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ON MAJORIZATION, FAVARD AND BERWALD
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Communicated by M. S. Moslehian

Abstract. In this paper, we obtain extensions of majorization type results
and extensions of weighted Favard’s and Berwald’s inequality. We prove pos-
itive semi-definiteness of matrices generated by differences deduced from ma-
jorization type results and differences deduced from weighted Favard’s and
Berwald’s inequality. This implies a surprising property of exponentially con-
vexity and log-convexity of these differences which allows us to deduce Lya-
punov’s and Dresher’s inequalities for these differences, which are improve-
ments of majorization type results and weighted Favard’s and Berwald’s in-
equalities. Analogous Cauchy’s type means, as equivalent forms of exponen-
tially convexity and log-convexity, are also studied and the monotonicity prop-
erties are proved.

1. Introduction

Majorization is a very important topic in mathematics. A complete and superb
reference on the subject is the book by Marshall and Olkin [11]. For example,
majorization theory is a key tool that allows us to transform complicated non-
convex constrained optimization problems that involve matrix-valued variables
into simple problems with scalar variables that can be easily solved. We can see
such type of applications in [16]. The book by Bhatia [5] contains significant ma-
terial on majorization theory as well. Other textbooks on matrix and multivariate
analysis may also include a section on majorization theory, e.g., [8, Sec.4.3] and
[1, Sec.8.10].
In 1947, L. Fuchs gave a weighted generalization of the well-known majorization
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theorem for convex functions and two sequences monotonic in the same sense,
see [11, p.419] or [17, p.323]. The following theorem is a simple consequence of
Theorem 12.14 in [19] (see also [17, p.328]): Let x(τ), y(τ) : [a, b] → R, x(τ)
and y(τ) are continuous and increasing and let G : [a, b] → R be a function of
bounded variation.

(a) If ∫ b

ν

x(τ) dG(τ) ≤
∫ b

ν

y(τ) dG(τ) for every ν ∈ [a, b], (1.1)

and ∫ b

a

x(τ) dG(τ) =

∫ b

a

y(τ) dG(τ)

hold, then for every continuous convex function f , we have∫ b

a

f [x(τ)] dG(τ) ≤
∫ b

a

f [y(τ)] dG(τ). (1.2)

(b) If (1.1) holds, then (1.2) holds for every continuous increasing convex
function f .

Favard [7] proved the following result: Let f be a non-negative continuous concave

function on [a, b], not identically zero, and φ be a convex function on [0, 2f̃ ], where

f̃ =
1

b− a

∫ b

a

f(x) dx.

Then ∫ 1

0

φ
(
2 s f̃

)
=

1

2f̃

∫ 2 ef

0

φ(y) dy ≥ 1

b− a

∫ b

a

φ [f(x)] dx.

Favard [7] also proved a following result: Let f be a concave non-negative function
on [a, b] ⊂ R. If q > 1, then

1

b− a

∫ b

a

f q(x)dx ≤ 2q

q + 1

(
1

b− a

∫ b

a

f(x)dx

)q

.

Some generalizations of the Favard inequality and its reverse are also given in [9,
pp.412-413]. Moreover, Berwald (1947) [4] proved the following generalization of
Favard’s inequality [9, pp.413-414]: Let f be a non-negative, continuous concave
function, not identically zero on [a, b], and ψ be a continuous and strictly mono-
tonic function on [0, y0], where y0 is sufficiently large. If z is the unique positive
root of the equation

1

z

∫ z

0

ψ(y) dy =
1

b− a

∫ b

a

ψ [f(x)] dx,

then for every function φ : [0, y0] → R which is convex with respect to ψ, we have∫ 1

0

φ (s z) =
1

z

∫ z

0

φ(y) dy ≥ 1

b− a

∫ b

a

φ [f(x)] dx.
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Berwald [4] also proved a following result: If f is a non-negative concave function
on [a, b], then for 0 < r < s we have[

s + 1

b − a

∫ b

a

f s(x) dx

] 1
s

≤
[
r + 1

b − a

∫ b

a

f r(x) dx

] 1
r

. (1.3)

Thunsdroff (1932) proved the following similar result [20]: If f is a non-negative,
convex function with f(a) = 0, and if 0 < r < s, then the reverse of the inequality
in (1.3) is valid. In [10], some generalizations of Favard’s and Berwald’s inequal-
ities to the weighted case are given. Other textbooks also include a section on
majorization theory, e.g., [3], [9], [15] and [17].
Positive semi-definite matrices have a number of interesting properties. One of
these is that all the eigenvalues of a positive semi-definite matrix are real and
non-negative. Positive semi-definite matrices are very important in theory of in-
equalities. So in classical book [3] one of the five chapters (second chapter) is
devoted to them. Of course as was noted in [3, p.59-61] a very important pos-
itive semi-definite matrix is Grammi matrix. The corresponding determinantal
inequality is well known as Gram’s inequality. In this paper we show that we can
use majorization type results and weighted Favard’s and Berwald’s inequalities
to obtain positive semi-definite matrices that is we can give determinantal form
of these inequalities. Very specific form of these determinantal forms enable us
to interpret our results in a form of exponentially convex functions([2], [6], [12]
and [13], p. 373):

Definition 1.1. A function h : (a, b) → R is exponentially convex function if it
is continuous and

n∑
i,j=1

ξiξj h (xi + xj) ≥ 0

for all n ∈ N and all choices ξi ∈ R, i = 1, ..., n such that xi + xj ∈ (a, b),
1 ≤ i, j ≤ n.

Proposition 1.2. Let h : (a, b) → R. The following propositions are equivalent.

(i) h is exponentially convex.
(ii) h is continuous and

n∑
i,j=1

ξiξj h

(
xi + xj

2

)
≥ 0,

for every n ∈ N, for every ξi ∈ R and every xi ∈ (a, b), 1 ≤ i ≤ n.

Proof. This follows from well-known Sylvester criterion applied to Definition 1.1.
�

Corollary 1.3. If φ is exponentially convex function, then

det

[
φ(
xk + xl

2
)

]n

k,l=1

≥ 0

for every n ∈ N, xk ∈ I, k = 1, 2, .., n.
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Corollary 1.4. If h : (a, b) → R+ is exponentially convex function then h is a
log-convex function.

In this paper, when only one of function is monotonic, then we give majorization
type results. We also give generalizations of Favard’s and Berwald’s inequality
and related results. The paper is organized in the following way: In Section 1 we
give extension of majorization type results, generalizations of weighted Favard’s
and Berwald’s inequality and related results. In Section 2 we prove positive semi-
definiteness of matrices generated by differences deduced from majorization type
results and differences deduced from weighted Favard’s and Berwald’s inequality.
This implies a surprising property of exponentially convexity and log-convexity of
this differences which allows us to deduce Lyapunov’s inequalities for the differ-
ences, which are improvements of majorization type results and weighted Favard’s
and Berwald’s inequalities. In Section 3 we introduce new Cauchy’s means, as
equivalent forms of exponentially convexity and log-convexity and also prove their
monotonicity. In what follows, without further explanation, we assume that all
integrals exist on the respective domains of their definitions.

2. Main Results

The following theorem is a slight extension of Lemma 2 in [10] which is proved
by L. Maligranda, J. Pečarić, L. E. Persson (1995):

Theorem 2.1. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Suppose that ϕ : [0,∞) → R is a convex function and that∫ x

a

f(t)w(t) dt ≤
∫ x

a

g(t)w(t) dt, x ∈ [a, b] and∫ b

a

f(t)w(t) dt =

∫ b

a

g(t)w(t) dt.

(1) If f is a decreasing function on [a, b], then∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ [g(t)] w(t) dt. (2.1)

(2) If g is an increasing function on [a, b], then∫ b

a

ϕ [g(t)] w(t) dt ≤
∫ b

a

ϕ [f(t)] w(t) dt. (2.2)

If ϕ is strictly convex function and f 6= g (a. e.), then (2.1) and (2.2) are strict.

Proof. As in [10], if we prove the inequalities for ϕ ∈ C1[0,∞), then the general
case follows from the pointwise approximation of ϕ by smooth convex functions.
Since ϕ is a convex function on [0,∞), it follows that

ϕ (u1) − ϕ (u2) ≥ ϕ′ (u2) (u1 − u2) .

If we set

F (x) =

∫ x

a

[g(t) − f(t)] w(t) dt,
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then F (x) ≥ 0, x ∈ [a, b], and F (a) = F (b) = 0.
Then ∫ b

a

[ϕ [g(t)] − ϕ [f(t)]] w(t) dt

≥
∫ b

a

ϕ′ [f(t)] [g(t) − f(t)] w(t) dt

=

∫ b

a

ϕ′ [f(t)] dF (t)

= [ϕ′ [f(t)] F (t)]
b
a −

∫ b

a

F (t) d [ϕ′ [f(t)]]

= −
∫ b

a

F (t)ϕ′′ [f(t)] f ′(t) dt ≥ 0.

The last inequality follows from the convexity of ϕ and f being decreasing.
Similarly, we can prove the case when g is increasing.
If ϕ is strictly convex function and f 6= g (a. e.), then

ϕ [g(t)] − ϕ [f(t)] > ϕ′ [f(t)] [g(t) − f(t)] (a. e.).

Which gives strict inequality in (2.1) and (2.2). �

The following Lemma is valid (see for instance [10]):

Lemma 2.2. Let v be a weight function on [a, b].

(1) If h is an increasing function on [a, b], then∫ x

a

h(t) v(t) dt

∫ b

a

v(t) dt ≤
∫ b

a

h(t) v(t) dt

∫ x

a

v(t) dt, x ∈ [a, b].

(2) If h is a decreasing function on [a, b], then∫ b

a

h(t) v(t) dt

∫ x

a

v(t) dt ≤
∫ x

a

h(t) v(t) dt

∫ b

a

v(t) dt, x ∈ [a, b].

The following theorem is an extension of Theorem 3 in [18] which is proved by J.
Pečarić and S. Abramovich (1997):

Theorem 2.3. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Suppose ϕ : [0,∞) → R is a convex function.

(1) Let f/g be a decreasing function on [a, b]. If f is an increasing function
on [a, b], then∫ b

a

ϕ

(
f(t)∫ b

a
f(t)w(t) dt

)
w(t) dt ≤

∫ b

a

ϕ

(
g(t)∫ b

a
g(t)w(t) dt

)
w(t) dt. (2.3)

If g is a decreasing function on [a, b], then the reverse inequality holds in
(2.3).
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(2) Let f/g be an increasing function on [a, b]. If g is an increasing function
on [a, b], then∫ b

a

ϕ

(
g(t)∫ b

a
g(t)w(t) dt

)
w(t) dt ≤

∫ b

a

ϕ

(
f(t)∫ b

a
f(t)w(t) dt

)
w(t) dt. (2.4)

If f is a decreasing function on [a, b], then the reverse inequality holds in
(2.4).

If ϕ is strictly convex function and f 6= g (a. e.), then the strict inequality holds
in (2.3), reverse inequality in (2.3), (2.4) and reverse inequality in (2.4).

Proof. (1) As in [18], using Lemma 2.2 with

v(t) = g(t)w(t), h(t) = f(t)/g(t),

we obtain∫ b

a

f(t)w(t) dt

∫ x

a

g(t)w(t) dt ≤
∫ x

a

f(t)w(t) dt

∫ b

a

g(t)w(t) dt, x ∈ [a, b],

implies∫ x

a

(
g(t)∫ b

a
g(t)w(t) dt

)
w(t) dt ≤

∫ x

a

(
f(t)∫ b

a
f(t)w(t) dt

)
w(t) dt, x ∈ [a, b].

By using Theorem 2.1 and f is increasing on [a, b], we have∫ b

a

ϕ

(
f(t)∫ b

a
f(t)w(t) dt

)
w(t) dt ≤

∫ b

a

ϕ

(
g(t)∫ b

a
g(t)w(t) dt

)
w(t) dt.

Similarly, we can prove the case when g is decreasing.
(2) This case is equivalent to the first case switching the role of functions f and
g.
Similarly as in Theorem 2.1 for strict inequality, we can get strict inequality in
(2.3), reverse inequality in (2.3), (2.4) and reverse inequality in (2.4). �

Remark 2.4. Theorem 2.3 is an generalization of weighted Favard’s inequality
proved in [10]. This is a consequence of the simple fact that if x → ϕ(x) is a
convex function, then x→ ϕ(kx), k ∈ R is also a convex function and substitute
g(t) = t − a in (2.3), we have∫ b

a

ϕ
[
f(t)

]
w(t) dt ≤

∫ b

a

ϕ
( ∫ b

a
f(t)w(t) dt∫ b

a
(t − a)w(t) dt

(t − a)
)
w(t) dt.

If f is a positive increasing concave function, then we get weighted Favard’s
inequality which is proved by L. Maligranda, J. Pečarić, L. E. Persson (1995)
[10].

As in [18], there are non-concave functions f , which satisfy assumption of Theo-
rem 2.3. For instance,

f(x) = (1 + xp)
1
p , p > 0, x ≥ 0
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is a non-concave function but f(x)/x is a decreasing.
The following corollary is an application of Theorem 2.3.

Corollary 2.5. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Also let ϕ(x) = xp, where p > 1 or p < 0.

(1) Let f/g be a decreasing function on [a, b]. If f is an increasing function
on [a, b], then∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

≤

(∫ b

a
f(t)w(t) dt∫ b

a
g(t)w(t) dt

)p

. (2.5)

If g is a decreasing function on [a, b], then the reverse inequality holds in
(2.5).

(2) Let f/g be an increasing function on [a, b]. If g is an increasing function
on [a, b], then(∫ b

a
f(t)w(t) dt∫ b

a
g(t)w(t) dt

)p

≤
∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

. (2.6)

If f is a decreasing function on [a, b], then the reverse inequality holds in
(2.6).

If ϕ(x) = xp, 0 < p < 1, then the reverse inequality holds in (2.5), reverse
inequality in (2.5), (2.6) and reverse inequality in (2.6).

Proof. Since f/g is a decreasing function on [a, b] and f is an increasing function
on [a, b], then using Theorem 2.3 (2.3) and substitute ϕ(x) = xp, where p > 1 or
p < 0, we have∫ b

a

(
f(t)∫ b

a
f(t)w(t) dt

)p

w(t) dt ≤
∫ b

a

(
g(t)∫ b

a
g(t)w(t) dt

)p

w(t) dt,

or equivalently ∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

≤

(∫ b

a
f(t)w(t) dt∫ b

a
g(t)w(t) dt

)p

.

Similarly, we can prove the other cases. �

Remark 2.6. If we substitute g(t) = t − a , w(t) ≡ 1 and f is a positive
increasing concave function in (2.5), then we have classical Favard’s inequality
(see [17, p. 212])

1

b− a

∫ b

a

fp(t) dt ≤ 2p

p+ 1

( 1

b− a

∫ b

a

f(t) dt
)p

.

The following theorem is a slight extension of Theorem 2 in [18] which is proved
by J. Pečarić and S. Abramovich (1997):

Theorem 2.7. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Suppose ϕ, ψ : [0,∞) → R are such that ψ is a strictly
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increasing function and ϕ is a convex function with respect to ψ i.e., ϕ ◦ ψ−1 is
convex. Suppose also that∫ x

a

ψ [f(t)] w(t) dt ≤
∫ x

a

ψ [g(t)] w(t) dt, x ∈ [a, b], and (2.7)

∫ b

a

ψ [f(t)] w(t) dt =

∫ b

a

ψ [g(t)] w(t) dt. (2.8)

(1) If f is a decreasing function on [a, b], then∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ [g(t)] w(t) dt. (2.9)

(2) If g is an increasing function on [a, b], then∫ b

a

ϕ [g(t)] w(t) dt ≤
∫ b

a

ϕ [f(t)] w(t) dt. (2.10)

If ϕ ◦ ψ−1 is strictly convex function and f 6= g (a. e.), then the strict inequality
holds in (2.9) and (2.10).

Proof. Without loss of generality, it is sufficient to prove the case when ψ(t) = t,
but this case is proved in Theorem 2.1. �

Theorem 2.8. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Suppose ϕ, ψ : [0,∞) → R are such that ψ is a continuous
and strictly increasing function and ϕ is a convex function with respect to ψ i.e.,
ϕ ◦ ψ−1 is convex.
Let z1 be such that∫ b

a

ψ [z1 g(t)] w(t) dt =

∫ b

a

ψ [f(t)] w(t) dt. (2.11)

(1) Let f/g be a decreasing function on [a, b]. If f is an increasing function
on [a, b], then∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ [z1 g(t)] w(t) dt. (2.12)

If g is a decreasing function on [a, b], then the reverse inequality holds in
(2.12).

(2) Let f/g be an increasing function on [a, b]. If g is an increasing function
on [a, b], then∫ b

a

ϕ [z1 g(t)] w(t) dt ≤
∫ b

a

ϕ [f(t)] w(t) dt. (2.13)

If f is a decreasing function on [a, b], then the reverse inequality holds in
(2.13).

If ϕ ◦ψ−1 is strictly convex function and f 6= z1 g (a. e.), then the strict inequal-
ity holds in (2.12), reverse inequality in (2.12), (2.13) and reverse inequality in
(2.13).
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Proof. Since ψ is continuous, then F (z) =
∫ b

a
ψ[z g(t)]w(t) dt is also continu-

ous. Therefore by using f > 0 and ψ is strictly increasing, we have F (0) =∫ b

a
ψ(0)w(t) dt <

∫ b

a
ψ[f(t)]w(t) dt. Since in both cases (1) and (2), f/g is

bounded above, we take any z0 > f/g or f < z0 g. So, F (z0) =
∫ b

a
ψ[z0 g(t)]w(t) dt >∫ b

a
ψ[f(t)]w(t) dt. This shows the existence of z1.

(1) As in [18], because f/g is decreasing, ψ is a strictly increasing function and∫ b

a

ψ [z1 g(t)] w(t) dt =

∫ b

a

ψ [f(t)] w(t) dt,

there is an x0 ∈ [a, b] such that

f(x)/g(x) ≥ z1, x ∈ [a, x0] and f(x)/g(x) ≤ z1, x ∈ [x0, b], (2.14)

hence ∫ x

a

ψ [z1 g(t)] w(t) dt ≤
∫ x

a

ψ [f(t)] w(t) dt, x ∈ [a, b]. (2.15)

We give the proof of inequality (2.15) as in [10] for the convenience of a reader.
If a ≤ x ≤ x0, then the inequality (2.15) follows immediately from (2.14). If
x0 ≤ x ≤ b, then, by using equality (2.11) and the second inequality in (2.14),
we have ∫ x

a

ψ [z1 g(t)] w(t) dt

=

∫ b

a

ψ [z1 g(t)] w(t) dt −
∫ b

x

ψ [z1 g(t)] w(t) dt

=

∫ b

a

ψ [f(t)] w(t) dt −
∫ b

x

ψ [z1 g(t)] w(t) dt

≤
∫ b

a

ψ [f(t)] w(t) dt −
∫ b

x

ψ [f(t)] w(t) dt

=

∫ x

a

ψ [f(t)] w(t) dt.

By using the inequality (2.15), the equality (2.11), the assumption that ϕ ◦ ψ−1

is convex, f is increasing and Theorem 2.7, we obtain∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ [z1 g(t)] w(t) dt.

By using the inequality (2.15), the equality (2.11), the assumption that ϕ ◦ ψ−1

is convex, g is decreasing and Theorem 2.7, we obtain∫ b

a

ϕ [z1 g(t)] w(t) dt ≤
∫ b

a

ϕ [f(t)] w(t) dt.

(2) We can prove analogously the following inequality by using similar procedure
as the first case∫ x

a

ψ [f(t)] w(t) dt ≤
∫ x

a

ψ [z1 g(t)] w(t) dt, x ∈ [a, b]. (2.16)
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By using the inequality (2.16), the equality (2.11), the assumption that ϕ ◦ ψ−1

is a convex function, g is increasing and Theorem 2.7, we obtain∫ b

a

ϕ [z1 g(t)] w(t) dt ≤
∫ b

a

ϕ [f(t)] w(t) dt.

By using the inequality (2.16), the equality (2.11), the assumption that ϕ ◦ ψ−1

is a convex function, f is decreasing and Theorem 2.7, we obtain∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ [z1 g(t)] w(t) dt.

Similarly as in Theorem 2.7 for strict inequality, we can get strict inequality in
(2.12), reverse inequality in (2.12), (2.13) and reverse inequality in (2.13). �

Remark 2.9. Theorem 2.8 is an extension of weighted Berwald’s inequality. If we
substitute g(t) = (t− a)/(b− a) in (2.12), then∫ b

a

ϕ [f(t)] w(t) dt ≤
∫ b

a

ϕ

(
t− a

b− a
z1

)
w(t) dt.

If z1 > 0, where z1 is defined as in Theorem 2.8 and f is a positive increasing
concave function, then we get weighted Berwald’s inequality which is proved by
L. Maligranda, J. Pečarić, L. E. Persson (1995) [10].

The following corollary is an application of Theorem 2.8.

Corollary 2.10. Let w be a weight function on [a, b] and let f and g be positive
functions on [a, b]. Also let ψ(x) = xq, ϕ(x) = xp such that q ≤ p, q 6= 0, p 6= 0.

(1) Let f/g be a decreasing function on [a, b]. If f is an increasing function
on [a, b], then(∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

) 1
p ≤

(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) 1
q
. (2.17)

If g is a decreasing function on [a, b], then the reverse inequality holds in
(2.17).

(2) Let f/g be an increasing function on [a, b]. If g is an increasing function
on [a, b], then(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) 1
q

≤

(∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

) 1
p

. (2.18)

If f is a decreasing function on [a, b], then the reverse inequality holds in
(2.18).

Proof. Since f/g is a decreasing function on [a, b] and f is an increasing function
on [a, b]. For q ≤ p, q 6= 0, p > 0, ϕ(x) = xp is a convex function with respect to
ψ(x) = xq, then using Theorem 2.8 (2.12), we have∫ b

a

fp(t)w(t) dt ≤
∫ b

a

(z1 g(t))
p w(t) dt.
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Using (2.11), z1 can be written as

z1 =

(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) 1
q

. (2.19)

Substitute the value of z1, we get∫ b

a

fp(t)w(t) dt ≤

(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) p
q ∫ b

a

gp(t)w(t) dt ,

or equivalently (∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

) 1
p

≤

(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) 1
q

.

For q ≤ p, q 6= 0, p < 0, ϕ(x) = xp is a concave function with respect to
ψ(x) = xq, then using Theorem 2.8 (reverse inequality in (2.12)), we have∫ b

a

(z1 g(t))
p w(t) dt ≤

∫ b

a

fp(t)w(t) dt.

Substitute the value of z1, we get(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) p
q ∫ b

a

gp(t)w(t) dt ≤
∫ b

a

fp(t)w(t) dt,

or equivalently (∫ b

a
fp(t)w(t) dt∫ b

a
gp(t)w(t) dt

) 1
p

≤

(∫ b

a
f q(t)w(t) dt∫ b

a
gq(t)w(t) dt

) 1
q

.

Similarly, we can prove the other cases. �

Remark 2.11. If we take g(t) = t − a , w(t) ≡ 1 and f is a positive concave
function on [a, b], then the decreasing rearrangement f ∗ is also concave function
on [a, b] (see [10]), and using Corollary (2.10) with f ∗, we obtain[

p + 1

b − a

∫ b

a

f ∗(x)p dx

] 1
p

≤
[
q + 1

b − a

∫ b

a

f ∗(x)q dx

] 1
q

.

Equimeasurability of f with f ∗ then gives the classical Berwald inequality (1.3).

3. Exponentially Convexity, Lyapunov’s and Dresher’s type of
inequalities

Throughout the paper we will frequently use the following family of convex
functions with respect to ψ(x) = xq (q > 0) on (0,∞):

ϕs(x) :=


q2

s(s−q)
xs, s 6= 0, q;

−q log x, s = 0;
q xq log x, s = q.

(3.1)
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The following lemma is equivalent to the definition of convex function (see [17,
p.2]).

Lemma 3.1. If φ is convex on an interval I ⊆ R, then

φ(s1) (s3 − s2) + φ(s2) (s1 − s3) + φ(s3) (s2 − s1) ≥ 0

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.

The following theorem gives positive semi-definite matrix, exponentially con-
vex function and log-convex function for difference deduced from generalized
Berwald’s inequality given in Theorem 2.8 and also Lyapunov’s inequality for
this difference.

Theorem 3.2. Let w be a weight function on [a, b] and let f and g be two pos-
itive functions on [a, b]. Suppose f/g is a decreasing function on [a, b], f is an
increasing function on [a, b] and

Ωs :=



q2

s(s−q)

[(R b
a fq(t) w(t) dtR b
a gq(t) w(t) dt

) s
q ∫ b

a
gs(t)w(t) dt −

∫ b

a
f s(t)w(t) dt

]
, s 6= 0, q;

− log
(R b

a fq(t) w(t) dtR b
a gq(t) w(t) dt

) ∫ b

a
w(t) dt − q

∫ b

a
log g(t)w(t) dt

+ q
∫ b

a
log f(t)w(t) dt, s = 0;(R b

a fq(t) w(t) dtR b
a gq(t) w(t) dt

)
log
(R b

a fq(t) w(t) dtR b
a gq(t) w(t) dt

) ∫ b

a
gq(t)w(t) dt+

q
(R b

a fq(t) w(t) dtR b
a gq(t) w(t) dt

) ∫ b

a
gq(t) log g(t)w(t) dt

− q
∫ b

a
f q(t) log f(t)w(t) dt, s = q.

Then the following statements are valid:

(a) For every n ∈ N and every s1, ..., sn ∈ R, the matrix
[
Ω si+sj

2

]n
i,j=1

is a

positive semi-definite, that is,

det
[
Ω si + sj

2

]k
i,j=1

≥ 0 (3.2)

for k = 1, ..., n.
(b) The function s→ Ωs is exponentially convex.
(c) The function s → Ωs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :

Ωt−r
s ≤ Ωt−s

r Ωs−r
t . (3.3)

Proof. (a) Consider the function

φ(x) =
k∑
i,j

uiuj ϕsij
(x)

for k = 1, ..., n, x > 0, ui ∈ R, sij ∈ R, where sij =
si + sj

2
and ϕsij

is defined in
(3.1).
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Here, we shall show that φ(x) is convex with respect to ψ(x) = xq (q > 0).
Set

F (x) = φ(x
1
q ) =

k∑
i,j

uiuj ϕsij
(x

1
q ).

We have

F ′′(x) =
k∑
i,j

uiuj x
sij
q
− 2

=

(
k∑
i

ui x
si
2q
− 1

)2

≥ 0, x > 0.

Therefore, φ(x) is convex with respect to ψ(x) = xq (q > 0) for x > 0. Using
Theorem 2.8, ∫ b

a

φ [z1 g(t)] w(t) dt ≥
∫ b

a

φ [f(t)] w(t) dt,

where z1 is given in (2.19), we have∫ b

a

(
k∑
i,j

uiuj ϕsij
[z1 g(t)]

)
w(t) dt

−
∫ b

a

(
k∑
i,j

uiuj ϕsij
[f(t)]

)
w(t) dt ≥ 0,

or equivalently
k∑
i,j

uiuj Ωsij
≥ 0.

From last inequality, it follows that the matrix
[
Ω si+sj

2

]k
i,j=1

is a positive semi-

definite matrix, that is, (3.2) is valid.
(b) Note that Ωs is continuous for s ∈ R since

lim
s→0

Ωs = Ω0 and lim
s→q

Ωs = Ωq.

Then by using Proposition 1.2, we get exponentially convexity of the function
s→ Ωs.
(c) For k = 2, (3.2) becomes

Ωp1 Ωp2 ≥ Ω2
p12

= Ω2
p1+p2

2

,

that is Ωs is log-convex in the Jensen sense for s ∈ R.
Since Ωs is continuous, therefore it is log-convex. We can also prove log-convexity
by using Corollary 1.3. Since Ωs is log-convex, i.e., s 7→ log Ωs is convex, by
Lemma 3.1 for −∞ < r < s < t <∞, then we get

log Ωt−r
s ≤ log Ωt−s

r + log Ωs−r
t ,

which is equivalent to (3.3). �
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Remark 3.3. If we take g(t) = t − a , then Ωs converts to Γs which is given in
[14] and also if we take g(t) = b − t , then Ωs converts to Φs which is also given
in [14].

The following theorem gives the Dresher’s inequality for difference deduced from
generalized Berwald’s inequality given in Theorem 2.8.

Theorem 3.4. Let Ωs be defined as in Theorem 3.2 and t, s, u, v ∈ R such that
s ≤ u, t ≤ v, s 6= t, u 6= v. Then(

Ωt

Ωs

) 1
t−s

≤
(

Ωv

Ωu

) 1
v−u

. (3.4)

Proof. Similar to the proof of Theorem 2.2 in [14]. �

Remark 3.5. Similarly as in Theorem 3.2 and Theorem 3.4, we can get posi-
tive semi-definite matrices, exponentially convex functions, log-convex functions,
Lyapunov’s inequalities and Dresher’s inequalities for the cases when f/g is a
decreasing function and g is a decreasing function, f/g is an increasing function
and f is a decreasing function, and f/g is an increasing function and g is an
increasing function by using Theorem 2.8.

The following theorem gives positive semi-definite matrix, exponentially convex
function and log-convex function for difference deduced from majorization type
results given in Theorem 2.7 and also Lyapunov’s inequality for this difference.

Theorem 3.6. Let w be a weight function on [a, b] and let f and g be two positive
functions on [a, b]. Suppose f is a decreasing function on [a, b] and

Γs :=


q2

s(s−q)

[∫ b

a
gs(t)w(t) dt −

∫ b

a
f s(t)w(t) dt

]
, s 6= 0, q;

q
[∫ b

a
log f(t)w(t) dt −

∫ b

a
log g(t)w(t) dt

]
, s = 0;

q
[∫ b

a
gq(t) log g(t)w(t) dt −

∫ b

a
f q(t) log f(t)w(t) dt

]
, s = q,

such that conditions (2.7) and (2.8) are satisfied. Then the following statements
are valid:

(a) For every n ∈ N and every s1, ..., sn ∈ R, the matrix
[
Γ si+sj

2

]n
i,j=1

is a

positive semi-definite, that is,

det
[
Γ si + sj

2

]k
i,j=1

≥ 0

for k = 1, ..., n.
(b) The function s→ Γs is exponentially convex.
(c) The function s → Γs is a log-convex on R and the following inequality

holds for −∞ < r < s < t < ∞ :(
Γs

)t−r ≤
(
Γr

)t−s (
Γt

)s−r
.

Proof. As in the proof of Theorem 3.2, we use Theorem 2.7 instead of Theorem
2.8. �



ON MAJORIZATION, FAVARD AND BERWALD INEQUALITIES 45

The following theorem gives the Dresher’s inequality for difference deduced from
majorization type results given in Theorem 2.7.

Theorem 3.7. Let Γs be defined as in Theorem 3.6 and t, s, u, v ∈ R such that
s ≤ u, t ≤ v, s 6= t, u 6= v. Then(

Γt

Γs

) 1
t−s

≤
(

Γv

Γu

) 1
v−u

. (3.5)

Proof. Similar to the proof of Theorem 2.2 in [14]. �

Remark 3.8. Similarly as in Theorem 3.6 and Theorem 3.7, we can get positive
semi-definite matrix, exponentially convex function, log-convex function, Lya-
punov’s inequality and Dresher’s inequality the case when g is an increasing
function given in Theorem 2.7.

Remark 3.9. We can get positive semi-definite matrices, exponentially convex
functions, log-convex functions and Lyapunov’s inequalities for differences de-
duced from generalized Favard’s inequality (see Theorem 2.3) and majorization
type results (see Theorem 2.1) by substituting q = 1 in Theorem 3.2 and Theorem
3.6 respectively. We can also get Dresher’s inequalities for differences deduced
from generalized Favard’s inequality and majorization type results by substituting
q = 1 in Theorem 3.4 and Theorem 3.7 respectively.

4. Mean Value Theorems

Let us note that (3.4) and (3.5) have the form of some known inequalities
between means (eg. Stolarsky means, Gini means, etc). Here we will prove that
expressions on both sides of (3.4) and (3.5) are also means. The proofs in the
remaining cases are analogous.

Theorem 4.1. Let w be a weight function on [a, b], f and g be two positive
functions on [a, b], ψ ∈ C2 ([0,∞)) and ϕ ∈ C2 ([0, z1]). Let f/g be a decreasing
function on [a, b] and f be an increasing function on [a, b]. Also let ψ′(y) > 0 for
y ∈ [0, z1] and z1 is defined as in Theorem 2.8. Then there exists ξ ∈ [0, z1] such
that

∫ b

a

ϕ [z1 g(t)] w(t) dt −
∫ b

a

ϕ [f(t)] w(t) dt

=
ψ′ (ξ) ϕ′′ (ξ) − ϕ′ (ξ) ψ′′ (ξ)

2 (ψ′ (ξ))3

[ ∫ b

a

ψ2 [z1 g(t)] w(t) dt

−
∫ b

a

ψ2 [f(t)] w(t) dt
]
.

Proof. Similar to the proof of Theorem 4.2 in [14]. �

Theorem 4.2. Let w be a weight function on [a, b], f and g be two positive func-
tions on [a, b], ψ ∈ C2 ([0,∞)) and ϕ1, ϕ2 ∈ C2 ([0, z1]). Let f/g be a decreasing
function on [a, b] and f be an increasing function on [a, b]. Also let ψ′(y) > 0 for
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y ∈ [0, z1] and f 6= z1 g (a. e.), where z1 is defined as in Theorem 2.8. Then there
exists ξ ∈ [0, z1] such that

ψ′(ξ)ϕ′′1(ξ) − ϕ′1(ξ)ψ
′′(ξ)

ψ′(ξ)ϕ′′2(ξ) − ϕ′2(ξ)ψ
′′(ξ)

=

∫ b

a
ϕ1 [z1 g(t)] w(t) dt −

∫ b

a
ϕ1 [f(t)] w(t) dt∫ b

a
ϕ2 [z1 g(t)] w(t) dt −

∫ b

a
ϕ2 [f(t)] w(t) dt

(4.1)

provided that ψ′(y)ϕ′′2(y) − ϕ′2(y)ψ
′′(y) 6= 0 for every y ∈ [0, z1].

Proof. Similar to the proof of Theorem 4.3 in [14]. �

Corollary 4.3. Let w be a weight function on [a, b] and let f and g be two
positive functions on [a, b]. Also let f/g be a decreasing function on [a, b], f be
an increasing function on [a, b] and f 6= z1 g (a. e.), where z1 is defined as in
Theorem 2.8 for ψ(x) = xq (q > 0) or explicitly z1 is given in (2.19), then for
distinct s, t, q ∈ R\{0}, there exists ξ ∈ (0, z1] such that

ξt−s =
s(s− q)

t(t− q)

∫ b

a
(z1 g(r))

t w(r) dr −
∫ b

a
f t(r)w(r) dr∫ b

a
(z1 g(r))

s w(r) dr −
∫ b

a
f s(r)w(r) dr

. (4.2)

Proof. Set ϕ1(x) = xt, ϕ2(x) = xs and ψ(x) = xq, t 6= s 6= 0, q in (4.1), then we
get (4.2). �

Remark 4.4. Since the function ξ → ξt−s is invertible, then from (4.2) we have

0 <

(
s(s− q)

t(t− q)

∫ b

a
(z1 g(r))

t w(r) dr −
∫ b

a
f t(r)w(r) dr∫ b

a
(z1 g(r))

s w(r) dr −
∫ b

a
f s(r)w(r) dr

) 1
t−s

≤ z1. (4.3)

In fact, a similar result can also be given for (4.1). Namely, suppose that Λ(y) =
(ψ′(y)ϕ′′1(y) − ϕ′1(y)ψ

′′(y)) / (ψ′(y)ϕ′′2(y) − ϕ′2(y)ψ
′′(y)) has inverse function. It

follows from (4.1) that

ξ = Λ−1

(∫ b

a
ϕ1 [z1 g(r)] w(r) dr −

∫ b

a
ϕ1 [f(r)] w(r) dr∫ b

a
ϕ2 [z1 g(r)] w(r) dr −

∫ b

a
ϕ2 [f(r)] w(r) dr

)
.

By the inequality (4.3), we can consider

Mt,s =

(
Ωt

Ωs

) 1
t−s

for s, t ∈ R

as means in broader sense. Moreover we can extend these means in other cases.
So by limit we have

logMs,s =

zs
1 log z1

∫ b

a
gs(r)w(r) dr + zs

1

∫ b

a
gs(r) log g(r)w(r) dr

zs
1

∫ b

a
gs(r)w(r) dr −

∫ b

a
f s(r)w(r) dr

−
∫ b

a
f s(r) log f(r)w(r) dr

zs
1

∫ b

a
gs(r)w(r) dr −

∫ b

a
f s(r)w(r) dr

− 2s − q

s (s − q)
, s 6= 0, q.
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log Mq,q =

zq
1 log2 zq

1
1
q2

∫ b

a
gq(r) w(r) dr + 2 zq

1 log z1

∫ b

a
gq(r) log g(r) w(r) dr

2
(
zq
1 log z1

∫ b

a
gq(r) w(r) dr + zq

1

∫ b

a
gq(r) log g(r) w(r) dr −

∫ b

a
fq(r) log f(r) w(r) dr

)
+

zq
1

∫ b

a
gq(r) log2 g(r) w(r) dr −

∫ b

a
fq(r) log2 f(r)w(r) dr

2
(
zq
1 log z1

∫ b

a
gq(r) w(r) dr + zq

1

∫ b

a
gq(r) log g(r) w(r) dr −

∫ b

a
fq(r) log f(r) w(r) dr

)
− 1

q
.

logM0,0 =

log2 zq
1

1
q2

∫ b

a
w(r) dr + 2 log z1

∫ b

a
log g(r)w(r) dr

2
(
log z1

∫ b

a
w(r) dr +

∫ b

a
log g(r)w(r) dr +

∫ b

a
log f(r)w(r) dr

)
+

∫ b

a
log2 g(r)w(r) dr +

∫ b

a
log2 f(r)w(r) dr

2
(
log γ 1

q

∫ b

a
w(r) dr +

∫ b

a
log g(r)w(r) dr +

∫ b

a
log f(r)w(r) dr

) +
1

q
.

Theorem 4.5. Let t ≤ u, r ≤ s, then the following inequality is valid

Mt,r ≤ Mu,s. (4.4)

Proof. By similar procedure as in the proof of Theorem 4.6 in [14], since Ωs is
log-convex, we get (3.4) and (4.4) follows immediately from (3.4). �

Denote,

mf, g = min{mf ,mg} and Mf, g = max{Mf ,Mg},

where, mf and mg denote minimums of f and g respectively, and Mf and Mg

denote maximums of f and g respectively.

Theorem 4.6. Let w be a weight function on [a, b], f and g be two positive func-
tions on [a, b] such that conditions (2.7) and (2.8) are satisfied, ψ ∈ C2 ([0,∞))
and ϕ ∈ C2 ([mf,g,Mf,g]). Also let f be a decreasing function on [a, b] and
ψ′(y) > 0 for y ∈ [mf,g,Mf,g]. Then there exists ξ ∈ [mf,g,Mf,g] such that∫ b

a

ϕ [g(t)] w(t) dt −
∫ b

a

ϕ [f(t)] w(t) dt

=
ψ′ (ξ) ϕ′′ (ξ) − ϕ′ (ξ) ψ′′ (ξ)

2 (ψ′ (ξ))3

[ ∫ b

a

ψ2 [g(t)] w(t) dt

−
∫ b

a

ψ2 [f(t)] w(t) dt
]
.

Proof. Similar to the proof of Theorem 4.2 in [14]. �

Theorem 4.7. Let w be a weight function on [a, b], f and g be two positive func-
tions on [a, b] such that conditions (2.7) and (2.8) are satisfied, ψ ∈ C2 ([0,∞))
and ϕ1, ϕ2 ∈ C2 ([mf,g,Mf,g]). Also let f be a decreasing function on [a, b],
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ψ′(y) > 0 for y ∈ [mf,g,Mf,g] and f 6= g (a.e.). Then there exists ξ ∈ [mf,g,Mf,g]
such that

ψ′(ξ)ϕ′′1(ξ) − ϕ′1(ξ)ψ
′′(ξ)

ψ′(ξ)ϕ′′2(ξ) − ϕ′2(ξ)ψ
′′(ξ)

=

∫ b

a
ϕ1 [g(t)] w(t) dt −

∫ b

a
ϕ1 [f(t)] w(t) dt∫ b

a
ϕ2[g(t)]w(t) dt −

∫ b

a
ϕ2 [f(t)] w(t) dt

(4.5)

provided that ψ′(y)ϕ′′2(y) − ϕ′2(y)ψ
′′(y) 6= 0 for every y ∈ [mf,g,Mf,g].

Proof. Similar to the proof of Theorem 4.3 in [14]. �

Corollary 4.8. Let w be a weight function on [a, b] and let f and g be two positive
functions on [a, b] such that conditions (2.7) and (2.8) are satisfied. Also let f be
a decreasing function on [a, b] and f 6= g (a.e.), then for distinct s, t, q ∈ R\{0},
there exists ξ ∈ [mf,g,Mf,g] such that

ξt−s =
s(s− q)

t(t− q)

∫ b

a
gt(r)w(r) dr −

∫ b

a
f t(r)w(r) dr∫ b

a
gs(r)w(r) dr −

∫ b

a
f s(r)w(r) dr

. (4.6)

Proof. Set ϕ1(x) = xt, ϕ2(x) = xs and ψ(x) = xq, t 6= s 6= 0, q in (4.5), then we
get (4.6). �

Remark 4.9. Since the function ξ → ξt−s is invertible, then from (4.6) we have

mf,g ≤

(
s(s− q)

t(t− q)

∫ b

a
gt(r)w(r) dr −

∫ b

a
f t(r)w(r) dr∫ b

a
gs(r)w(r) dr −

∫ b

a
f s(r)w(r) dr

) 1
t−s

≤ Mf,g. (4.7)

In fact, similar result can also be given for (4.5). Namely, suppose that Λ(y) =
(ψ′(y)ϕ′′1(y) − ϕ′1(y)ψ

′′(y)) / (ψ′(y)ϕ′′2(y) − ϕ′2(y)ψ
′′(y)) has inverse function. It

follows from (4.5) that

ξ = Λ−1

(∫ b

a
ϕ1 [g(r)] w(r) dr −

∫ b

a
ϕ1 [f(r)] w(r) dr∫ b

a
ϕ2 [g(r)] w(r) dr −

∫ b

a
ϕ2 [f(r)] w(r) dr

)
.

By the inequality (4.7), we can consider

M t,s = =

(
Γt

Γs

) 1
t−s

for s, t ∈ R, s 6= t,

as means in broader sense. Moreover we can extend these means in other cases.
So by limit we have

logM t,s =∫ b

a
gs(r) log g(r)w(r) dr −

∫ b

a
f s(r) log f(r)w(r) dr∫ b

a
gs(r)w(r) dr −

∫ b

a
f s(r)w(r) dr

− 2s − q

s(s − q)
, s 6= q.

logM q,q =∫ b

a
gq(r) log2 g(r)w(r) dr −

∫ b

a
f q(r) log2 f(r)w(r) dr

2
[∫ b

a
gq(r) log g(r)w(r) dr −

∫ b

a
f q(r) log f(r)w(r) dr

] − 1

q
.
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logM0,0 =∫ b

a
log2 g(r)w(r) dr −

∫ b

a
log2 f(r)w(r) dr

2
[∫ b

a
log g(r)w(r) dr −

∫ b

a
log f(r)w(r) dr

] +
1

q
.

Theorem 4.10. Let t ≤ u, r ≤ s, then the following inequality is valid

M t,r ≤ Mu,s. (4.8)

Proof. By similar procedure as in the proof of Theorem 4.6 in [14], since Γs is
log-convex, we get (3.5) and (4.8) follows immediately from (3.5). �
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[2] M. Anwar, J. Jekšetić, J. Pečarić and A. ur Rehman, Exponential convexity, positive semi-
definite matrices and fundamental inequalities, J. Math. Inequal. 4 (2010), no. 2, 171–189.

[3] E.F. Beckenbach and R. Bellman, Inequalities, Springer-Verlage, Berlin, 1961.
[4] L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard fr positive konkave

Funktionen (German), Acta Math. 79(1947), 17–37.
[5] R. Bhatia, Matrix Analysis, New York: Springer-Verlage, 1997.
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[14] Naveed Latif, J. Pečarić and I. Perić, Log-convexity and Cauchy means related to Berwald’s

inequality, J. Math. Inequal., to appear.
[15] C.P. Niculescu and L.E. Persson, Convex Functions and Their applications. A contempo-

rary Approach, CMS Books in Mathematics, 23, Springer-Verlage, New York, 2006.
[16] D.P. Palomar and Y. Jiang, MIMO transceiver design via majorization theory, foundation

and trends, in Communications and Information Theory, vol. 3 (2006), no. 4-5, 331–551.
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[18] J. Pečarić and S. Abramovich, On new majorization theorems, Rocky Mountain J. Math.

27 (1997), no. 3, 903–911.



50 N. LATIF, J. PEČARIĆ, I. PERIĆ
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