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FIXED POINTS OF (ψ, φ)-WEAK CONTRACTIONS IN CONE
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Abstract. In this paper we have established the fixed point theorem of self
maps for (ψ, φ)-weak contractions in cone metric spaces. Also our result is
supported by an example.

1. Introduction and preliminaries

In 1997 Alber and Guerre-Delabriere [4] introduced the notion of the weak con-
traction. They proved the existence of fixed points for single-valued maps sat-
isfying weak contractive condition on Hilbert spaces. Rhoades [23] showed that
most results of [4] are still true for any Banach space. The weak contraction was
defined as follows

Definition 1.1. A mapping T : X → X, where (X, d) is a metric space, is said
to be weakly contractive if

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y))

where x, y ∈ X and φ : [0,∞) → [0,∞) is continuous and nondecreasing function
such that φ(t) = 0 if and only if t = 0.

In fact Banach contraction is a special case of weak contraction by taking
φ(t) = (1 − k)t for 0 ≤ k < 1. In this connection Rhoades [23] proved the
following very interesting fixed point theorem.

Theorem 1.2. [23] Let (X, d) be a complete metric space, and let A be a φ-weak
contraction on X. If φ : [0,∞) → [0,∞) is a continuous and nondecreasing
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function with φ(t) > 0 for all t ∈ (0,∞) and φ(0) = 0, then A has a unique fixed
point.

We seen some common fixed point theorems in [9, 25, 26, 27, 5, 21] and num-
ber of hybrid contractive mapping results in [4, 24, 14, 28]. Recently Dutta
and Chaudhary [12] generalized weak contraction by using concept of alternating
distance and proved existence and uniqueness of the fixed points.

Huang and Zhang [19] generalized the notion of metric spaces by replacing the
real numbers by ordered Banach space and define cone metric spaces. They have
proved the Banach contraction mapping theorem and some other fixed point
theorems of contractive type mappings in cone metric spaces. Subsequently,
Rezapour and Hamlbarani[29], Ilic and Rakocević [15, 16] studied fixed point
theorems for contractive type mappings in cone metric spaces. In this paper
we proved some fixed point theorems for expansion mappings in complete cone
metric spaces.

Let E be a real Banach space and P a subset of E. P is called a cone if and
only if:
(i) P is closed, non-empty and P 6= {0},
(ii)ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b,
(iii) P ∩ (−P ) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P . We shall write x < y if x ≤ y and x 6= y; we shall
write x � y if y − x ∈ intP , where intP denotes the interior of P . The cone P
is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖. (1.1)

The least positive number K satisfying the above is called the normal constant of
P , see [19]. In [29] the authors showed that there are no normal cones with normal
constant M < 1 and for each k > 1 there are cones with normal constant M > k.
The cone P is called regular if every increasing sequence which is bounded from
above is convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y
for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0.

The cone P is regular if and only if every decreasing sequence which is bounded
from below is convergent.

Lemma 1.3. [29] Every regular cone is normal.

In the following we always suppose that E is a real Banach space, P is a cone
in E with intP 6= ∅ and ≤ is partial ordering with respect to P .

Definition 1.4. Let X be a non-empty set and d : X ×X → E a mapping such
that
(d1)0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(d2)d(x, y) = d(y, x) for all x, y ∈ X,
(d3)d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X, and (X, d) is called a cone metric space [19].
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Example 1.5. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and d : X×X →
E defined by d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then (X, d)
is a cone metric space [19].

Definition 1.6. (See [19]) Let (X, d) be a cone metric space, x ∈ X and {xn}n≥1

a sequence in X. Then
(i){xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
numberN such that d(xn, x) � c for all n ≥ N . We denote this by limn→∞ xn = x
or xn → x.
(ii){xn}n≥1 is said to be a Cauchy sequence if for every c ∈ E with 0 � c there
is a natural number N such that d(xn, xm) � c for all n,m ≥ N .
(iii)(X, d) is called a complete cone metric space if every Cauchy sequence in X
is convergent.

Lemma 1.7. [16]. If P is a normal cone in E, then
(i) If 0 ≤ x ≤ y and a > 0, where a is real number, then 0 ≤ ax ≤ ay.
(ii) If 0 ≤ xn ≤ yn, for n ∈ N and limn xn = x, limnyn = y, then 0 ≤ x ≤ y.

Lemma 1.8. [18]. If E be a real Banach space with cone P in E, then for
a, b, c ∈ E
(i) If a ≤ b and b� c, then a� c.
(ii) If a� b and b� c, then a� c.

Definition 1.9. [17]. Let (Y,≤) be a partially ordered set. Then a function
F : Y → Y is said to be monotone increasing if it preserves ordering, i.e., given
x, y ∈ Y , x ≤ y implies that F (x) ≤ F (y).

Let f, g : X → X be mappings with f(X) ⊂ g(X). Let x0 ∈ X be arbitrary.
Choose x1 ∈ X such that f(x0) = g(x1). This can be done since f(X) ⊂ g(X).
Continuing this process, having chosen xn ∈ X, we choose xn+1 ∈ X such that
f(xn) = g(xn+1) for all n ∈ N . (f(xn)) is called an f -g-sequence with initial
point x0.

Definition 1.10. [13] Let f, g : X → X be mappings. If y = f(z) = g(z) for
some z ∈ X, then z is called a coincidence point of f and g, and y is called a
point of coincidence of f and g.

Definition 1.11. [13] The mappings f, g : X → X are weakly compatible if, for
every x ∈ X, holds: f(g(x)) = g(f(x)) whenever f(x) = g(x).

Lemma 1.12. [3] Let f and g be weakly compatible self-maps of a set X. If f
and g have a unique point of coincidence w = fx = gx, then w is the unique
common fixed point of f and g.

Recently Choudhury and Metiya [11] established following result,

Theorem 1.13. Let (X, d) be a complete cone metric space with regular cone P
such that d(x, y) ∈ intP , for x, y ∈ X with x 6= y. Let T : X → X be a mapping
satisfying the inequality

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) for x, y ∈ X
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where φ : intP ∪ {0} → intP ∪ {0} is a continuous and monotone increasing
function with
(i)φ(t) = 0 if and only if t = 0;
(ii)φ(t) � t, for t ∈ intP ;
(iii) either φ(t) ≤ d(x, y) or d(x, y) ≤ φ(t), for t ∈ intP ∪ {0} and x, y ∈ X.
Then T has a unique fixed point in X.

In this paper we generalize above theorem, for this, we need following definition

Definition 1.14. Let ψ, φ : IntP ∪ {0} → IntP ∪ {0} be two continuous and
monotone increasing functions satisfying
(a) ψ(t) = φ(t) = 0 if and only if t = 0,
(b) t− ψ(t) ∈ P ∪ {0}, φ(t) � t, for t ∈ intP .

2. Main results

Theorem 2.1. Let (X, d) be a complete cone metric space with regular cone P
such that d(x, y) ∈ intP , for x, y ∈ X with x 6= y. Let T : X → X be a mapping
satisfying the inequality

ψ((Tx, Ty)) ≤ ψ(d(x, y))− φ(d(x, y)) for x, y ∈ X

where ψ, φ are defined in Definition 1.11 and ψ satisfies
(i)ψ(t1 + t2) ≤ ψ(t1) + ψ(t2) for t1, t2 ∈ IntP ;
(ii) either ψ(t), φ(t) ≤ d(x, y) or d(x, y) ≤ ψ(t), φ(t), for t ∈ intP ∪ {0} and
x, y ∈ X. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X, then Tx0 = x1, in this way we obtain a sequence {xn} such
that Txn = xn+1 for all n ≥ 0. If for some xn = xn+1, then xn is fixed point of
T . Now we assume that xn 6= xn+1 for n ∈ N . By the given condition we have,

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn))

≤ ψ(d(xn−1, xn))− φ(d(xn−1, xn))

< ψ(d(xn−1, xn)).

Since ψ is monotone increasing, we deduce that

d(xn, xn+1) < d(xn−1, xn)

It follows that the sequence d(xn, xn+1) is monotone decreasing. Since cone P
is regular and 0 ≤ d(xn, xn+1), for all n ∈ N , there exists r ∈ P such that

d(xn, xn+1) → r as n→∞

Since φ, ψ are continuous and

ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn))− φ(d(xn−1, xn))

we have by taking n→∞

ψ(r) ≤ ψ(r)− φ(r)

which is a contradiction unless r = 0. Hence d(xn, xn+1) → 0 as n→∞.
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Let c ∈ E with 0 � c be arbitrary. Since d(xn, xn+1) → 0 as n → ∞, there
exists m ∈ N such that

ψ(d(xm, xm+1)) � φ(φ(c/2)).

Let B(xm, c) = {x ∈ X : ψ(d(xm, x)) � c}. Clearly, xm ∈ B(xm, c). Therefore,
B(xm, c) is nonempty. Now we will show that Tx ∈ B(xm, c), for x ∈ B(xm, c).
Let x ∈ B(xm, c). By property (ii) of ψ, we have the following two possible cases.
Case (i): φ(d(x, xm)) � φ(c/2), ψ(d(x, xm)) � φ(c/2) or
Case (ii): φ(c/2) ≤ φ(d(x, xm)), φ(c/2) ≤ ψ(d(x, xm)). Here we have,

Case (i):

ψ(d(Tx, xm)) ≤ ψ(d(Tx, Txm) + d(xmTxm))

≤ ψ(d(x, xm))− φ(d(x, xm)) + ψ(d(xmTxm))

≤ ψ(d(x, xm)) + ψ(d(xm, xm+1))

≤ φ(c/2) + φ(φ(c/2))

≤ φ(c/2) + φ(c/2)

� c/2 + c/2

= c.

Case (ii):

ψ(d(Tx, xm)) ≤ ψ(d(Tx, Txm) + d(xmTxm))

≤ ψ(d(x, xm))− φ(d(x, xm)) + ψ(d(xmTxm))

≤ ψ(d(x, xm)− φ(c/2) + φ(φ(c/2))

(∵ φ(x, xm) ≥ φ(c/2), ψ(d(x, Txm)) ≤ φ(φ(c/2)))

≤ ψ(d(x, xm)

� c.

In any case Tx ∈ B(xm, c) for x ∈ B(xm, c). Therefore, T is a self mapping
of B(xm, c). Since xm ∈ B(xm, c) and Txn−1 = xn, n ≥ 1, it follows that xn ∈
B(xm, c), for all n ≥ m. Again, c is arbitrary. This establish that {xn} is a
Cauchy sequence. From the completeness of X, there exists x ∈ X such that
xn → x as n→∞. Now,

ψ(d(xn, Tx)) = ψ(d(Txn−1, Tx))

≤ ψ(d(xn−1, x))− φ(d(xn−1, x)).

Taking n→∞, we have,
ψ(d(x, Tx)) ≤ 0.

But ψ(d(x, Tx)) ≥ 0. This implies that d(x, Tx) = 0 and x = Tx. That is x is a
fixed point of T .

If y ∈ X, with y 6= x, is a fixed point of T . Then φ(d(x, y)) ∈ intP and so

ψ(d(x, y)) = ψ(Tx, Ty)

≤ ψ(d(x, y))− φ((x, y))

< ψ(d(x, y)),
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which is a contradiction and hence d(x, y) = 0, i.e. x = y. �

Let (X, d) be a cone metric space and let f, g : X → X be two mappings. For
every x, y ∈ X let

Mf,g(x, y) = {d(g(x), g(y)), d(f(x), g(x)), d(f(y), g(y))}.

Definition 2.2. [8] Let P be an order cone. A nondecreasing function φ : P → P
is called a φ-map if
(i) φ(0) = 0 and 0 < φ(ω) < ω for all ω ∈ P \ {0},
(ii) ω ∈ IntP implies ω − φ(ω) ∈ IntP ,
(iii) limn→∞ φ

n(ω) = 0 for every ω ∈ P \ {0}.

Definition 2.3. Let f, g : X → X be a pair of mappings is said to be a weakly
φ-pair, if

d(f(x), f(y)) ≤ φ(z),

for some z ∈Mf,g(x, y), for all x, y ∈ X.

Di Bari and Vetro [8] proved following theorem

Theorem 2.4. Let (X, d) be a cone metric space, let P be an order cone and let
f, g : X → X be a weakly φ-pair. Assume that f and g are weakly compatible with
f(X) ⊂ g(X). If f(X) or g(X) is a complete subspace of X, then the mappings
f and g have a unique common fixed point in X. Moreover for any x0 ∈ X, every
f -g-sequence (f(xn)) with initial point x0 converges to the common fixed point of
f and g.

We have generalized the weakly φ-pair by defining weakly (ψ, φ)-pair as follows

Definition 2.5. Let f, g : X → X be said to be weakly (ψ, φ)-pair if

ψ(d(fx, fy)) ≤ ψ(z)− φ(z) (2.1)

for some z ∈Mf,g(x, y), for all x, y ∈ X, where ψ : P → P and φ : intP ∪ {0} →
intP ∪ {0} are continuous functions with the following properties:
(i) ψ is strongly monotonic increasing,
(ii) ψ(t) = 0 = φ(t) if and only if t = 0,
(iii) φ(t) � t, for t ∈ intP and
(iv) either φ(t) ≤ d(x, y) or d(x, y) ≤ t, for t ∈ intP ∪ {0} and x, y ∈ X

Choudhury and Metiya [10] proved following result

Lemma 2.6. Let (X, d) be a cone metric space with regular cone P such that
d(x, y) ∈ intP , for x, y ∈ X with x 6= y. Let φ : intP ∪ {0} → intP ∪ {0} be a
function with the following properties:
(i) φ(t) = 0 if and only if t = 0,
(ii)φ(t) � t, for t ∈ intP and
(iii) either φ(t) ≤ d(x, y) or d(x, y) ≤ φ(t), for t ∈ intP ∪ {0} and x, y ∈ X. Let
{xn} be a sequence in X for which {d(xn, xn+1)} is monotonic decreasing. Then
{d(xn, xn+1} is convergent to either r = 0 or r ∈ intP .
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Theorem 2.7. Let (X, d) be a cone metric space with regular cone P such that
d(x, y) ∈ intP , for all x, y ∈ X with x 6= y. Let f, g : X → X be weakly (ψ, φ)-
pair. If f(X) ⊂ g(X) and g(X) is a complete subspace of X, then f and g have
a unique point of coincidence in X. Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point in X.

Proof. Let x0 ∈ X and construct (f(xn)) be a f -g-sequence with initial point
x0. If f(xn) = f(xn−1) for some n ∈ N , then f(xm) = f(xn) for all m ∈ N
with m > n and so (f(xn)) is a Cauchy sequence. Therefore we consider that
f(xn) 6= f(xn−1) for all n ∈ N .

We have for all n ≥ 0,

ψ(d(fxn+1, fxn+2)) ≤ ψ(z)− φ(z)

where z ∈ Mf,g(xn+1, xn+2) = {d(fxn, fxn+1), d(fxn+1, fxn), d(fxn+2, fxn+1)}.
If z = d(fxn+1, fxn+2), then we have

ψ(d(fxn+1, fxn+2)) ≤ ψ(d(fxn+1, fxn+2))− φ(d(fxn+1, fxn+2)). (2.2)

Using a property of ψ and φ, the inequality (2.2) hold if and only if d(fxn+1, fn+2) =
0 and fxn+1 = fxn+2, a contradiction. Now if z = d(fxn, fxn+1), then,

ψ(d(fxn+1, fxn+2)) ≤ ψ(d(fxn, fxn+1))− φ(d(fxn, fxn+1)). (2.3)

Using a property of φ, we have for all n ≥ 0,

ψ(d(fxn+1, fxn+2)) ≤ ψ(d(fxn, fxn+1)),

which implies that

d(fxn+1, fxn+2) ≤ d(fxn, fxn+1),

since ψ is strongly monotone increasing. Therefore, {d(fxn, fxn+1)} is a mono-
tone decreasing sequence. Hence by Lemma 2.6, there exists an r ∈ P with either
r = 0 or r ∈ intP , such that

d(fxn, fxn+1) → r as n→∞. (2.4)

Letting limit as n→∞ in (2.3), using (2.4) and the continuities of ψ and φ,

ψ(r) ≤ ψ(r)− φ(r)

which is a contradiction unless r = 0. So we must have,

d(fxn, fxn+1) → 0 as n→∞. (2.5)

Now we claim that {fxn} is a Cauchy sequence. If {fxn} is not a Cauchy se-
quence, then there exists a c ∈ E with 0 � c, such that ∀n0 ∈ N , ∃n,m ∈ N
with n > m ≥ n0 such that d(fxm, fxn) <≮ φ(c). Hence by a property of φ,
φ(c) ≤ d(fxm, fxn). Therefore, there exist sequences {m(k)} and {n(k)} in N
such that for all positive integers k,

n(k) > m(k) > k and d(fxm(k), fxn(k)) ≥ φ(c).

Assuming that n(k) is the smallest such positive integer, we get

d(fxm(k), fxn(k)) ≥ φ(c)
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and

d(fxm(k), fxn(k)−1 � φ(c).

Now,

φ(c) ≤ d(fxm(k), fxn(k)) ≤ d(fxm(k), fxn(k)−1) + d(fxn(k)−1, fxn(k))

that is,

φ(c) ≤ d(fxm(k), fxn(k)) ≤ φ(c) + d(fxn(k)−1, fxn(k)).

Letting k →∞ in the above inequality, using inequality (2.5), we have

lim
k→∞

d(fxm(k), fxn(k)) = φ(c). (2.6)

Again,

d(fxm(k), fxn(k)) ≤ d(fxm(k), fxm(k)+1) + d(fxm(k)+1, fxn(k)+1) + d(fxn(k)+1, fxn(k))

and

d(fxm(k)+1, fxn(k)+1) ≤ d(fxm(k)+1, fxm(k)) + d(fxm(k), fxn(k)) + d(fxn(k), fxn(k)+1)

Letting k →∞ in the above inequalities, using (2.5) and (2.6), we have

lim
k→∞

d(fxm(k)+1, fxn(k)+1) = φ(c). (2.7)

Putting x = xm(k)+1 and y = xn(k)+1 in (2.1), we have

d(fxm(k)+1, fxn(k)+1) ≤ ψ(z)− φ(z)

where

z ∈Mf,g(x, y) = {d(gxm(k)+1, gxn(k)+1), d(fxm(k)+1, gxm(k)+1),

d(fxn(k)+1, gxn(k)+1)}
= {d(fxm(k), fxn(k)), d(fxm(k)+1, fxm(k)),

d(fxn(k)+1, fxn(k))}.
Case.1 If z = d(fxm(k), fxn(k)) and letting k → ∞ the above inequality, using
(2.6), (2.7) and the continuities of and φ, we have

ψ(φ(c)) ≤ ψ(φ(c))− φ(φ(c)).

Ii only true for φ(c) = 0. This implies c = 0, a contradiction to 0 � c.
Case.2 If z = d(fxm(k)+1, fxm(k)) and letting k → ∞ the above inequality,

using (2.6), (2.7) and the continuities of φ and ψ, we have

ψ(φ(c)) ≤ ψ(0)− φ(φ(0)) = 0.

This implies that ψ(φ(c)) = 0 ⇒ φ(c) = 0 ⇒ c = 0. It is again a contradiction.
Case.3 Similarly in case.2 we get a contradiction.
Therefore {fxn} be a Cauchy sequence in g(X). Since g(X) is complete, there

exists a q ∈ g(X) such that {fxn} → q as n → ∞. Since q ∈ g(X), we can find
p ∈ X such that gp = q. Now, putting x = xn+1 and y = p in (2.1), we have

ψ(d(fxn+1, fp)) ≤ ψ(z)− φ(z),
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where z ∈Mf,g(xn+1, p) = {d(fxn, gp), d(fxn+1, fxn), d(fp, gp)}. Now
Case.1 If z = d(fxn, gp),then

ψ(d(fxn+1, fp)) ≤ ψ(d(fxn, gp))− φ(d(fxn, gp)),

Letting limit n→∞, we have

ψ(d(q, fp)) ≤ ψ(d(q, q))− φ(d(q, q)),

i.e. ψ(d(q, fp)) ≤ 0. By definition of ψ, ψ(d(q, fp)) ≥ 0, so we have ψ(d(q, fp)) =
0 implies fp = q = gp.

Case.2 If z = d(fxn+1, fxn), then

ψ(d(fxn+1, fp)) ≤ ψ(d(fxn+1, fxn))− φ(d(fxn+1, fxn)),

Letting limit n→∞, we have

ψ(d(q, fp)) ≤ ψ(d(q, q))− φ(d(q, q)),

i.e. ψ(d(q, fp)) ≤ 0. By definition of ψ, ψ(d(q, fp)) ≥ 0, so we have ψ(d(q, fp)) =
0 implies fp = q.

Case.3 If z = d(fp, gp), then

ψ(d(fxn+1, fp)) ≤ ψ(d(fp, gp))− φ(d(fp, gp)),

Letting limit n→∞, we have

ψ(d(q, fp)) ≤ ψ(fp, q))− φ(fp, q)).

This is contradiction if (d(fp, q)) 6= 0. Hence d(fp, q) = 0 and fp = q. Therefor
we have

q = fp = gp.

Hence p is a coincidence point and q is a point of coincidence of f and g.
We next show that the point of coincidence is unique. For this, assume that

there exists a point r in X such that z1 = fr = gr. Then, from (2.1),

ψ(d(fp, fr)) ≤ ψ(z)− φ(z) (2.8)

where z ∈ {Mf,g(p, r) = {d(gp, gr), d(fp, gp), d(fr, gr)}.
Case1. If z = d(gp, gr), then from (2.8)

ψ(d(q, z1)) ≤ ψ(d(q, z1))− φ(d(q, z1)),

it is only true for d(q, z1) = 0. Hence q = z1.
Case2. If z = d(fp, gp), then from (2.8)

ψ(d(q, z1)) ≤ ψ(d(q, q))− φ(d(q, q)) = 0,

i.e. d(q, z1) ≤ 0. But d(q, z1) ≥ 0. Hence q = z1.
Case3. If z = d(fr, gr), then from (2.8)

ψ(d(q, z1)) ≤ ψ(d(z1, z1))− φ(d(z1, z1)) = 0,

i.e. d(q, z1) ≤ 0, but d(q, z1) ≥ 0. Hence d = z1.
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Therefore, q is the unique point of coincidence of f and g. Now, if f and g are
weakly compatible, then by Lemma 1.12, z is the unique common fixed point of
f and g. Hence the roof is completed. �

Example 2.8. Let X = [0, 1] ∪ {2, 3, · · · }, E = R2 with usual norm, be a real
Banach space, P = {(x, y) ∈ E : x, y ≥ 0} be a regular cone and the partial
ordering ≤ with respect to the cone P , be the usual partial ordering in E. We
define d : X ×X → E as

d(x, y) =

 (|x− y|, |x− y|), if x, y ∈ [0, 1], x 6= y
(x+ y, x+ y), if at least one of x or y /∈ [0, 1] and x 6= y,
(0, 0), if x = y.

for x, y ∈ X. Then (X, d) is a complete cone metric space with d(x, y) ∈ intP ,
for x, y ∈ X with x 6= y. Define ψ, φ : intP ∪ {0} → intP ∪ {0} as

ψ(t1, t2) =

{
(t1, t2), if t1, t2 ∈ [0, 1],
(t21, t

2
1) for otherwise.

φ(t1, t2) =


(
1

2
t21,

1

2
t22), if t1, t2 ∈ [0, 1],

(
1

2
,
1

2
) for otherwise.

Let T : X → X be defined as

Tx =

{
x− 1

2
x2, if x ∈ [0, 1],

x− 1, if x ∈ {2, 3 · · · }.

Without loss of generality, we assume that x ≥ y and discuss the following cases.
Case 1. For x, y ∈ [0, 1]. Then

ψ(d(Tx, Ty)) =
(
(x− 1

2
x2)− (y − 1

2
y2), (x− 1

2
x2)− (y − 1

2
y2)

)
=

(
(x− y)− 1

2
(x− y)(x+ y), (x− y)− 1

2
(x− y)(x+ y)

)
≤

(
(x− y)− 1

2
(x− y)2, (x− y)− 1

2
(x− y)2

)
=

(
(x− y), (x− y)

)
− 1

2

(
(x− y)2, (x− y)2

)
= ψ(d(x, y))− φ(d(x, y))

Case 2. For x ∈ {3, 4, · · · }. Then, If y ∈ [0, 1]

d(Tx, Ty) = d(x− 1, y − 1

2
y2)

=
(
x− 1 + y − 1

2
y2, x− 1 + y − 1

2
y2

)
≤

(
x+ y − 1, x+ y − 1

)
.
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If y ∈ {2, 3 · · · }
d(Tx, Ty) = d(x− 1, y − 1)

=
(
x+ y − 2, x+ y − 2

)
<

(
x+ y − 1, x+ y − 1

)
.

Therefore

ψ(d(Tx, Ty)) ≤
(
(x+ y − 1)2, (x+ y − 1)2

)
<

(
(x+ y − 1)(x+ y − 1), (x+ y − 1)(x+ y − 1)

)
<

(
(x+ y)2 − 1, (x+ y)2 − 1

)
<

(
(x+ y)2 − 1/2, (x+ y)2 − 1/2

)
=

(
(x+ y)2, (x+ y)2

)
−

(
1/2, 1/2

)
= ψ(d(x, y))− φ(d(x, y)).

Case 3. For x = 2 and y ∈ [0, 1]. Then, Tx = 1, and

d(Tx, Ty) =
(
1− (y − 1

2
y2), 1− (y − 1

2
y2)

)
≤ (1, 1).

So, we have

ψ(d(Tx, Ty)) ≤ ψ(1, 1) = (1, 1).

Again d(x, y) = (2 + y, 2 + y). So,

ψ(d(x, y))− φ(d(x, y)) =
(
(2 + y)2, (2 + y)2

)
− φ(d(x, y))

=
(
(2 + y)2, (2 + y)2

)
− (

1

2
,
1

2
)

=
(7

2
+ 4y + y2,

7

2
+ 4y + y2

)
> (1, 1)

= ψ(d(Tx, Ty)).

Now it fulfills the requirement of Theorem 2.1 and 0 is the unique fixed point
of T.
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21. S. Radenović and Z. Kadelburg, Quasi-contractions on symmetric and cone symmetric
spaces, Banach J. Math. Anal. 5 (2011), no. 1, 38–50.

22. S. Reich, Some fixed point problems, Atti. Accad. Naz. Lincei 57 (1974), 194–198.
23. B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001),

2683–2693.
24. N. Shahzad, Invariant approximations, Generalized I-contractions, and R-subweakly com-

muting maps, Fixed Point Theory Appl. 1 (2005), 79–86.
25. Y. Song, Coincidence points for noncommuting f-weakly contractive mappings, Int. J. Com-

put. Appl. Math. 2 (2007), no. 1, 51–57.
26. Y. Song, Common fixed points and invariant approximations for generalized (f, g)-

nonexpansive mappings, Commun. Math. Anal. 2 (2007), 17–26.
27. Y. Song and S. Xu, A note on common fixed-points for Banach operator pairs, Int. J.

Contemp. Math. Sci. 2 (2007), 1163–1166.



FIXED POINTS OF (ψ, φ)-WEAK CONTRACTIONS 71

bibitemgha Gh. Abbaspour Tabadkan and M. Ramezanpour, A fixed point approach to the
stability of φ-morphisms on hilbert C∗-modules, Ann. Funct. Anal. 1 (2010), no. 1, 44–50

28. Qingnian Zhanga and Yisheng Songb, Fixed point theory for generalized φ-weak contrac-
tions, Appl.Math. Lett. 22 (2009), 75–78.

29. Sh. Rezapour and R. Hamlbarani, Some notes on the paper ’Cone metric spaces and fixed
point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), 719–724.

30. P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo 56 (2007),
464–468.

31. D. Wardowski, Endpoint and fixed points of set-valued contractions in cone metric spaces,
Nonlinear Anal. 71 (2009), 512–516.

1 School of Mathematical Sciences, North Maharashtra University, Jalgaon-
425001, India.

E-mail address: caage17@gmail.com

2 School of Mathematical Sciences, North Maharashtra University, Jalgaon-
425001, India.

E-mail address: drjnsalunke@gmail.com


	1. Introduction and preliminaries
	2. Main results
	References

