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COMPOSITION OPERATORS ACTING BETWEEN SOME
WEIGHTED MÖBIUS INVARIANT SPACES

A. EL-SAYED AHMED∗1 AND M. A. BAKHIT2

Communicated by K. Guerlebeck

Abstract. In this paper we investigate conditions under which a holomor-
phic self-map of the unit disk induces a composition operator Cφ with closed
range on the weighted Bloch space Blog. Also, we introduce a new class of
functions the so called Flog(p, q, s) spaces. Necessary and sufficient conditions
are given for a composition operator Cφ to be bounded and compact from Blog

to Flog(p, q, s). Moreover, necessary and sufficient conditions for Cφ from the
Dirichlet space D to the spaces Flog(p, q, s) to be compact are given in terms
of the map φ..

1. Introduction and preliminaries

Let ∆ = {z ∈ C : |z| < 1} be the unit disk in the complex plane C, ∂∆ it’s bound-
ary, H(∆) be the class of all analytic functions on ∆ and dA(z) the normalized
area measure. For each w ∈ ∆, let ϕw(z) denote the Möbius transformations of
∆

ϕw(z) =
w − z

1− w̄z
, for z ∈ ∆.

Let Aut(∆) be the group of all conformal automorphisms of ∆. The pseudo-
hyperbolic distance between z and w is given by σ(z, w) = |ϕz(w)|. The pseudo-
hyperbolic distance is Möbius invariant, that is,

σ(gz, gw) = σ(z, w),
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MÖBIUS INVARIANT SPACES 139

for all g ∈ Aut(∆), the Möbius group of ∆, and all z, w ∈ ∆. It has the following
useful property:

1− (σ(z, w))2 =
(1− |z|2)(1− |w|2)

|1− z̄w|2
= (1− |z|2)|ϕ′z(w)|.

For 0 < α <∞, the spaces of all analytic functions f on ∆ such that

‖f‖Bα = sup
z∈∆

(1− |z|2)α|f ′(z)| <∞,

are called α-Bloch spaces (see [27]). The space B1 is called the Bloch space B
(see [4]).
The classical Dirichlet space D is the space of all functions f ∈ D such that

‖f‖2
D =

∫
∆

|f ′(z)|2dA(z) <∞.

For p, s ∈ (0,∞), −2 < q <∞ and q + s > −1. An analytic function f : ∆ → C
defined in the unit disk ∆ belongs to the spaces F (p, q, s) (see [26]) if

‖f‖pF (p,q,s) = sup
a∈∆

∫
∆

|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) <∞

where g(z, a) = log 1
|ϕa(z)| is the Green’s function with logarithmic singularity at

a ∈ ∆, where ϕa(z) = a−z
1−āz , for z ∈ ∆. For more information about F (p, q, s)

spaces, we refer to [26].
For 0 < α <∞, the space of analytic functions f ∈ ∆ such that

‖f‖Bα
log

= sup
z∈∆

(1− |z|2)α
(

log
2

1− |z|2

)
|f ′(z)| <∞,

is called weighted α-Bloch space Bαlog (see [16]). If α = 1 the space Bαlog is just the
weighted Bloch space Blog. The little weighted Bloch space Bαlog,0 is a subspace of
Bαlog consisting of all f ∈ Bαlog such that

lim
|z|→1

(1− |z|2)α
(

log
2

1− |z|2

)
|f ′(z)| = 0.

Now, let 0 < h < 1, 0 ≤ θ < 2π, and

Ω(h, θ) = {reit : 1− h < r < 1} and |t− θ| < h},

S(h, θ) = {reit : |reit − reiθ| < h}.
A positive measure µ on ∆ is a Carleson measure if there is a constant A with

µ(S(h, θ)) ≤ Ah, where 0 < h < 1 and 0 ≤ θ < 2π.

For 0 < s < ∞, we say that a positive measure µ defined on ∆ is a bounded
s-Carleson measure (see [5, 26]) provided µ(S(I)) = O(|I|s) for all subarcs I of
∂∆, where |I| denotes the arc length of I ⊂ ∂∆ and S(I) denotes the Carleson
box based on I, that is,

S(I) =

{
z ∈ ∆ :

z

|z|
∈ I, 1− |z| ≤ |I|

2π

}
.
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If µ(S(I)) = o(|I|s) as |I| → 0, then we say that µ is a compact s-Carleson
measure.
A positive Borel measure µ on ∆ is called an s-logarithmic, p-Carleson measure
(p, s > 0) if

sup
I⊆∂∆

µ(S(I))(log 2
|I|)

p

|I|p
<∞.

In [28] it is proved that µ is an s-logarithmic, p-Carleson measure on ∆ if and
only if

sup
a∈∆

(
log

2

1− |a|2

)s∫
∆

|ϕ′a(z)|pdµ(z) <∞.

Definition 1.1. For p, s ∈ (0,∞), −2 < q < ∞ and q + s > −1, a function
f ∈ H(∆) is said to belong to Flog(p, q, s) if

‖f‖pFlog(p,q,s) = sup
I⊂∂∆

(log 2
|I|)

p

|I|s

∫
S(I)

|f ′(z)|p(1− |z|2)q
(
log

1

|z|
)s
dA(z) <∞.

By the same proof as done in [26] and for 1 < p <∞,−2 < q <∞, 1 < s <∞,
it is easy to see that Flog(p, q, s) are Banach spaces under the norm

‖f‖Flog(p,q,s) = |f(0)|+ sup
a∈∆

(
log

2

1− |a|2

){∫
∆

|f ′(z)|p(1− |z|2)qgs(z, a)dA(z)

} 1
p

.

Remark 1.2. The interest in the Flog(p, q, s) spaces arises from the fact they cover
some well known function spaces, it is immediate that Flog(2, 0, 1) = BMOAlog

(see [3, 8]). Also, Flog(2, 0, p) = Qp
log, where 0 < p <∞ (see [11]).

The composition operator Cφ : H(∆) → H(∆) is defined by Cφ = f ◦ φ.
There have been several attempts to study compactness and boundedness of com-
position operators in many function spaces (see e.g. [1, 2, 6, 7, 9, 10, 13, 14, 15,
17, 18, 30] and others). There are also some studies in several complex variables
(see e.g. [21, 24, 29] and others). Most of the previous work in the theory of com-
position operators dealt with their compactness, relating it to classical function
theory. On the other hand there are some studies of closed range composition
operators (see [12, 19, 31, 32] and others).
In this paper, we determine when the composition operator Cφ has a closed range
on the weighted Bloch space Blog and we give a set of necessary conditions and
a partial converse for Cφ on the weighted Bloch space Blog. Also, we charac-
terize boundedness and compactness of the composition operators Cφ : Bαlog →
Flog(p, q, s). Finally, we consider the composition operators from the Dirichlet
space D into Flog(p, q, s) spaces.

Recall that a linear operator T : X → Y is said to be bounded if there exists
a constant M > 0 such that ||T (f)||Y ≤ M ||f ||X for all maps f ∈ X. Moreover,
T : X → Y is said to be compact if it takes bounded sets in X to sets in Y
which have compact closure. For Banach spaces X and Y of H(∆), T is compact
from X to Y if and only if for each bounded sequence {xn} ∈ X, the sequence
{Txn} ∈ Y contains a subsequence converging to some limit in Y.
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Two quantities Af and Bf , both depending on an analytic function f on ∆,
are said to be equivalent, written as Af ≈ Bf , if there exists a finite positive
constant C not depending on f such that for every analytic function f on ∆ we
have:

1

C
Bf ≤ Af ≤ CBf .

If the quantities Af and Bf , are equivalent, then in particular we have Af < ∞
if and only if Bf <∞.

2. Composition operator with closed range on Blog space

Let φ be a holomorphic self-map of the unit disk ∆. We write G = φ(∆), and
τφ(z) is defined by

τφ(z) =
(1− |z|2)

(
log 2

1−|z|2
)
|φ′(z)|

(1− |φ(z)|2)
(
log 2

1−|φ(z)|2
) .

Yoneda in [25] proved the following results:

Theorem 2.1. Let φ be a holomorphic function taking ∆ into ∆. Then Cφ is
bounded on Blog if and only if

sup
z∈∆

(
(1− |z|2) log 2

1−|z|2

(1− |φ(z)|2) log 2
1−|φ(z)|2

|φ′(z)|
)
< +∞.

Lemma 2.2. If Cφ is bounded on Blog, then for all f ∈ Blog,

‖f‖Blog
≤ k

{
sup(1− |w|2)

(
log

2

1− |w|2

)
|f ′(w)|, w ∈ G

}
for some constant k.

Now, we give the following result:

Theorem 2.3. If Cφ is bounded below on Blog, then there exist positive constants
ε, r with r < 1 such that, for all z ∈ ∆, σ(φ(Ωε), z) ≤ r where

Ωε = {z ∈ ∆, |τφ(z)| > ε}.

Proof. Since Cφ : Blog → Blog is bounded below, then there is a constant k,
log 2 < k ≤ 1 such that

‖Cφf‖Blog
≥ k‖f‖Blog

for f ∈ B0,log, for each w ∈ ∆, let

fw(z) =
w − z

1− w̄z
− w − φ(0)

1− w̄φ(0)
.

Clearly, fw(z) is a bounded and continuous analytic function on the closed unit
disk and so is in B0,log. Moreover an easy computation gives ‖fw‖log ≥ 1. Thus

‖Cφfw‖Blog
≥ k‖fw‖Blog

≥ k.
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On the other hand, we also have

(1− |z|2)
(

log
2

1− |z|2

)
|(Cφfw)′(z)|

= (1− |ϕw(φ(z))|2)
(

log
2

1− |ϕw(φ(z))|2

)
|τφ(z)|,

and Cφfw(0) = 0. Then there is a point zw ∈ ∆ such that

‖Cφfw‖Blog
≥ (1− |zw|2)

(
log

2

1− |zw|2

)
|(Cφfw)′(zw)|

≥ 1

2
‖Cφfw‖Blog

≥ k

2
.

So, we obtain that

(1− |ϕw(φ(z))|2)
(

log
2

1− |ϕw(φ(z))|2

)
|τφ(z)| ≥

k

2
.

Thus,

(1− |ϕw(φ(z))|2)
(

log
2

1− |ϕw(φ(z))|2

)
≥ k

2
,

then,

|ϕw(φ(z))|2 ≤ (
√

2− 1)

e
k
2 − 1

.

Let r =

√
(
√

2−1)

e
k
2−1

< 1 and ε = (
√

2−1)

e
k
2−1

. Noting σ(w, φ(zw)) = |ϕw(φ(zw))|, we

conclude that

σ(w, φ(zw)) < r and |τφ(zw)| ≥ ε.

This completes the proof.

Theorem 2.4. If for some constants 0 < r < 1
3
, and ε > 0, for each w ∈ ∆,

there is a point zw ∈ ∆ such that

σ(w, φ(zw)) < r and |τφ(zw)| > ε,

then Cφ : Blog → Blog is bounded below.

Proof. Let u = φ(0). Then φ = ϕu ◦ ϕu ◦ φ. Let ψ = ϕu ◦ φ. Thus ψ(0) = 0, and
Cφ = CψCϕu . Since ϕu is a Möbus transform, Cϕu is isometry on Blog. So we need
only to prove that Cψ is bounded on Blog. Moreover ψ still satisfies the conditions
of the theorem. In order to prove that Cψ is bounded on Blog space it suffices to
prove

‖Cψf‖log ≥ k,
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for some constant k > 0 and all f ∈ Blog with ‖f‖log = 1. To do this, let f ∈ Blog

with norm ‖f‖log = 1. For each zw ∈ ∆, we have

(1− |z|2)
(
log

2

1− |z|2
)∣∣(Cψf)′(z)

∣∣
= (1− |z|2)

(
log

2

1− |z|2
)∣∣f ′(ψ(z))

∣∣∣∣ψ′(z)∣∣
=

(1− |ψ(z)|2)
(
log 2

1−|ψ(z)|2
)

(1− |ψ(z)|2)
(
log 2

1−|ψ(z)|2
)(1− |z|2)

(
log

2

1− |z|2
)∣∣f ′(ψ(z))

∣∣∣∣ψ′(z)∣∣
= (1− |ψ(z)|2)

(
log

2

1− |ψ(z)|2
)∣∣f ′(ψ(z))

∣∣ (1− |z|2)
(
log 2

1−|z|2
)

(1− |ψ(z)|2)
(
log 2

1−|ψ(z)|2
)∣∣ψ′(z)∣∣

= (1− |ψ(z)|2)
(
log

2

1− |ψ(z)|2
)∣∣f ′(ψ(z))

∣∣∣∣τψ(z)

∣∣.
Since ‖f‖log = 1, noting that ‖f‖log = |f(0)|+‖f‖Blog

, then ‖f‖Blog
= (1−|f(0)|),

there is a point w ∈ ∆ such that

(1− |w|2)
(
log

2

1− |w|2
)
|f ′(w)| ≥ (1−

1
3
− r

2
)(1− |f(0)|),

where 0 < r < 1
3

and 1−
1
3
−r
2
< 1. By Theorem 2.2, we have∣∣∣∣((1− |z|2)

(
log

2

1− |z|2
)
|f ′(z)|

)
−

(
(1− |w|2)

(
log

2

1− |w|2
)
|f ′(w)|

)∣∣∣∣
≤ 3σ(z, w)‖f ◦ ϕw‖Blog

.

Thus whenever σ(ψ(zw), w) < r < 1
3
, we have that

(1− |ψ(zw)|2)
(
log

2

1− |ψ(zw)|2
)
|f ′(ψ(zw))|

≥ (1− |w|2)
(
log

2

1− |w|2
)
|f ′(w)| − 3σ(ψ(zw), w)(1− |f(0)|)

≥ (1− |w|2)
(
log

2

1− |w|2
)
|f ′(w)| − 3r(1− |f(0)|)

≥ (1−
1
3
− r

2
− 3r)(1− |f(0)|)

≥ 5

6
(1− 3r)(1− |f(0)|).

So,

‖Cψf‖log ≥ |f(ψ(0))|+ (1− |z|2)
(
log

2

1− |z|2
)∣∣(Cψf)′(z)

∣∣
≥ |f(0)|+ (1− |ψ(z)|2)

(
log

2

1− |ψ(z)|2
)∣∣f ′(ψ(z))

∣∣∣∣τψ(z)

∣∣ , for all z ∈ ∆.
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In particular,

‖Cψf‖log ≥ |f(ψ(0))|+ (1− |z|2)
(
log

2

1− |z|2
)∣∣(Cψf)′(z)

∣∣
≥ |f(0)|+ 5

6
ε (1− 3r)(1− |f(0)|) ≥ 5

6
ε (1− 3r).

Let k = 5
6
ε (1− 3r). We have proved that

‖Cψf‖log ≥ k , whenever ‖f‖log = 1.

This completes the proof.

3. Composition operators on Flog(p, q, s) spaces

Now we characterize the weighted logarithmic α-Bloch spaces Bαlog by the
weighted Flog(p, q, s) spaces. The obtained result improve some previous results
due to Stroethoff [22] and Zhao [26].

Theorem 3.1. If 0 < p < ∞, −2 < q < ∞ , 1 < s < ∞ and α = q+2
p

with

q + s > −1. Then the following statements are equivalent:
(A) f ∈ Bαlog.
(B) f ∈ Flog(p, q, s).

(C) sup
a∈∆

(
log 2

1−|a|2

)p∫
∆
|f ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) <∞.

(D) sup
a∈∆

(
log 2

1−|a|2

)p∫
∆
|f ′(z)|p(1− |z|2)αp−2gs(z, a)dA(z) <∞.

Proof. The proof is similar to the main results in [22, 27], so it will be omitted.

Theorem 3.1, will be needed to study composition operators between Flog(p, q, s)
and weighted Bαlog spaces.

Lemma 3.2. Let 0 < α <∞, there are two functions f1, f2 ∈ Bαlog such that

|f ′1(z)|+ |f ′2(z)| ≥
C

(1− |z|2)α(log 2
1−|z|2 )

where C is a positive constant.

Proof. The proof of this lemma is similar to that of Lemma 3.1 in [11] or Lemma 2.2
in [16] with some simple modifications, so it will be omitted.
We need the following notation.

Φφ(α, p, s; a) =

(
log

2

1− |a|2

)p∫
∆

|φ′(z)|p (1− |z|2)αp−2(1− |ϕa(z)|2)s

(1− |φ(z)|2)αp
(
log 2

1−|φ(z)|2
)pdA(z),

for 0 < p, α <∞ and 1 < s <∞. Now, we will give the following theorem:
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Theorem 3.3. Let 0 < p, α < ∞ let 1 < s < ∞. If φ is an analytic self-
map of the unit disk, then the induced composition operator Cφ maps Bαlog into
Flog(p, αp− 2, s) boundedly if and only if

sup
a∈∆

Φφ(α, p, s; a) <∞. (3.1)

Proof. Let f ∈ Bαlog with ‖f‖Bα
log
≤ 1, then in view of Theorem 3.1 , we obtain

‖Cφf‖pFlog(p, αp−2,s)

= sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|(f ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

= sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|f ′(φ(z))|p|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ ‖f‖pBα
log

sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|φ′(z)|p (1− |z|2)αp−2(1− |ϕa(z)|2)s

(1− |φ(z)|2)αp
(
log 2

1−|φ(z)|2
)p dA(z)

= ‖f‖pBα
log

sup
a∈∆

Φφ(α, p, s; a) <∞.

For the other direction we use the fact that for each function f ∈ Bαlog, the analytic
function Cφ(f) ∈ Flog(p, αp − 2, s). Then using the functions of Lemma 3.2 we
get the following:

2p
{
‖Cφf1‖pFlog(p,αp−2,s) + ‖Cφf2‖pFlog(p,αp−2,s)

}
= 2p sup

a∈∆

{(
log

2

1− |a|2

)p

×
∫

∆

[
|(f1 ◦ φ)′(z)|p + |(f2 ◦ φ)′(z)|p

]
(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

}
≥ sup

a∈∆

{ (
log

2

1− |a|2

)p

×
∫

∆

[
|(f1 ◦ φ)′(z)|+ |(f2 ◦ φ)′(z)|

]p
(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

}
≥ sup

a∈∆

{ (
log

2

1− |a|2

)p

×
∫

∆

[
|(f ′1(φ(z))|+ |(f2(φ(z))|

]p
|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

}
≥ C sup

a∈∆

(
log

2

1− |a|2

)p∫
∆

|φ′(z)|p (1− |z|
2)αp−2(1− |ϕa(z)|2)s

(1− |φ(z)|2)αp
(
log 2

1−|a|2
)p dA(z)

≥ C sup
a∈∆

Φφ(α, p, s; a).

Hence Cφ is bounded, then (3.1) holds. The proof is completed.

Now, we describe compactness in the following result.
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Theorem 3.4. Let 0 < p, α < ∞ and let 1 < s < ∞. If φ is an analytic self-
map of ∆, then the induced composition operator Cφ : Bαlog → Flog(p, αp− 2, s) is
compact if and only if φ ∈ Flog(p, αp− 2, s) and

lim
r→1

sup
a∈∆

Φφ(α, p, s; a) = 0. (3.2)

Proof. Let Cφ : Bαlog → Flog(p, αp− 2, s) be compact. This means that

φ ∈ Flog(p, αp− 2, s).

Let fn(z) = zn

n
. Since ‖fn‖Bα

log
≤ M (M = 2α

eα
) and fn(z) → 0 as n→∞, locally

uniformly on ∆, then by the compactness of Cφ, ‖Cφ(fn)‖Flog(p,αp−2,s) → 0 as
n→∞. This means that for each r ∈ (0, 1) and for all ε > 0, there exist N ∈ N
such that if n ≥ N , then

Nαprp(N−1) sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε,

where Ωr = {z ∈ ∆, |φ(z)| > r}, if we choose r so that (Nαp rp(N−1)) = 1, then

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε. (3.3)

Let now f with ‖f‖Bα
log
≤ 1. We consider the functions ft(z) = f(tz), t ∈ (0, 1).

Then ft → f uniformly on compact subset of the unit disk as t → 1 and the
family (ft) is bounded on Bαlog, thus

‖(ft ◦ φ)− (f ◦ φ)‖ → 0.

Due to compactness of Cφ we get that, for ε > 0 there is a t ∈ (0, 1) such that

sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|Ft(φ(z))|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε,

where Ft(φ(z)) = (f ◦ φ)′(z)− (ft ◦ φ)′(z). Thus, if we fix t, then

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(f ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ 2p sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|Ft(φ(z))|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

+2p sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(ft ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ ε2p + 2p‖f ′t‖
p
H∞

× sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ ε2p + ε2p|f ′t‖
p
H∞ ,

i.e.,

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(f ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ ε2p(1 + |f ′t‖
p
H∞),
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where we have used (3.3). On the other hand, for each ‖f‖Bα
log
≤ 1 and ε > 0,

there exists a δ depending on f, ε, such that for r ∈ [δ, 1),

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(f ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε. (3.4)

Since Cφ is compact, then it maps the unit ball of Bαlog to a relatively compact
subset of Flog(p, αp− 2, s). Thus for each ε > 0 there exists a finite collection
of functions f1, f2, . . . , fn in the unit ball of Bαlog such that for each ‖f‖Bα

log
≤ 1,

there is k ∈ {1, 2, 3, . . . , n} such that

sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|Fk(φ(z))|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε,

where Fk(φ(z)) = (f ◦ φ)′(z)− (fk ◦ φ)′(z).
Using also (3.4), we get for δ = max

1≤k≤n
δ(fk, ε)andr ∈ [δ, 1), that

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(fk ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε.

Hence for any f, ‖f‖Bα
log
≤ 1, combining the two relations as above we get that

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(f ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z) < ε2p.

Therefore, we get that (3.2) holds.
For the sufficiency we use that φ ∈ Flog(p, αp−2, s) and (3.2) holds. Let {fn}n∈N
be a sequence of functions in the unit ball of Bαlog, such that fn → 0 as n → ∞,
uniformly on the compact subsets of the unit disk. Let also r ∈ (0, 1) and
Φr = {z ∈ ∆, |φ(z)| ≤ r}. Then

‖fn ◦ φ‖pFlog(p,αp−2,s)

≤ 2p|fn(φ(0))|

+2p sup
a∈∆

(
log

2

1− |a|2

)p∫
Φr

|(fn ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

+ 2p sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(fn ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

= 2p (I1 + I2 + I3).

Since fn → 0 as n→∞, locally uniformly on the unit disk, then I1 = |fn(φ(0))|
goes to zero as n → ∞ and for each ε > 0 there is N ∈ N such that for each
n > N,

I2 = sup
a∈∆

(
log

2

1− |a|2

)p∫
Φr

|(fn ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)sdA(z)

≤ ε ‖φ‖pFlog(p, αp−2,s).
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We also observe that

I3 = sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|(fn ◦ φ)′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)s dA(z)

≤ ‖fn‖pBα
log

sup
a∈∆

(
log

2

1− |a|2

)p∫
Ωr

|φ′(z)|p(1− |z|2)αp−2(1− |ϕa(z)|2)s

(1− |φ(z)|2)αp
(
log 2

1−|φ(z)|2
)p dA(z).

Under the assumption that (3.2) holds, then for every n > N and for every ε > 0
there exists r1 such that for every r > r1, I3 < ε. Thus if φ ∈ Flog(p, αp − 2, s),
we obtain

‖fn ◦ φ‖pFlog(p,αp−2,s) ≤ 2p {0 + ε ‖φ‖pFlog(p, αp−2,s) + ε} ≤ εC.

Combining the above, we get that ‖Cφ(fn)‖pFlog(p, αp−2,s) → 0 as n → ∞, which

proves compactness. The proof of our theorem is therefore established.

Now we consider the composition operators from the Dirichlet space D into
Flog(p, q, s) spaces. Our result is stated as follows.

Theorem 3.5. Let 2 ≤ p <∞, 1 < s <∞,−2 < q <∞ and q + s > −1. If φ is
an analytic self-map of ∆, then the composition operator Cφ : D → Flog(p, q, s) is
compact if and only if

lim
|a|→1

‖Cφϕa‖Flog(p,q,s) = 0. (3.5)

Proof. Assume that Cφ : D → Flog(p, q, s) is compact. Since {ϕa : a ∈ ∆} is
a bounded set in D and ϕa − a → 0 uniformly on compact sets as |a| → 1, the
compactness of Cφ yields that

‖Cφϕa‖Flog(p,q,s) −→ 0 as |a| → 1.

Conversely, let {fn} ∈ D be a bounded sequence. Since fn ∈ D ⊂ B, for z ∈ ∆

|fn(z)| ≤ sup
n
‖fn‖D

(
1 +

1

2
log

1 + |z|
1− |z|

)
.

Hence, {fn} is a normal family. Thus, there is a subsequence {fnk
}, which con-

verges to f analytic on ∆ and both fnk
→ f and f ′nk

→ f ′ uniformly on compact
subsets of ∆. It is easy to show that f ∈ D. We replace f by Cφf, we remark
that Cφ is compact by showing

‖Cφfnk
− Cφf‖Flog(p,q,s) −→ 0 as |k| → ∞.
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We write

‖Cφϕa‖pFlog(p,q,s)

= sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|(ϕa ◦ φ)′(z)|p(1− |z|2)qgs(z, a)dA(z)

= sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

(1− |a|2)p

|1− aφ(z)|2p
|φ′(z)|p(1− |z|2)qgs(z, a)dA(z)

= sup
a∈∆

∫
∆

(1− |a|2)p

|1− aw|2p
(
Na,p,q,s

log (φ,w)
)
dA(w).

Here,

Na,p,q,s
log (φ,w) =

(
log

2

1− |a|2

)p ∑
z∈φ−1(w)

|φ′(z)|p−2(1− |z|2)qgs(z, a)

is the counting function. Thus (3.5) is equivalent to

lim
|a|→1

sup
a∈∆

∫
∆

(1− |a|2)p

|1− aw|2p
(
Na,p,q,s

log (φ,w)
)
dA(w) = 0.

Hence by [5] or [23], for any ε > 0 there exists δ, where 0 < δ < 1, such that for
0 < h < δ and all a ∈ ∆,

sup
a∈∆

∫
S(h,θ)

Na,p,q,s
log (φ,w)dA(w) < ε hp,

where S(h, θ) is a Carleson box. For Fnk
(z) = f ′nk

(z) − f ′(z), the mean value
property for analytic functions f ′nk

and f ′ yields that,

Fnk
(w) =

4

π(1− |w|)2

∫
|w−z|< 1−|w|

2

Fnk
(z)dA(z).

Then by Jensen’s inequality (see [20] theorem 3.3), we have

|Fnk
(w)|p =

4

π(1− |w|)2

∫
|w−z|< 1−|w|

2

|Fnk
(z)|pdA(z).

Note that if |w − z| < 1−|w|
2

, then we have that w ∈ S(2(1− |z|), θ) and also
1

(1−|w|)2 ≤
C

(1−|z|)2 (see [23]). Then, by Fubini’s theorem (see [20] theorem 8.8), for
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Fnk
(z) = f ′nk

(z)− f ′(z), we deduce that

sup
a∈∆

∫
∆

|Fnk
(w)|p

(
Na,p,q,s

log (φ,w)
)
dA(w)

≤ sup
a∈∆

∫
∆

{
4

π(1− |w|)2

∫
|w−z|< 1−|w|

2

|Fnk
(z)|pdA(z)

}
Na,p,q,s

log (φ,w)dA(w)

≤ C sup
a∈∆

∫
∆

|Fnk
(z)|p

(1− |z|)2

∫
S(2(1−|z|),θ)

Na,p,q,s
log (φ,w)dA(w)dA(z)

= C sup
a∈∆

{(
log

2

1− |a|2

)p

×
∫
|z|>1− δ

2

|Fnk
(z)|p

(1− |z|)2

∫
S(2(1−|z|),θ)

Na,p,q,s
log (φ,w)dA(w)dA(z)

}
+C sup

a∈∆

{(
log

2

1− |a|2

)p

×
∫
|z|≤1− δ

2

|Fnk
(z)|p

(1− |z|)2

∫
S(2(1−|z|),θ)

Na,p,q,s
log (φ,w) dA(w)dA(z)

}
.

For one hand, since fnk
, f ∈ D ⊂ B, 2 ≤ p <∞ and Fnk

(z) = f ′nk
(z)− f ′(z), we

have

sup
a∈∆

∫
|z|>1− δ

2

|Fnk
(z)|p

(1− |z|)2

∫
S(2(1−|z|),θ)

Na,p,q,s
log (φ,w)dA(w)dA(z)

≤ ε 2p sup
a∈∆

∫
|z|>1− δ

2

|Fnk
(z)|p(1− |z|)p−2dA(z)

≤ εC‖fnk
− f‖p−2

B sup
a∈∆

∫
|z|>1− δ

2

|Fnk
(z)|2dA(z)

≤ εC‖fnk
− f‖p−2

B ‖fnk
− f‖2

D

≤ εC1‖fnk
− f‖2

D,

where C and C1 are positive constants. On the other hand,

sup
a∈∆

∫
|z|≤1− δ

2

|Fnk
(z)|p

(1− |z|)2

∫
S(2(1−|z|),θ)

Na,p,q,s
log (φ,w)dA(w)dA(z)

≤ C sup
a∈∆

∫
∆

Na,p,q,s
log (φ,w)dA(w)

∫
|z|≤1− δ

2

|Fnk
(z)|pdA(z)

≤ εC,

for n large enough and since Fnk
(z) = (f ′nk

(z)− f ′(z)) −→ 0 uniformly on

{z ∈ ∆ : |z| ≤ 1 − δ
2
}. Therefore, for sufficiently large k, the above discussion
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gives

‖Cφfnk
− Cφf‖pFlog(p,q,s)

= sup
a∈∆

(
log

2

1− |a|2

)p∫
∆

|(fnk
◦ φ)′(z)− (f ◦ φ)′(z)|p(1− |z|2)qgs(z, a)dA(z)

= sup
a∈∆

∫
∆

|f ′nk
(z)− f ′(z)|p(1− |z|2)qNa,p,q,s

log (φ,w) dA(w) < εC.

It follows that Cφ is a compact operator. Therefore, the proof is completed.
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