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Abstract. If β = 〈βn〉n∈Z is a sequence of positive numbers, then a slant
weighted Toeplitz operator Aφ is an operator on L2(β) defined as Aφ = WMφ

where Mφ is the multiplication operator on L2(β). When the sequence β ≡ 1,
this operator reduces to the ordinary slant Toeplitz operator given by M.C. Ho
in 1996. In this paper, we study some algebraic properties of the slant weighted
Toeplitz operator. We also obtain its matrix characterization and discuss the
adjoint of this operator.

1. Introduction and Preliminaries

Toeplitz operators arise in plenty of applications like prediction theory, wavelet
analysis and solution of differential equations. These operators were introduced
by O. Toeplitz [7] in the year 1911. Subsequently many mathematicians like
Devinatz [10], Abrahmse [3], Brown and Halmos [4] came up with different gen-
eralisations of Toeplitz operators. In 1995, Ho [2] introduced the class of slant
Toeplitz operator having the property that the matrices with respect to the stan-
dard orthonormal basis could be obtained by eliminating every alternate row of
the matrices of the corresponding Toeplitz operators. Villemoes [8] associated
the Besov regularity of solutions of the refinement equation with the spectral ra-
dius of an associated slant Toeplitz operator and Goodman, Micchelli and Ward
[9] showed the connection between their spectral radii and conditions for the
solutions of certain differential equations being in Lipschitz classes.
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However these studies were made in the context of the usual Hardy spaces H2

and Hp and the Lorentz spaces L2 and Lp. Meanwhile, the notion of the weighted
sequence spaces H2(β), L2(β) and their generalisations came up. Shields [1] made
a systematic study of the shift operator and the multiplication operator on L2(β).
Lauric [6] studied the Toeplitz operators on H2(β). Motivated by the increasing
popularity of the spaces L2(β), H2(β) and the multidirectional applications of the
slant Toeplitz operators, we introduced [5] the notion of slant weighted Toeplitz
operators. In this paper we further investigate the properties of these operators.
The study of weighted Toeplitz operators and that of slant weighted Toeplitz
operators is supposed to be meaningful not only to specialists in the theory of
Toeplitz operators, but would also be of interest to physicists, probabilists and
computer scientists. We begin with the following preliminaries:

Let β = {βn}n∈Z be a sequence of positive numbers such that β0 = 1, 0 <
βn
βn+1

≤ 1 for n ≥ 0 and 0 <
βn
βn−1

≤ 1 for n ≤ 0. Also let
β2n

βn
be bounded.

Consider the spaces [6], [1].

L2(β) =

{
f(z) =

∞∑
n=−∞

anz
n

∣∣∣∣ an ∈ C, ‖f‖2
β =

∞∑
n=−∞

|an|2β2
n <∞

}
and

H2(β) =

{
f(z) =

∞∑
n=0

anz
n

∣∣∣∣ an ∈ C, ‖f‖2
β =

∞∑
n=0

|an|2β2
n <∞

}
.

Then (L2(β), ‖ · ‖β) is a Hilbert space [6] with an orthonormal basis given by{
ek(z) =

zk

βk

}
k∈Z

and with an inner product defined by〈 ∞∑
n=−∞

anz
n,

∞∑
n=−∞

bnz
n

〉
=

∞∑
n=−∞

anb̄nβ
2
n.

Further, H2(β) is a subspace [6] of L2(β). Now, let

L∞(β) =

{
φ(z) =

∞∑
n=−∞

anz
n|φL2(β) ⊆ L2(β) and ∃ c ∈ R

such that ‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)

}
.

Then, L∞(β) is a Banach space [6] with respect to the norm defined by

‖φ‖∞ = inf{c|‖φf‖β ≤ c‖f‖β for all f ∈ L2(β)}.

Let P : L2(β) → H2(β) be the orthogonal projection of L2(β) onto H2(β).
Let φ ∈ L∞(β), then the weighted multiplication operator [1] with symbol φ,

that is, Mφ : L2(β) → L2(β) is given by

Mφek(z) =
1

βk

∞∑
n=−∞

anβn+ken+k(z).
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If we put φ1(z) = z, then Mφ1 = Mz is the operator defined as Mzek(z) =

wkek+1(z), where wk =
βk+1

βk
for all k ∈ Z, and is known as a weighted shift [1].

Further, the weighted Toeplitz operator Tφ [6] on H2(β) is defined as

Tφ(f) = P (φf).

This mapping is well defined, for, if f ∈ H2(β) ⊂ L2(β), then by definition,
φf ∈ L2(β) and hence P (φf) ∈ H2(β). The matrix of Tφ is :

a0
β0

β0
a−1

β0

β1
a−2

β0

β2
. . . . . .

a1
β1

β0
a0

β1

β1
a−1

β1

β2
. . . . . .

a2
β2

β0
a1

β2

β1
a0

β2

β2
. . . . . .

. . . . . . . . . . . . . . .

 .
Hence the effect of Tφ on the orthonormal basis can be described by

Tφek(z) =
1

βk

∞∑
n=0

an−kβnen(z).

2. Slant weighted Toeplitz operator

Let φ ∈ L∞(β). Then the slant weighted Toeplitz operator Aφ, introduced in
[5] is an operator on L2(β) defined as Aφ : L2(β) → L2(β) such that

Aφek(z) =
1

βk

∞∑
n=−∞

a2n−kβnen(z).

If W : L2(β) → L2(β) such that

We2n(z) =
βn
β2n

en(z)

and

We2n−1(z) = 0 for all n ∈ Z,
then an alternate definition of Aφ [5] is given by

Aφ(f) = WMφ(f) = W (φf) for all f ∈ L2(β).

The matrix of W is

. . . . . . . . . . . . . . . . . . . . .

...
β0

β0

0 0 0 0 . . .

... 0 0
β1

β2

0 0 . . .

... 0 0 0 0
β2

β4

. . .

. . . . . . . . . . . . . . . . . . . . .


.



22 S.C. ARORA, R. KATHURIA

Also, ‖W‖ = sup

∣∣∣∣ βnβ2n

∣∣∣∣ ≤ 1. The adjoint of W is given by

W ∗en(z) =
βn
β2n

e2n(z), n ∈ Z.

Theorem 2.1. W does not commute with Mz.

Proof. Aφ = WMφ and when φ = 1,

A1 = WM1 = W.

But since A1 is a slant weighted Toeplitz operator, it must satisfy the character-
ization [5]

MzA1 = A1Mz2

⇒ MzW = WMz2 .

Hence W does not commute with Mz. �

Theorem 2.2. The mapping φ→ Aφ is linear and one-to-one.

Proof.

A(αφ+βψ) = WM(αφ+βψ)

= αWMφ + βWMψ

= αAφ + βAψ

Hence the mapping is linear.
For one-one ness, let Aφ = Aψ where φ, ψ ∈ L∞(β). Then

Aφ−ψ = 0

⇒A(φ− ψ)en(z) = 0 for all n ∈ Z
⇒WM(φ−ψ)en(z) = 0 for all n ∈ Z
⇒W (φ− ψ)en(z) = 0 for all n ∈ Z .

On taking n = 1,

W (φ− ψ)e1(z) = 0

⇒φ− ψ = 0 or φ− ψ has only even coefficients.

On taking n = 2,

W (φ− ψ)e2(z) = 0

⇒φ− ψ = 0 or φ− ψ has only odd coefficients.

Hence we conclude that φ− ψ = 0. �

Theorem 2.3. W (φ(z2)) = φ(z) for all φ ∈ L2(β).
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Proof. Let φ =
∞∑

n=−∞
anz

n be in L2(β). Then

W (φ(z2)) = W

( ∑
anz

2n

)
= W

∑
anβ2ne2n(z)

=
∑

anβnen(z)

=
∑

anz
n = φ(z). �

Lemma 2.4. If f(z) is an L2(β) function, then f(z2) is also an L2(β) function

if
β2n

βn
< M <∞ for all n.

Proof. Let f(z) =
∞∑

n=−∞
αnz

n be an L2(β) function.

Then

‖f(z)‖2
β =

∞∑
n=−∞

|αn|2β2
n <∞

Also, then

f(z2) =
∞∑

n=−∞

αnz
2n =

∞∑
n=−∞

αnβ2ne2n(z) .

Hence

‖f(z2)‖2
β =

∑
|αn|2β2

2n

=
∞∑

n=−∞

|αn|2β2
n ×

β2
2n

β2
n

≤M2

∞∑
n=−∞

|αn|2β2
n <∞.

Therefore f(z2) is also an L2(β) function. �.

Theorem 2.5. Let
β2n

βn
< M <∞ for all n. Then

(i) W ∗f ∈ L2(β) if f ∈ L2(β).

(ii) WW ∗f(z) = g(z) where g(z) =
∑
an
β2
n

β2
2n

zn and g ∈ L2(β).

(iii) W ∗Wf(z) = h(z2) where h(z) =
∑
a2n

β2
n

β2
2n

zn and h ∈ L2(β).
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Proof. (i)

W ∗f(z) = W ∗
( ∑

anz
n

)
= W ∗

∑
anβnen(z)

=
∑

an
β2
n

β2
2n

z2n

=
∑

an
β2
n

β2
2n

(z2)n

Hence,

W ∗f(z) = g(z2)

where g(z) =
∑
an
β2
n

β2
2n

zn.

Now clearly g(z) ∈ L2(β). Further from Lemma 2.5, g(z2) ∈ L2(β). Hence
W ∗f ∈ L2(β).

(ii) WW ∗f(z) = W
∑

an
β2
n

β2
2n

z2n

= W
∑

an
β2
n

β2n

e2n(z)

=
∑

an
β3
n

β2
2n

en(z)

=
∑

an
β2
n

β2
2n

zn

Thus WW ∗f(z) = g(z) where g(z) =
∑
an
β2
n

β2
2n

zn.

(iii) W ∗Wf(z) = W ∗
(
W

∑
anz

n

)
= W ∗

( ∑
a2nz

n

)
= W ∗

( ∑
a2nβnen(z)

)
=

∑
a2nβn

βn
β2n

e2n(z)

=
∑

a2n
β2
n

β2
2n

z2n

=
∑

a2n
β2
n

β2
2n

(z2)n

Hence W ∗Wf(z) = h(z2) where h(z) =
∑
a2n

β2
n

β2
2n

zn, n ∈ Z. �
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3. Slant weighted Toeplitz matrix

Definition 3.1. Let wn =
βn+1

βn
for all n ∈ Z. Then the slant weighted Toeplitz

matrix corresponding to the weight sequence 〈wn〉 is a bilaterally infinite matrix
〈λij〉 such that

λi+1,j+2 =
wi

wjwj+1

λij.

It has been proved [5] that A is a slant weighted Toeplitz operator if and
only if MzA = AMz2 where Mz is the weighted shift. We now give another
characterization of the slant weighted Toeplitz operator in terms of the matrix
defined above.

Theorem 3.2. A necessary and sufficient condition that an operator A on L2(β)
be a slant weighted Toeplitz operator is that its matrix with respect to the or-

thonormal basis

{
ek(z) =

zk

βk

}
k∈Z

is a slant weighted Toeplitz matrix.

Proof. Let Aφ be a slant weighted Toeplitz operator. Then its matrix 〈λij〉 is
given by

λij = 〈Aφej(z), ei(z)〉

= a2i−j
βi
βj

.

Also,

λi+1,j+2 = a2i−j
βi+1

βj+2

=
wi

wjwj+1

λij

where wn =
βn+1

βn
for every n ∈ Z. Thus the matrix of Aφ is a slant weighted

Toeplitz matrix.
Conversely, let the matrix 〈λij〉 of an operator A on L2(β) be a slant weighted

Toeplitz matrix. Then, for all i, j ∈ Z,

〈Aej(z), ei(z)〉 = λij =
wjwj+1

wi
λi+1,j+2

=
wjwj+1

wi
〈Aej+2(z), ei+1(z)〉.

Now,

〈MzAej, ei〉 = 〈Aej,M∗
z ei〉

= 〈Aej, wi−1ei−1〉
= wi−1〈Aej, ei−1〉

= wi−1
wjwj+1

wi−1

〈Aej+2, ei〉

= 〈AMz2ej(z), ei(z)〉.
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Hence MzA = AMz2 .
Thus A is a slant weighted Toeplitz operator. �

Theorem 3.3. (i) The sum of two slant weighted Toeplitz operators is a slant
weighted Toeplitz operator.

(ii) If Mφ is a weighted multiplication operator and Aψ is a slant weighted
Toeplitz operator for φ, ψ in L∞(β), then MφAψ is a slant weighted Toeplitz
operator.

(iii) If φ ∈ L∞(β), then Aφ(z2) = Mφ(z)W .

Proof. (i) Let Aφ1 and Aφ2 be two slant weighted Toeplitz operators. Then

(Aφ1 + Aφ2) = (WMφ1 +WMφ2)

= W (Mφ1 +Mφ2)

= W (Mφ1+φ2)

= (Aφ1+φ2).

(ii) Consider

MzMφAψ = MφMzAψ

= MφAψMz2

Hence MφAψ is a slant weighted Toeplitz operator

(iii) We know that MzW = WMz2 . We prove by induction on n that

MznW = WMz2n

suppose the result is true for n = m.
Then we have MzmW = WMz2m .
Now

Mzm+1W = MzMzmW

= MzWMz2m

= WMz2Mz2m

= WMz2(m+1) .

Thus MznW = WMz2n for all positive n.
For n = 0, the result is clear.
For n = −1, and odd j, MznWej(z) = 0 = WMz2nej(z).
For n = −1, and even j = 2k we get

MznWej(z) = Mz−1We2k(z)

= Mz−1

βk
β2k

ek(z)

=
βk
β2k

βk−1

βk
ek−1(z)

=
βk−1

β2k

ek−1(z) . (3.1)
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On the other hand,

WMz2nej(z) = WMz−2e2k(z)

=
β2(k−1)

β2k

We2(k−1)(z)

=
βk−1

β2k

ek−1(z) . (3.2)

From equations (3.1) and (3.2) we get that MznW = WMz2n for n = −1.
Further, using induction we can extend this result to all negative integers n.
Consequently we get that MznW = WMz2n for all n ∈ Z. This implies further

that

Mφ(z)W = WMφ(z2) for all φ =
∞∑

n=−∞

anz
n .

Finally, we get that

Aφ(z2) = WMφ(z2)

= Mφ(z)W . �

Theorem 3.4. WAφ is a slant weighted Toeplitz operator if and only if φ = 0.

Proof.

〈WAφej(z), ei(z)〉 =
wjwj+1

wi
〈WAφej+2(z), ei+1(z)〉

⇒ 〈Aφej(z),W ∗ei(z)〉 =
wjwj+1

wi
〈Aφej+2(z),W

∗ei+1(z)〉

⇒
〈

1

βj

∞∑
n=−∞

a2n−jβnen(z),
βi
β2i

e2i(z)

〉
=
wjwj+1

wi

〈
1

βj+2

∑
a2n−j−2βnen(z),

βi+1

β2i+2

e2i+2(z)

〉
⇒ βi

β2i

a4i−jβ2i =
βi
βi+1

βi+1

β2i+2

{a4i−j+2β2i+2}

⇒ a4i−j = a4i−j+2 for all i, j ∈ Z.
Putting i = 0 we get,

a−j = a−j+2.

Hence a0 = a2n and a1 = a2n−1 for all n ∈ Z. Now, since
∑
|an|2β2

n < ∞, hence
lim
n→∞

anβn = 0 But βn’s are positive.

Hence lim
n→∞

an = 0.

⇒ a0 = a1 = 0

⇒ an = 0 for all n ∈ Z.
Therefore φ = 0. The converse is obvious. �

Theorem 3.5. AφAψ is not a slant weighted Toeplitz operator in general.
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Proof. Let 〈λij〉 and 〈δij〉 be the matrices of Aφ and Aψ respectively and let

〈γij〉 be the matrix of the product AφAψ. Further let φ =
∞∑

n=−∞
anz

n and

ψ =
∞∑

n=−∞
bnz

n. Now, [4]

γij =
∞∑

k=−∞

λikδkj

=
∞∑

k=−∞

a2i−k
βi
βk
b2k−j

βk
βj

=
βi
βj

∞∑
k=−∞

a2i−kb2k−j .

Similarly,

γi+1,j+2 =
βi+1

βj+2

∞∑
k=−∞

a2i+2−kb2k−j−2 take t = k − 2

=
βi+1

βj+2

∞∑
t=−∞

a2i−tb2t−j+2

Hence,

γi+1,j+2 6=
wi

wjwj+1

γi,j .

Hence by matrix characterization we conclude that the product is not a slant
weighted Toeplitz operator. �

Next we obtain a condition for the commutativity of the product of two slant
weighted Toeplitz operators.

Theorem 3.6. AφAψ = AψAφ if and only if φ(z2)ψ(z) = ψ(z2)φ(z) .

Proof. Let Aφ and Aψ be two slant weighted Toeplitz operators. Then

Aφ(z)Aψ(z) = WMφ(z)WMψ(z)

= WWMφ(z2)Mψ(z)

= WWMφ(z2)ψ(z)

= WAφ(z2)ψ(z) .

On the other hand

Aψ(z)Aφ(z) = WMψ(z)WMφ(z)

= WWMψ(z2)Mφ(z)

= WWMψ(z2)φ(z)

= WAψ(z2)φ(z) .

Hence AφAψ = AφAφ if and only if φ(z2)ψ(z) = ψ(z2)φ(z). �
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Now we give a necessary and sufficient condition forAφAψ to be a slant weighted
Toeplitz operator.

Theorem 3.7. AφAψ is a slant weighted Toeplitz operator if and only if AφAψ =
0.

Proof.

AφAψ = WMφWMψ

= WWMφ(z2)ψ(z)

= WAφ(z2)ψ(z)

Therefore by Theorem 3.4 we get that WAφ(z2)ψ(z) is a slant weighted Toeplitz
operator if and only if φ(z2) · ψ(z) = 0 if and only if

AφAψ = 0. �

4. The adjoint of slant weighted Toeplitz operator

Given the slant weighted Toeplitz operator Aφ, we now prove some results for
A∗φ.

Theorem 4.1. A∗φ is not a slant weighted Toeplitz operator in general.

Proof. The matrix of A∗φ is given by

. . . . . . . . . . . . . . . . . . . . . . . . . . .

... ā0
β0

β0

ā2
β1

β0

ā4
β2

β0

ā6
β3

β0

. . .

... ā−1
β0

β1

ā1
β1

β1

ā3
β2

β1

ā5
β3

β1

. . .

... ā−2
β0

β2

ā0
β1

β2

ā2
β2

β2

ā4
β3

β2

. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .


Since the above matrix does not satisfy the characterization given in Theorem 3.2,

A∗φ is not a slant weighted Toeplitz operator. �

Theorem 4.2. A∗φ is a slant weighted Toeplitz operator if and only if φ = 0.

Proof. If A∗φ is a slant weighted Toeplitz operator, then for all i, j ∈ Z, we have,

〈A∗φej(z), ei(z)〉 = 〈A∗φej+2(z), ei+1(z)〉
wj
wi
wj+1

Hence〈
βj

∞∑
k=−∞

ā2j−k
ek(z)

βk
, ei(z)

〉
=

〈
βj+2

∞∑
k=−∞

ā2(j+2)−k
ek(z)

βk
, ei+1(z)

〉
wj ·

wj+1

wi
.
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Therefore ā2j−i = ā2j+3−i

(
wjwj+1

wi

)2

for all i, j ∈ Z. Putting j = 0, we get

ā−i =
w2

1

w2
i

ā−i+3 for all i ∈ Z.

But lim
n→∞

ān = 0 as shown in Theorem 3.4. Hence an = 0 for all n ∈ Z. So

φ = 0. �

Corollary 4.3. There is no non-zero self adjoint slant weighted Toeplitz operator.

5. Compactness

Theorem 5.1. Aφ is compact if and only if φ = 0.

Proof. Let Aφ be compact.
⇔ WMφ is compact
⇔ Mφ is compact
⇔ φ = 0 �
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