F (z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C}

for all z ∈ E. Then, the following hold:
1. T F

r is single-valued;
2. T F

r is firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

〈T F
r x− T F

r y, JT F
r x− JT F

r y〉 ≤ 〈T F
r x− T F

r y, Jx− Jy〉;

3. F (T F
r ) = EP (F );

4. EP (F ) is closed and convex.

Observe that an operator T in a Banach space E is said to be closed if xn → x
and Txn → y, then Tx = y.
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3. Main Results

We now state and prove the following theorem.

Theorem 3.1. Let E be a uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty closed convex subset of E. For each
k = 1, 2, ...,m, let Fk be a bifunction from C × C satisfying (A1)− (A4) and let
{Ti}∞i=1 be an infinite family of closed relatively-quasi nonexpansive mappings of

C into itself such that F := ∩m
k=1EP (Fk) ∩

(
∩∞i=1 F (Ti)

)
6= ∅. Let {xn}∞n=0 be

iteratively generated by x0 ∈ C, C1 = C, x1 = ΠC1x0,



yn = J−1(αnJxn + (1− αn)JTxn), n ≥ 1,
u1,n = T F1

r1,n
yn

u2,n = T F2
r2,n

yn

...
um,n = T Fm

rm,n
yn

wn = J−1(β1,nJu1,n + β2,nJu2,n + ... + βm,nJum,n)
Cn+1 = {w ∈ Cn : φ(w, wn) ≤ φ(w, xn)}, n ≥ 1,
xn+1 = ΠCn+1x0, n ≥ 1,

(3.1)

where J is the duality mapping on E and T := J−1
( ∑∞

i=0 ζiJTi

)
with T0 = I

and
∑∞

i=0 ζi = 1, ζi > 0, ∀i ≥ 0. Suppose {αn}∞n=1 and {βk,n}∞n=1, k = 1, 2, ...,m
are sequences in (0, 1) such that
(i) lim inf

n→∞
αn(1− αn) > 0

(ii)
m∑

k=1

βk,n = 1, n ≥ 1

(iii) {rk,n}∞n=1 ⊂ (0,∞), (k = 1, 2, ...,m) satisfying lim inf
n→∞

rk,n > 0, k = 1, 2, ...,m.

Then, {xn}∞n=0 converges strongly to ΠF x0.

Proof. We first show that Cn, ∀n ≥ 1 is closed and convex. It is obvious that
C1 = C is closed and convex. Suppose that Cn is closed convex for some n > 1.
From the definition of Cn+1, we have that z ∈ Cn+1 implies φ(z, wn) ≤ φ(z, xn).
This is equivalent to

2
(
〈z, Jxn〉 − 〈z, Jwn〉

)
≤ ||xn||2 − ||wn||2

This implies that Cn+1 is closed convex for the same n > 1. Hence, Cn is closed
and convex ∀n ≥ 1. This shows that ΠCn+1x0 is well defined for all n ≥ 0.
We next show that F ⊂ Cn, ∀n ≥ 1. From Lemma 2.8, one has that T Fk

rk,n
, k =

1, 2, ...,m is relatively quasi-nonexpansive mapping. For n = 1, we have F ⊂ C =
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C1. Then for each x∗ ∈ F , we obtain

φ(x∗, wn) = φ(x∗, J−1(β1,nJu1,n + β2,nJu2,n + ... + βm,nJum,n))

= ||x∗||2 − 2β1,n〈x∗, Ju1,n〉 − 2β2,n〈x∗, Ju2,n〉
−2β3,n〈x∗, Ju3,n〉 − . . .− 2βm,n〈x∗, Jum,n〉
+||β1,nJu1,n + β2,nJu2,n + ... + βm,nJum,n||2

≤ ||x∗||2 − 2β1,n〈x∗, Ju1,n〉 − 2β2,n〈x∗, Ju2,n〉
−2β3,n〈x∗, Ju3,n〉 − . . .− 2βm,n〈x∗, Jum,n〉
+β1,n||Ju1,n||2 + β2,n||Ju2,n||2 + β3,n||Ju3,n||2. (3.2)

Furthermore, using (3.2), we have

φ(x∗, wn) = β1,nφ(x∗, T F1
r1,n

yn) + β2,nφ(x∗, T F2
r2,n

yn)

+β3,nφ(x∗, T F3
r3,n

yn) + . . . + βm,nφ(x∗, T Fm
rm,n

yn)

≤ β1,nφ(x∗, yn) + β2,nφ(x∗, yn)

+β3,nφ(x∗, yn) + . . . + βm,nφ(x∗, yn)

≤ φ(x∗, yn). (3.3)

Since E is uniformly smooth, we know that E∗ is uniformly convex. Then from
Lemma 2.5 and (3.1), we have

φ(x∗, yn) = φ(x∗, J−1(αnJxn + (1− αn)JTxn))

= ||x∗||2 − 2αn〈x∗, Jxn〉 − 2(1− αn)〈x∗, JTxn〉
+||αnJxn + (1− αn)JTxn||2

≤ ||x∗||2 − 2αn〈x∗, Jxn〉 − 2(1− αn)〈x∗, JTxn〉
+αn||Jxn||2 + (1− αn)||JTxn||2 − αn(1− αn)g(||Jxn − JTxn||)

= αnφ(x∗, xn) + (1− αn)φ(x∗, Txn)− αn(1− αn)g(||Jxn − JTxn||)
≤ φ(x∗, xn)− αn(1− αn)g(||Jxn − JTxn||). (3.4)

So, x∗ ∈ Cn. This implies that ∅ 6= F ⊂ Cn, ∀n ≥ 1 and the sequence {xn}∞n=0

generated by (3.1) is well defined.
We now show that lim

n→∞
φ(xn, x0) exists. From (3.1), we have xn = ΠCnx0 which

implies that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn (3.5)

and in particular

〈xn − p, Jx0 − Jxn〉 ≥ 0, ∀p ∈ F.

By Lemma 2.1, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p, xn)

≤ φ(p, x0)

for each p ∈ F ⊂ Cn, n ≥ 1. Hence, the sequence {φ(xn, x0)}∞n=0 is bounded.
Since xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.
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Therefore, {φ(xn, x0)}∞n=0 is nondecreasing. It follows that the limit of {φ(xn, x0)}∞n=0

exists.

Now, we show that {xn}∞n=0 is Cauchy. By the construction of Cn, we have that
Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integer m ≥ n. It then follows
that

φ(xm, xn) = φ(xm, ΠCnx0)

≤ φ(xm, x0)− φ(ΠCnx0, x0)

= φ(xm, x0)− φ(xn, x0) → 0 as m,n →∞.

It then follows from Lemma 2.4 that ||xm − xn|| → 0 as m,n → ∞. Hence,
{xn}∞n=0 is Cauchy. Since E is a Banach space and C is closed convex, then there
exists p ∈ C such that xn → p as n →∞.

We next show that lim
n→∞

||xn − Txn|| = 0. Now since φ(xm, xn) → 0 as m, n →∞
we have in particular that φ(xn+1, xn) → 0 as n → ∞ and this further implies
that lim

n→∞
||xn+1 − xn|| = 0. Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, wn) ≤ φ(xn+1, xn), ∀n ≥ 0.

Therefore,
lim

n→∞
φ(xn+1, wn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.4 that

lim
n→∞

||xn+1 − xn|| = 0 = lim
n→∞

||xn+1 − wn||.

So,
||xn − wn|| ≤ ||xn+1 − xn||+ ||xn+1 − wn||.

Hence,
lim

n→∞
||xn − wn|| = 0.

Since xn → p as n → ∞ and ||xn − wn|| → 0 as n → ∞, we have wn → p as
n →∞. Furthermore, since J is uniformly norm-to-norm continuous on bounded
sets and lim

n→∞
||xn − wn|| = 0, we obtain

lim
n→∞

||Jxn − Jwn|| = 0.

Let r := sup
n≥1

{||xn||, ||Txn||}. Substituting (3.3) into (3.4), we obtain

αn(1− αn)g(||Jxn − JTxn||) ≤ φ(x∗, xn)− φ(x∗, wn).

But

φ(x∗, xn)− φ(x∗, wn) = ||xn||2 − ||wn||2 − 2〈x∗, Jxn − Jwn〉

≤
∣∣∣||xn||2 − ||wn||2

∣∣∣ + 2
∣∣∣〈x∗, Jxn − Jwn〉

∣∣∣
≤

∣∣∣||xn|| − ||wn||
∣∣∣(||xn||+ ||wn||) + 2||x∗||||Jxn − Jwn||

≤ ||xn − wn||(||xn||+ ||wn||) + 2||x∗||||Jxn − Jwn||.
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From lim
n→∞

||xn − wn|| = 0 and lim
n→∞

||Jxn − Jwn|| = 0, we obtain

φ(x∗, xn)− φ(x∗, wn) → 0, n →∞.

Using the condition lim inf
n→∞

αn(1− αn) > 0, we have

lim
n→∞

g(||Jxn − JTxn||) = 0.

By property of g, we have lim
n→∞

||Jxn − JTxn|| = 0. Since J−1 is also uniformly

norm-to-norm continuous on bounded sets, we have

lim
n→∞

||xn − Txn|| = 0.

Since T is closed and xn → p, we have p ∈ F (T ) = ∩∞i=1F (Ti).

Next, we show that p ∈ ∩m
k=1EP (Fk). Since xn → p, we obtain from (3.3), (3.4)

and Lemma 2.4 that yn → p, n → ∞. Furthermore, since T Fk
rk,n

is relatively
nonexpansive for each k = 1, 2, ...,m, we obtain

0 ≤ φ(p, uk,n) = φ(p, T Fk
rk,nyn) ≤ φ(p, yn) → 0.

Then we have from Lemma 2.4 that lim
n→∞

||p − uk,n|| = 0, k = 1, 2, ...,m. Conse-

quently, we have that

||uk,n − yn|| ≤ ||uk,n − p||+ ||yn − p|| → 0. (3.6)

Also, since J is uniformly norm-to-norm continuous on bounded sets and using
(3.6), we obtain

lim
n→∞

||Juk,n − Jyn|| = 0.

Since lim inf
n→∞

rk,n > 0, then

lim
n→∞

||Juk,n − Jyn||
rk,n

= 0. (3.7)

By Lemma 2.8, we have that

Fk(uk,n, y) +
1

rk,n

〈y − uk,n, Juk,n − Jyn〉 ≥ 0, ∀y ∈ C.

Furthermore, using (A2) in the last inequality, we obtain

1

rk,n

〈y − uk,n, Juk,n − Jyn〉 ≥ Fk(y, uk,n).

By (A4), (3.7) and uk,n → p, we have

Fk(y, p) ≤ 0, ∀y ∈ C.

Let zt := ty +(1− t)p for all t ∈ (0, 1] and y ∈ K. This implies that zt ∈ K. This
yields that Fk(zt, p) ≤ 0. It follows from (A1) and (A4) that

0 = Fk(zt, zt) ≤ tFk(zt, y) + (1− t)Fk(zt, p)

≤ tFk(zt, y)

and hence
0 ≤ Fk(zt, y).
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From condition (A3), we obtain

Fk(p, y) ≥ 0, ∀y ∈ C.

This implies that p ∈ EP (Fk), k = 1, 2, . . . ,m. Thus, p ∈ ∩m
k=1EP (Fk). Hence,

we have p ∈ F = ∩m
k=1EP (Fk) ∩ F (T ).

Finally, we show that p = ΠF x0. Now by taking the limit in (3.5), we have

〈p− z, Jx0 − Jp〉 ≥ 0, ∀z ∈ F.

By Lemma 2.2, we have p = ΠF x0. �

Corollary 3.2. Let E be a uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty closed convex subset of E. For each
k = 1, 2, let Fk be a bifunction from C×C satisfying (A1)− (A4) and let {Ti}∞i=1

be an infinite family of closed relatively-quasi nonexpansive mappings of C into

itself such that F := ∩2
k=1EP (Fk)∩

(
∩∞i=1 F (Ti)

)
6= ∅. Let {xn}∞n=0 be iteratively

generated by x0 ∈ C, C1 = C, x1 = ΠC1x0,

yn = J−1(αnJxn + (1− αn)JTxn), n ≥ 1,
un = SF1

r1,nyn

vn = SF2
r2,nyn

wn = J−1(βnJu1,n + (1− βn)Ju2,n)
Cn+1 = {w ∈ Cn : φ(w,wn) ≤ φ(w, xn)}, n ≥ 1,
xn+1 = ΠCn+1x0, n ≥ 1,

where J is the duality mapping on E and T := J−1
( ∑∞

i=0 ζiJTi

)
with T0 = I

and
∑∞

i=0 ζi = 1, ζi > 0, ∀i ≥ 0. Suppose {αn}∞n=1 and {βn}∞n=1 are sequences in
(0, 1) such that
(i) lim inf

n→∞
αn(1− αn) > 0

(ii) {rk,n}∞n=1 ⊂ (0,∞), (k = 1, 2) satisfying lim inf
n→∞

rk,n > 0, k = 1, 2.

Then, {xn}∞n=0 converges strongly to ΠF x0.

Corollary 3.3. Let E be a uniformly convex real Banach space which is also
uniformly smooth. Let C be a nonempty closed convex subset of E. For each
k = 1, 2, ...,m, let Fk be a bifunction from C×C satisfying (A1)− (A4) such that
F := ∩m

k=1EP (Fk) 6= ∅. Let {xn}∞n=0 be iteratively generated by x0 ∈ C, C1 =
C, x1 = ΠC1x0,

u1,n = SF1
r1,nxn

u2,n = SF2
r2,nxn

...
um,n = SFm

rm,nxn

wn = J−1(β1,nJu1,n + β2,nJu2,n + ... + βm,nJum,n)
Cn+1 = {w ∈ Cn : φ(w, wn) ≤ φ(w, xn)}, n ≥ 1,
xn+1 = ΠCn+1x0, n ≥ 1,

where J is the duality mapping on E and
∑∞

i=0 ζi = 1, ζi > 0, ∀i ≥ 0. Suppose
{αn}∞n=1 and {βk,n}∞n=1, k = 1, 2, ...,m are sequences in (0, 1) such that
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(i) lim inf
n→∞

αn(1− αn) > 0

(ii)
m∑

k=1

βk,n = 1, n ≥ 1

(iii) {rk,n}∞n=1 ⊂ (0,∞), (k = 1, 2, ...,m) satisfying lim inf
n→∞

rk,n > 0, k = 1, 2, ...,m.

Then, {xn}∞n=0 converges strongly to ΠF x0.
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