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MOMENT PROPERTY OF EXPONENTIAL MONOMIALS ON
STURM–LIOUVILLE HYPERGROUPS
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Abstract. In this paper we will characterize the translates of exponential
monomials on an arbitrary Sturm–Liouville hypergroup.

1. Introduction

In the theory of hypergroups Sturm–Liouville hypergroups play an important role.
This important case of hypergroups is based on the classical Sturm–Liouville
boundary value problem on nonnegative reals. For the definition of Sturm–
Liouville hypergroups see [1, 2, 3]. If we consider the Sturm–Liouville differential
equation as an eigenvalue problem of a second order differential operator and
we fix the eigenvalue then the eigenfunction of this operator has a multiplicative
property with respect to convolution defined by the hypergroup, this fact can be
proved. Hence we say that the eigenfunctions (or in other words the solution of
the differential equation for different eigenvalues) are exponential functions over
the actual hypergroup. Specifically, exponential functions satisfy Cauchy’s func-
tional equation; briefly, let K = (R0, A) be a Sturm–Liouville hypergroup, where
A is a positive and continuously differentiable function on positive reals, then the
Sturm–Liouville equation is

∂2
1Φ(x, λ) +

A′(x)

A(x)
∂1Φ(x, λ) = λ Φ(x, λ) Φ(0, λ) = 1, ∂1Φ(0, λ) = 0,

furthermore, for any y in K let τy denote a translation operator on the space of
all complex valued functions on K which are integrable with respect to δx ∗ δy for
any x, y in K. Here δx denotes the Dirac-measure. With this in hand Cauchy’s
equation can be written in the form τy Φ(x, λ) = Φ(x ∗ y, λ) = Φ(x, λ)Φ(y, λ).
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Actually, we can say that the function Φ denotes an exponential family. Using the
exponential family we define exponential monomials on K as functions of the form
x 7→ P (∂2)ϕ(x, λ), where P is a complex polynomial, λ is a complex number and
∂2 denotes the partial differential operator with respect to the second variable.
In this sense we can formulate differential equations of exponential monomials.
The class of special exponential monomials has a linear independence property,
this result can be found in [4]. Let N be a nonnegative integer. If we derivate
the Sturm–Liouville equation N -times with respect to its ”eigenvalue” we get
the equation of an exponential monomial. For instance, the equation of the N th

exponential monomial is

∂2
1∂

N
2 Φ(x, λ) +

A′(x)

A(x)
∂1∂

N
2 Φ(x, λ) = N∂N−1

2 Φ(x, λ) + λ ∂N
2 Φ(x, λ).

With the translation operator moment functions can be introduced. For any
nonnegative integer N the complex valued continuous function ϕ on K is called
a moment function of order N, if there are complex valued continuous functions
ϕk on K for k = 0, 1, . . . , N such that ϕ0 = 1, ϕN = ϕ, and

τyϕ(x) = ϕk(x ∗ y) =
k∑

i=0

(
k

i

)
ϕi(x)ϕk−i(y)

holds for k = 0, 1, . . . , N and for all x, y in K. In this case we say that the
functions ϕk (k = 0, 1, . . . , N) form a moment sequence of order N. In the main
result of this paper we will show that the translates of exponential monomials
seem to have the characterization property of moment functions. This means that
there is another close connection between exponential monomials and moment
functions. The idea of the proof is based on the exchangeability of translation
and derivation. We give the description in the following section.

2. Translates of exponential monomials

Let us turn to describe what we get if we consider the equation of the N th

monomial and substitute x ∗ y for x. We easily get on one hand the following
equation

∂2
1∂

N
2 Φ(x∗y, λ)+

A′(x)

A(x)
∂1∂

N
2 Φ(x∗y, λ) = N∂N−1

2 Φ(x∗y, λ)+λ ∂N
2 Φ(x∗y, λ). (2.1)

On the other hand, if we focus on the multiplicative property of the exponential
function, then we have that equation

∂2
1Φ(x ∗ y, λ) +

A′(x)

A(x)
∂1Φ(x ∗ y, λ) = λ Φ(x ∗ y, λ) = λΦ(x, λ)Φ(y, λ) (2.2)

holds. That is, first we execute the convolution then we start to differentiate
equation (2.2). It is easy to see that if we derivate equation (2.2) N -times with
respect to λ, we have

∂2
1∂

N
2 Φ(x ∗ y, λ) +

A′(x)

A(x)
∂1∂

N
2 Φ(x ∗ y, λ) = ∂N

2

(
λΦ(x, λ)Φ(y, λ)

)
, (2.3)



MOMENT PROPERTY OF EXPONENTIAL MONOMIALS 59

where ∂N
2 clearly stands for dN

dλN . We introduce the function ν : R0 × C → C of
the form ν(x, λ) = 1 · λ = λ so in the equation (2.3) the second order partial
derivate can be written in the form

∂N
2

(
λΦ(x, λ)Φ(y, λ)

)
= ∂N

2

[
ν(x, λ) Φ(x ∗ y, λ)

]
. (2.4)

From equation (2.1), (2.3) and (2.4) we get

N∂N−1
2 Φ(x ∗ y, λ) + λ ∂N

2 Φ(x ∗ y, λ) = ∂N
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
.

This makes the connection between exponential monomials and their translates
clear. The following theorem presents the exact form of the N th derivatives of
the function (x, λ) 7→ ν(x, λ) Φ(x ∗ y, λ) with respect to λ.

Theorem 2.1. Let K = (R0, A) be a Sturm–Liouville hypergroup, λ a fixed
complex number, N a nonnegative integer, y an arbitrary nonnegtive real number,
Φ : R0 ×C → C an exponential function and ν : R0 ×C → C a function with the
the property ν(x, λ) = 1 · λ = λ. Then the second order partial derivatives of the
function ν(x, λ) Φ(x ∗ y, λ) can be written in the form

∂N
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
= λ∂N

2 Φ(x, λ)Φ(y, λ)+

+
N−1∑
i=0

∂i
2Φ(x, λ)

(
λ

(
N

i

)
∂N−i

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i−1

2 Φ(y, λ)
)
.

Proof. In the proof we use induction by N , first we analyze the case N = 1. Here
we get

d

dλ
(λ Φ(x ∗ y, λ)) =

d

dλ
(λ Φ(x, λ)Φ(y, λ)) =

= Φ(x, λ)Φ(y, λ) + λ ∂2Φ(x, λ)Φ(y, λ) + λ Φ(x, λ)∂2Φ(y, λ) =

= λ ∂2Φ(x, λ)Φ(y, λ) + Φ(x, λ)
(
λ ∂2Φ(y, λ) + Φ(y, λ)

)
,

which shows the theorem holds for N = 1. Let us suppose that the formula is
true for N , and we will show that it is valid for N + 1. In the first step of this
case we derivate the equation with respect to λ. We get the following:

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= ∂N
2 Φ(x, λ)Φ(y, λ) + λ ∂N+1

2 Φ(x, λ)Φ(y, λ) + λ ∂N
2 Φ(x, λ)∂2Φ(y, λ)+

+
N−1∑
i=0

∂i+1
2 Φ(x, λ)

(
λ

(
N

i

)
∂N−i

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i−1

2 Φ(y, λ)
)
+

+
N−1∑
i=0

∂i
2Φ(x, λ)

((N

i

)
∂N−i

2 Φ(y, λ) + λ

(
N

i

)
∂N−i+1

2 Φ(y, λ)
)
+

+
N−1∑
i=0

∂i
2Φ(x, λ)

(
N

(
N − 1

i

)
∂N−i

2 Φ(y, λ)
)
.

In the next step we will focus on the index range of the sums

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= ∂N
2 Φ(x, λ)Φ(y, λ) + λ ∂N+1

2 Φ(x, λ)Φ(y, λ) + λ ∂N
2 Φ(x, λ)∂2Φ(y, λ)+
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+∂N
2 Φ(x, λ)

(
λ N∂2Φ(y, λ) + NΦ(y, λ)

)
+

+
N−2∑
i=0

∂i+1
2 Φ(x, λ)

(
λ

(
N

i

)
∂N−i

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i−1

2 Φ(y, λ)
)
+

+
N−1∑
i=0

∂i
2Φ(x, λ)

(
N

i

)
∂N−i

2 Φ(y, λ) + Φ(x, λ)
(
λ∂N+1

2 Φ(y, λ) + N∂N
2 Φ(y, λ)

)
+

+
N−1∑
i=1

∂i
2Φ(x, λ)

(
λ

(
N

i

)
∂N−i+1

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i

2 Φ(y, λ)
)
.

To change the index range of the first sum we introduce a substitution

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= ∂N
2 Φ(x, λ)Φ(y, λ) + λ ∂N+1

2 Φ(x, λ)Φ(y, λ) + λ ∂N
2 Φ(x, λ)∂2Φ(y, λ)+

+∂N
2 Φ(x, λ)

(
λ N∂2Φ(y, λ) + NΦ(y, λ)

)
+

+
N−1∑
i=1

∂i
2Φ(x, λ)

(
λ

(
N

i− 1

)
∂N−i+1

2 Φ(y, λ) + N

(
N − 1

i− 1

)
∂N−i

2 Φ(y, λ)
)
+

+
N−1∑
i=0

∂i
2Φ(x, λ)

(
N

i

)
∂N−i

2 Φ(y, λ) + Φ(x, λ)
(
λ∂N+1

2 Φ(y, λ) + N∂N
2 Φ(y, λ)

)
+

+
N−1∑
i=1

∂i
2Φ(x, λ)

(
λ

(
N

i

)
∂N−i+1

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i

2 Φ(y, λ)
)
.

We simplify the expression

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= ∂N
2 Φ(x, λ)Φ(y, λ) + λ ∂N+1

2 Φ(x, λ)Φ(y, λ) + λ ∂N
2 Φ(x, λ)∂2Φ(y, λ)+

+
N−1∑
i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+

(
N

N

)
∂N

2 Φ(x, λ)
(
λ N∂2Φ(y, λ) + NΦ(y, λ)

)
+

+
N−1∑
i=1

∂i
2Φ(x, λ)

(
λ
[( N

i− 1

)
+

(
N

i

)]
∂N−i+1

2 Φ(y, λ)+

N−1∑
i=1

∂i
2Φ(x, λ)

(
N

[(N − 1

i− 1

)
+

(
N − 1

i

)]
∂N−i

2 Φ(y, λ)
)
+

+

(
N

0

)
Φ(x, λ)

(
∂N+1

2 Φ(y, λ) + N∂N
2 Φ(y, λ)

)
,

and using the identity for binomial coefficients, we have

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= ∂N
2 Φ(x, λ)Φ(y, λ) + λ ∂N+1

2 Φ(x, λ)Φ(y, λ) + λ ∂N
2 Φ(x, λ)∂2Φ(y, λ)+
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+
N−1∑
i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+

(
N

N

)
∂N

2 Φ(x, λ)
(
λ N∂2Φ(y, λ) + NΦ(y, λ)

)
+

+
N−1∑
i=1

∂i
2Φ(x, λ)

(
λ

(
N + 1

i

)
∂N−i+1

2 Φ(y, λ)+

N−1∑
i=1

∂i
2Φ(x, λ)

(
N

(
N

i

)
∂N−i

2 Φ(y, λ)
)
+

+

(
N

0

)
Φ(x, λ)

(
∂N+1

2 Φ(y, λ) + N∂N
2 Φ(y, λ)

)
.

All this can be written as

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= λ ∂N+1
2 Φ(x, λ)Φ(y, λ)+

+
N∑

i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+N
N∑

i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+
N∑

i=0

∂i
2Φ(x, λ)

(
λ

(
N + 1

i

)
∂N−i+1

2 Φ(y, λ).

It is easy to see that the previous and the following equations are equal to

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
=

= λ ∂N+1
2 Φ(x, λ)Φ(y, λ)+

+ (N + 1)
N∑

i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+
N∑

i=0

∂i
2Φ(x, λ)

(
λ

(
N + 1

i

)
∂N−i+1

2 Φ(y, λ).

This final step completes the proof of the expected formula

∂N+1
2

[
ν(x, λ) Φ(x ∗ y, λ)

]
= λ ∂N+1

2 Φ(x, λ)Φ(y, λ)+

+
N∑

i=0

∂i
2Φ(x, λ)

(
λ

(
N + 1

i

)
∂N−i+1

2 Φ(y, λ) + (N + 1)

(
N

i

)
∂N−i

2 Φ(y, λ)
)
,

which means that the statement holds and the theorem is true. �

Remark 2.2. The proof above shows a strong analogy with that of the classical
binomial theorem.
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3. Main result

The following theorem is the main result of this paper and we will show that
the translates of exponential monomials can be written in a compact form. The
previous theorem will be utilized to prove the statement.

Theorem 3.1. Let K = (R0, A) be a Sturm–Liouville hypergroup, λ a complex
number, N a nonnegative integer and the function x 7→ ∂N

2 Φ(x, λ) is a special
exponential monomial. Then

τy ∂N
2 Φ(x, λ) =

N∑
i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)

for any y in R0.

Proof. The proof is based on induction by N . In the first step, if N = 1 on one
hand we get that

∂2
1∂2Φ(x ∗ y, λ) + p(x)∂1∂2Φ(x ∗ y, λ) = Φ(x ∗ y, λ) + λ∂2Φ(x ∗ y, λ)

and on the other hand the following is valid

∂2
1∂2Φ(x ∗ y, λ) + p(x)∂1∂2Φ(x ∗ y, λ) =

= Φ(x, λ)Φ(y, λ) + λ∂2Φ(x, λ)Φ(y, λ) + λΦ(x, λ)∂2Φ(y, λ).

Since the left hand side of these equations are equal we have

Φ(x ∗ y, λ) + λ∂2Φ(x ∗ y, λ) =

Φ(x, λ)Φ(y, λ) + λ∂2Φ(x, λ)Φ(y, λ) + λΦ(x, λ)∂2Φ(y, λ)

and if we use the multiplicative property of exponential functions and simplify
the equation we get

τy∂2Φ(x, λ) = ∂2Φ(x, λ)Φ(y, λ) + Φ(x, λ)∂2Φ(y, λ).

It means that the statement holds for the case of N = 1. Now we can suppose
that

τy ∂N−1
2 Φ(x, λ) =

N−1∑
i=0

(
N − 1

i

)
∂i

2Φ(x, λ)∂N−i−1
2 Φ(y, λ)

holds. In the final step of proof we use the characterization equation of exponen-
tial monomials and the previous statement. Let us consider the characterization
equation which is the following

∂2
1∂

N
2 Φ(x ∗ y, λ) + p(x)∂1∂

N
2 Φ(x ∗ y, λ) = N∂N−1

2 Φ(x ∗ y, λ) + λ∂N
2 Φ(x ∗ y, λ)

and according to the previous theorem

∂2
1∂

N
2 Φ(x ∗ y, λ) + p(x)∂1∂

N
2 Φ(x ∗ y, λ) = λ∂N

2 Φ(x, λ)Φ(y, λ)+

+
N−1∑
i=0

∂i
2Φ(x, λ)

(
λ

(
N

i

)
∂N−i

2 Φ(y, λ) + N

(
N − 1

i

)
∂N−i−1

2 Φ(y, λ)
)
.

This is similar than the previous, specifically from the equality of left hand sides
of the previous two equations we get

N∂N−1
2 Φ(x ∗ y, λ) + λ∂N

2 Φ(x ∗ y, λ) =
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= λ∂N
2 Φ(x, λ)Φ(y, λ) +

N−1∑
i=0

λ

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+
N−1∑
i=0

N

(
N − 1

i

)
∂i

2Φ(x, λ)∂N−i−1
2 Φ(y, λ) =

= λ

N∑
i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)+

+N

N−1∑
i=0

(
N − 1

i

)
∂i

2Φ(x, λ)∂N−i−1
2 Φ(y, λ).

At this point using the assumption and simplifying the equation we can see that

τy ∂N
2 Φ(x, λ) =

N∑
i=0

(
N

i

)
∂i

2Φ(x, λ)∂N−i
2 Φ(y, λ)

holds, which means that our statement follows. �
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