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Abstract. We consider the Banach space X = (R2, ‖ · ‖) with a normalized,
absolute norm. Our aim in this paper is to calculate the modified Neumann-
Jordan constant C ′

NJ(X) and the Zbăganu constant CZ(X).

1. Introduction and preliminaries

Let X be a Banach space with the unit ball BX = {x ∈ X : ‖x‖ ≤ 1} and the
unit sphere SX = {x ∈ X : ‖x‖ = 1}. Many geometric constants for a Banach
space X have been investigated. In this paper we shall consider the following
constants;

CNJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)

∣∣∣∣ (x, y) 6= (0, 0)

}
,

C ′
NJ(X) = sup

{
‖x+ y‖2 + ‖x− y‖2

4

∣∣∣∣ x, y ∈ SX}
,

CZ(X) = sup

{
‖x+ y‖‖x− y‖
‖x‖2 + ‖y‖2

∣∣∣∣ x, y ∈ X, (x, y) 6= (0, 0)

}
.

The constant CNJ(X), called the von Neumann-Jordan constant (hereafter re-
ferred to as NJ constant) have been considered in many papers ([3, 8, 10, 12]
and so on). The constant C ′

NJ(X), called the modified von Neumann-Jordan
constant (shortly, modified NJ constant) was introduced by Gao in [5] and does
not necessarily coincide with CNJ(X) (cf. [1, 4, 7]). The constant CZ(X) was
introduced by Zbăganu ([15]) and was conjectured that CZ(X) coincides with
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the von Neumann-Jordan constant CNJ(X), but Alonso and Martin [2] gave an
example that CNJ(X) 6= CZ(X) (cf.[6, 9]).

A norm ‖ · ‖ on R2 is said to be absolute if ‖(a, b)‖ = ‖(|a|, |b|)‖ for any
(a, b) ∈ R2, and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1. Let AN2 denote the family
of all absolute normalized norm on R2, and Ψ2 denote the family of all continuous
convex function ψ on [0, 1] such that ψ(0) = ψ(1) = 1 and max{1− t, t} ≤ ψ(t) ≤
1 for all 0 ≤ t ≤ 1. As in [11], it is well known that AN2 and Ψ2 are in a one-to-
one correspondence under the equation ψ(t) = ‖(1 − t, t)‖ (0 ≤ t ≤ 1). Denote
‖ · ‖ψ be an absolute normalized norm associated with a convex function ψ ∈ Ψ2.

For ψ, ϕ ∈ Ψ2, we denote ψ ≤ ϕ if ψ(t) ≤ ϕ(t) for any t in [0, 1]. Let

M1 = max
0≤t≤1

ψ(t)

ψ2(t)
and M2 = max

0≤t≤1

ψ2(t)

ψ(t)
,

where ψ2(t) = ‖(1 − t, t)‖2 =
√

(1− t)2 + t2 corresponds to the l2-norm. In
[11], Saito, Kato and Takahashi proved that, if ψ ≥ ψ2 (resp. ψ ≤ ψ2), then
CNJ (C2, ‖ · ‖ψ) = M2

1 (resp. M2
2 ).

We put X = (R2, ‖ · ‖ψ) for ψ ∈ Ψ2. Our aim in this paper is to consider the
conditions of ψ that CNJ(X) = CZ(X) or CNJ(X) = C ′

NJ(X).
In §2, we consider the modified von Neumann-Jordan constant. We prove

that if ψ ≤ ψ2, then C ′
NJ(X) = CNJ(X) = M2

2 . If ψ ≥ ψ2, then we present the
necessarily and sufficient condition that C ′

NJ (R2, ‖ · ‖ψ) = CNJ (R2, ‖ · ‖ψ) = M2
1 .

Further, we consider the conditions that C ′
NJ(R2, ‖ · ‖ψ) = CNJ(R2, ‖ · ‖ψ) =

M2
1M

2
2 . In §3, we study the Zbăganu constant. First, we show that, if ψ ≥ ψ2,

then CZ (R2, ‖ · ‖ψ) = CNJ (R2, ‖ · ‖ψ) = M2
1 . If ψ ≤ ψ2, then we give the

necessarily and sufficient condition for that CZ (R2, ‖ · ‖ψ) = CNJ (R2, ‖ · ‖ψ) =
M2

2 . Further we study the conditions that CZ(R2, ‖ · ‖ψ) = CNJ(R2, ‖ · ‖ψ) =
M2

1M
2
2 . In §4, we calculate the modified NJ-constant C ′

NJ(X) and the Zbăganu
constant CZ(X) for some normed liner spaces.

2. The modified NJ constant of R2

In this section, we consider the Banach space X = (R2, ‖ · ‖ψ). From the
definition of the modified NJ constant, it is clear that C ′

NJ(X) ≤ CNJ(X). In
this section, we consider the condition that C ′

NJ(X) = CNJ(X).

Proposition 2.1. Let ψ ∈ Ψ2. If ψ ≤ ψ2, then C ′
NJ(X) = CNJ(X) = M2

2 .

Proof. For any x, y ∈ SX , by [11, Lemma 3],

‖x+ y‖2
ψ + ‖x− y‖2

ψ ≤ ‖x+ y‖2
2 + ‖x− y‖2

2

= 2
(
‖x‖2

2 + ‖y‖2
2

)
≤ 2M2

2

(
‖x‖2

ψ + ‖y‖2
ψ

)
= 4M2

2 .

Now let ψ2/ψ attain the maximum at t = t0 (0 ≤ t0 ≤ 1), and put

x =
1

ψ(t0)
(1− t0, t0), y =

1

ψ(t0)
(1− t0, −t0).
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Then x, y ∈ SX and

‖x+ y‖2
ψ + ‖x− y‖2

ψ =
4(1− t0)

2 + 4t20
ψ(t0)2

= 4
ψ2(t0)

2

ψ(t0)2
= 4M2

2 ,

which implies that C ′
NJ(X) = M2

2 . By [11, Theorem 1], we have this proposition.
�

If ψ ≥ ψ2, by [11, Theorem 1], then CNJ(X) = M2
1 . We now give the necessarily

and sufficient condition of C ′
NJ(X) = M2

1 .

Theorem 2.2. Let ψ ∈ Ψ2 such that ψ ≥ ψ2. Then C ′
NJ(X) = M2

1 if and only
if there exist s, t ∈ [0, 1] (s < t) satisfying one of the following conditions:

(1) ψ(s) = ψ2(s), ψ(t) = ψ2(t) and, if we put r = ψ(s)t+ψ(t)s
ψ(s)+ψ(t)

, then ψ(r)
ψ2(r)

=
ψ(1−r)
ψ2(1−r) = M1.

(2) ψ(s) = ψ2(s), ψ(t) = ψ2(t) and, if we put r = ψ(t)s+ψ(s)t
ψ(t)+ψ(s)(2t−1)

, then ψ(r)
ψ2(r)

=
ψ(1−r)
ψ2(1−r) = M1.

Proof. (=⇒) Suppose that C ′
NJ(X) = M2

1 . First, for any x, y ∈ SX , by [11,
Lemma 3], we have

‖x+ y‖2
ψ + ‖x− y‖2

ψ ≤M2
1 (‖x+ y‖2

2 + ‖x− y‖2
2)

= 2M2
1

(
‖x‖2

2 + ‖y‖2
2

)
≤ 2M2

1

(
‖x‖2

ψ + ‖y‖2
ψ

)
= 4M2

1 .

Since X = (R2, ‖ · ‖ψ) is finite dimensional,

C ′
NJ(X) = max

{‖x+ y‖2
ψ + ‖x− y‖2

ψ

4

∣∣∣∣ x, y ∈ SX}
.

Therefore, C ′
NJ(X) = M2

1 if and only if there exist x, y ∈ SX (x 6= y) such that

‖x+ y‖2
ψ + ‖x− y‖2

ψ = 4M2
1 .

From the above inequality, the elements x, y ∈ SX (x 6= y) satisfy ‖x‖ψ = ‖x‖2 =
1, ‖y‖ψ = ‖y‖2 = 1 and

‖x+ y‖ψ
‖x+ y‖2

=
‖x− y‖ψ
‖x− y‖2

= M1.

Since ‖ · ‖ψ is absolute and x, y ∈ SX (x 6= y) satisfy ‖x‖2 = ‖y‖2 = 1, it is
sufficient to consider the following three cases:

(i) There exist s, t ∈ [0, 1] (s 6= t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(1− t, t).

(ii) There exist s, t ∈ [0, 1] (s < t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(−1 + t, t).
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(iii) There exist s, t ∈ [0, 1] (s > t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(−1 + t, t).

Case (i). We may suppose that s < t. Then there exist α, β ∈ [0, π
2
] (α < β) such

that

x =
1

ψ2(s)
(1− s, s) = (cosα, sinα), y =

1

ψ2(t)
(1− t, t) = (cos β, sin β).

Since ‖x‖2 = ‖y‖2 = 1, we have

x+ y = (
1− s

ψ2(s)
+

1− t

ψ2(t)
,

s

ψ2(s)
+

t

ψ2(t)
) = ||x+ y||2(cos

α+ β

2
, sin

α+ β

2
).

By [13, Propositions 2a and 2b], we remark that

1− s

ψ2(s)
≥ 1− t

ψ2(t)
,

s

ψ2(s)
≤ t

ψ2(t)
.

Since x− y is orthogonal to x+ y in the Euclidean space (R2, ‖ · ‖2), we have

x− y = (
1− s

ψ2(s)
− 1− t

ψ2(t)
,

s

ψ2(s)
− t

ψ2(t)
)

= ||x− y||2(cos
α+ β − π

2
, sin

α+ β − π

2
)

= ||x− y||2(sin
α+ β

2
,− cos

α+ β

2
).

Thus we have

||x+ y||ψ = ||x+ y||2||(cos
α+ β

2
, sin

α+ β

2
)||ψ

= ||x+ y||2(cos
α+ β

2
+ sin

α+ β

2
)ψ(

sin α+β
2

cos α+β
2

+ sin α+β
2

).

Since ||x+ y||ψ = M1||x+ y||2, we have

M1 = (cos
α+ β

2
+ sin

α+ β

2
)ψ(

sin α+β
2

cos α+β
2

+ sin α+β
2

).

Putting r =
sin α+β

2

cos α+β
2

+sin α+β
2

, then it is clear that r = ψ(s)t+ψ(t)s
ψ(s)+ψ(t)

and M1 = ψ(r)
ψ2(r)

.

We also have

||x− y||ψ = ||x− y||2(sin
α+ β

2
+ cos

α+ β

2
)ψ(

cos α+β
2

cos α+β
2

+ sin α+β
2

).

Since ||x− y||ψ = M1||x− y||2, we similarly have

M1 = (sin
α+ β

2
+ cos

α+ β

2
)ψ(

cos α+β
2

sin α+β
2

+ cos α+β
2

) =
ψ(1− r)

ψ2(1− r)
.

Case (ii). Then there exist α ∈ [0, π
2
] and β ∈ [π

2
, π] such that

x =
1

ψ2(s)
(1− s, s) = (cosα, sinα), y =

1

ψ2(t)
(−1 + t, t) = (cos β, sin β).
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Since ‖x‖2 = ‖y‖2 = 1, we have

x+ y = (
1− s

ψ2(s)
− 1− t

ψ2(t)
,

s

ψ2(s)
+

t

ψ2(t)
) = ||x+ y||2(cos

α+ β

2
, sin

α+ β

2
).

By [13, Propositions 2a and 2b], we remark that

1− s

ψ2(s)
≥ 1− t

ψ2(t)
,

s

ψ2(s)
≤ t

ψ2(t)
.

Since x− y is orthogonal to x+ y in the Euclidean space (R2, ‖ · ‖2), we have

x− y = (
1− s

ψ2(s)
+

1− t

ψ2(t)
,

s

ψ2(s)
− t

ψ2(t)
)

= ||x− y||2(cos
α+ β − π

2
, sin

α+ β − π

2
)

= ||x− y||2(sin
α+ β

2
,− cos

α+ β

2
).

Since cos α+β
2
≥ 0 and sin α+β

2
≥ 0, we have

||x+ y||ψ = ||x+ y||2||(cos
α+ β

2
, sin

α+ β

2
)||ψ

= ||x+ y||2(cos
α+ β

2
+ sin

α+ β

2
)ψ(

sin α+β
2

cos α+β
2

+ sin α+β
2

).

Since ||x+ y||ψ = M1||x+ y||2, we have

M1 = (cos
α+ β

2
+ sin

α+ β

2
)ψ(

sin α+β
2

cos α+β
2

+ sin α+β
2

).

Putting r =
sin α+β

2

cos α+β
2

+sin α+β
2

, then it is clear that r = ψ(t)s+ψ(s)t
ψ(t)+ψ(s)(2t−1)

and M1 = ψ(r)
ψ2(r)

.

We also have

||x− y||ψ = ||x− y||2(sin
α+ β

2
+ cos

α+ β

2
)ψ(

cos α+β
2

cos α+β
2

+ sin α+β
2

).

Since ||x− y||ψ = M1||x− y||2, we similarly have

M1 = (sin
α+ β

2
+ cos

α+ β

2
)ψ(

cos α+β
2

sin α+β
2

+ cos α+β
2

) =
ψ(1− r)

ψ2(1− r)
.

Case (iii). There exist s, t ∈ [0, 1] (s > t) satisfying x = 1
ψ2(s)

(1 − s, s) and

y = 1
ψ2(t)

(−1 + t, t). Then, we put s0 = t and t0 = s. We define x0, y0 in SX by

x0 =
1

ψ(s0)
(1− s0, s0), y0 =

1

ψ(t0)
(−1 + t0, t0).

Then we can reduce Case (ii).
(⇐=). If we suppose (1) (resp. (2)), then we put x = 1

ψ2(s)
(1 − s, s) (resp.

x = 1
ψ2(s)

(1 − s, s)) and y = 1
ψ2(t)

(1 − t, t) (resp. y = 1
ψ2(t)

(−1 + t, t)). Then

we have ||x||ψ = ||x||2 = 1, ||y||ψ = ||y||2 = 1, ||x + y||ψ = M1||x + y||2 and
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||x − y||ψ = M1||x − y||2. Hence it is clear to prove that C ′
NJ(X) = M2

1 . This
completes the proof. �

We next study the modified NJ constant in the general case. If ψ ∈ Ψ, then
by [11, Therem 3], we have

max{M2
1 ,M

2
2} ≤ CNJ(X) ≤M2

1M
2
2 .

However, by Theorem 2.2, there exist many ψ ∈ Ψ satisfying ψ ≥ ψ2 such that

C ′
NJ(X) < max{M2

1 ,M
2
2} = CNJ(X).

From [11, Theorem 3], CNJ(X) = M2
1M

2
2 if either ψ/ψ2 or ψ2/ψ attains a maxi-

mum at t = 1/2. Then, we have the following

Proposition 2.3. Let ψ ∈ Ψ2 and let ψ(t) = ψ(1− t) for all t ∈ [0, 1]. If ψ/ψ2

attains a maximum at t = 1/2, then C ′
NJ(X) = CNJ(X) = M2

1M
2
2 .

Proof. Suppose first M1 = ψ(1/2)/ψ2(1/2). Take an arbitrary t ∈ [0, 1] and put

x =
1

ψ(t)
(t, 1− t) , y =

1

ψ(t)
(1− t, t).

Then x, y ∈ SX and

‖x+ y‖ψ =
2

ψ(t)
ψ(

1

2
) , ‖x− y‖ψ =

2|2t− 1|
ψ(t)

ψ(
1

2
).

Therefore we have

‖x+ y‖2
ψ + ‖x− y‖2

ψ

4
=

{
(2t− 1)2 + 1

} ψ(1/2)2

ψ(t)2

= 2ψ2(t)
2ψ(1/2)2

ψ(t)2

=
ψ2(t)

2

ψ(t)2

ψ(1/2)2

ψ2(1/2)2
= M2

1

ψ2(t)
2

ψ(t)2
.

Since t is arbitrary, we have C ′
NJ(X) ≥ M2

1M
2
2 which prove that C ′

NJ(X) =
M2

1M
2
2 . �

In the case that M2 = ψ2(1/2)/ψ(1/2), C ′
NJ(X) does not necessarily coincide

with M2
1M

2
2 . However, we have the following

Theorem 2.4. Let ψ ∈ Ψ2 and let ψ(t) = ψ(1− t) for all t ∈ [0, 1]. Assume that
M2 = ψ2(1/2)/ψ(1/2) and M1 > 1. Then C ′

NJ(X) = M2
1M

2
2 if and only if there

exist s, t ∈ [0, 1] (s < t) satisfying one of the following conditions:

(1) ψ2(s) = M2ψ(s), ψ2(t) = M2ψ(t) and, if we put r = ψ(s)t+ψ(t)s
ψ(s)+ψ(t)

, then

ψ(r) = M1ψ2(r).

(2) ψ2(s) = M2ψ(s), ψ2(t) = M2ψ(t) and, if we put r = ψ(t)s+ψ(s)t
ψ(t)+ψ(s)(2t−1)

, then

ψ(r) = M1ψ2(r).
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Proof. (=⇒). For all x, y ∈ SX , we have

‖x+ y‖2
ψ + ‖x− y‖2

ψ ≤M2
1

(
‖x+ y‖2

2 + ‖x− y‖2
2

)
= 2M2

1

(
‖x‖2

2 + ‖y‖2
2

)
≤ 2M2

1M
2
2

(
‖x‖2

ψ + ‖y‖2
ψ

)
= 4M2

1M
2
2 .

From this inequality, C ′
NJ(X) = M2

1M
2
2 if and only if there exist x, y ∈ SX (x 6=

y) such that
‖x+ y‖2

ψ + ‖x− y‖2
ψ = 4M2

1M
2
2 .

Suppose that C ′
NJ(X) = M2

1M
2
2 . Then, the elements x, y ∈ SX (x 6= y) satisfy

‖x‖2 = ‖y‖2 = M2, ‖x+ y‖ψ = M1‖x+ y‖2, ‖x− y‖ψ = M1‖x− y‖2.

Since ‖ · ‖ψ is absolute, it is sufficient to consider the following three cases:
(i) There exist s, t ∈ [0, 1] (s 6= t) satisfying x = 1

ψ(s)
(1 − s, s) and y =

1
ψ(t)

(1− t, t).

(ii) There exist s, t ∈ [0, 1] (s < t) satisfying x = 1
ψ(s)

(1 − s, s) and y =
1

ψ(t)
(−1 + t, t).

(iii) There exist s, t ∈ [0, 1] (s > t) satisfying x = 1
ψ(s)

(1 − s, s) and y =
1

ψ(t)
(−1 + t, t).

As in the proof of Theorem 2.2, we can prove this theorem. This completes
the proof. �

3. The Zbăganu constant of R2

The Zbăganu constant CZ(X) in [15] is defined by

CZ(X) = sup

{
‖x+ y‖‖x− y‖
‖x‖2 + ‖y‖2

∣∣∣∣ x, y ∈ X, (x, y) 6= (0, 0)

}
.

Then it is clear that CZ(X) ≤ CNJ(X) for any Banach space X. In this section,
we consider the condition that CZ(X) = CNJ(X) for X = (R2, ‖ · ‖ψ). Then, we
have the following

Proposition 3.1. Let ψ ∈ Ψ2. If ψ ≥ ψ2, then CZ(X) = CNJ(X) = M2
1 .

Proof. For any x, y ∈ X,

2‖x+ y‖ψ‖x− y‖ψ ≤ ‖x+ y‖2
ψ + ‖x− y‖2

ψ

≤M2
1

(
‖x+ y‖2

2 + ‖x− y‖2
2

)
= 2M2

1

(
‖x‖2

2 + ‖y‖2
2

)
≤ 2M2

1

(
‖x‖2

ψ + ‖y‖2
ψ

)
.

Since ψ/ψ2 attains the maximum at t = t0 (0 ≤ t0 ≤ 1), we put x = (1 − t0, 0)
and y = (0, t0), respectively. Then we have

‖x+ y‖2
ψ + ‖x− y‖2

ψ = 2ψ(t0)
2

= 2M2
1ψ2(t0)

2

= 2M2
1

(
‖x‖2

ψ + ‖y‖2
ψ

)
.
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Since ‖x+ y‖ψ = ψ(t0) = ‖x− y‖ψ, we have

2‖x+ y‖ψ‖x− y‖ψ = ‖x+ y‖2
ψ + ‖x− y‖2

ψ

= 2M2
1

(
‖x‖2

ψ + ‖y‖2
ψ

)
.

Therefore we have
‖x+ y‖ψ‖x− y‖ψ
‖x‖2

ψ + ‖y‖2
ψ

= M2
1 ,

which implies that CZ(X) = M2
1 . �

We next consider the case that ψ ≤ ψ2. We remark that the Zbăganu constant
CZ(X) is in the following form;

CZ(X) = sup

{
4‖x‖‖y‖

‖x+ y‖2 + ‖x− y‖2

∣∣∣∣ x, y ∈ X, (x, y) 6= (0, 0)

}
.

Then we have the following

Theorem 3.2. Let ψ ∈ Ψ2. Assume that ψ ≤ ψ2. Then CZ(X) = M2
2 if and

only if there exist s, t ∈ [0, 1] (s < t) satisfying one of the following conditions:

(1) ψ(s) = ψ2(s), ψ(t) = ψ2(t) and, if we put r = ψ(s)t+ψ(t)s
ψ(s)+ψ(t)

, then ψ2(r)
ψ(r)

=
ψ(1−r)
ψ2(1−r) = M2.

(2) ψ(s) = ψ2(s), ψ(t) = ψ2(t) and, if we put r = ψ(t)s+ψ(s)t
ψ(t)+ψ(s)(2t−1)

, then ψ2(r)
ψ(r)

=
ψ(1−r)
ψ2(1−r) = M2.

Proof. For any x, y ∈ X,

4‖x‖ψ‖y‖ψ ≤ 2
(
‖x‖2

ψ + ‖y‖2
ψ

)
≤ 2

(
‖x‖2

2 + ‖y‖2
2

)
= ‖x+ y‖2

2 + ‖x− y‖2
2

≤M2
2

(
‖x+ y‖2

ψ + ‖x− y‖2
ψ

)
.

Since X = (R2, ‖ · ‖ψ) is finite dimensional,

CZ(X) = max

{
4‖x‖ψ‖y‖ψ

‖x+ y‖2
ψ + ‖x− y‖2

ψ

∣∣∣∣ x, y ∈ X, (x, y) 6= (0, 0)

}
.

Then CZ(X) = M2
2 if and only if there exist x, y ∈ SX (x 6= y) such that

4‖x‖ψ‖y‖ψ
‖x+ y‖2

ψ + ‖x− y‖2
ψ

= M2
2 .

From the above inequality, ‖x‖2 = ‖x‖ψ = ‖y‖ψ = ‖y‖2 and

‖x+ y‖2

‖x+ y‖ψ
=
‖x− y‖2

‖x− y‖ψ
= M2

2 .

Hence we may assume that

‖x‖2 = ‖x‖ψ = ‖y‖ψ = ‖y‖2 = 1.
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As in the proof of Theorem 2.2, it is sufficient to consider the following three
cases:

(i) There exist s, t ∈ [0, 1] (s 6= t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(1− t, t).

(ii) There exist s, t ∈ [0, 1] (s < t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(−1 + t, t).

(iii) There exist s, t ∈ [0, 1] (s > t) satisfying x = 1
ψ2(s)

(1 − s, s) and y =
1

ψ2(t)
(−1 + t, t).

As in the proof of Theorem 2.2, we can similarly prove this theorem. �

We next study the Zbăganu constant CZ(X) in general case. If ψ ∈ Ψ, by [11,
Theorem 3], then we have

max{M2
1 ,M

2
2} ≤ CZ(X) ≤ CNJ(X) ≤M2

1M
2
2 .

However, by Theorem 3.2, there exist many ψ ∈ Ψ satisfying ψ ≥ ψ2 such that

CZ(X) < CNJ(X) ≤ max{M2
1 ,M

2
2}.

From [11, Theorem 3], CNJ(X) = M2
1M

2
2 if either ψ/ψ2 or ψ2/ψ attains a maxi-

mum at t = 1/2. Then, we have the following

Proposition 3.3. Let ψ ∈ Ψ2 and let ψ(t) = ψ(1 − t) for all t ∈ [0, 1]. If

M2 = ψ2(1/2)
ψ(1/2)

, then CZ(X) = CNJ(X) = M2
1M

2
2 .

Proof. From the definition, we have CZ(X) ≤ CNJ(X) = M2
1M

2
2 . Take an arbi-

trary t ∈ [0, 1] and put x = (t, 1− t) and y = (1− t, t). Then ‖x‖ψ = ‖y‖ψ = ψ(t)
and ‖x + y‖ψ = ‖(1, 1)‖ψ = 2ψ(1/2), ‖x − y‖ψ = ‖(2t − 1, 1 − 2t)‖ψ = 2|2t −
1|ψ(1/2). Hence we have

4‖x‖ψ‖y‖ψ
‖x+ y‖2

ψ + ‖x− y‖2
ψ

=
2
(
‖x‖2

ψ + ‖y‖2
ψ

)
‖x+ y‖2

ψ + ‖x− y‖2
ψ

=
ψ(t)2

(1 + (2t− 1)2)ψ(1/2)2

=
ψ(t)2

2ψ2(t)2ψ(1/2)2

=
ψ(t)2

ψ2(t)2

ψ2(1/2)2

ψ(1/2)2
= M2

2

ψ(t)2

ψ2(t)2

Since t is arbitrary, we have CZ(X) ≥ M2
1M

2
2 . Therefore we have CZ(X) =

M2
1M

2
2 . This completes the proof. �

In case that M1 = ψ(1/2)/ψ2(1/2), we have the following theorem as in the
proof of Theorem 2.2 and so omit the proof.

Theorem 3.4. Let ψ ∈ Ψ2 and let ψ(t) = ψ(1−t) for all t ∈ [0, 1]. If M1 = ψ(1/2)
ψ2(1/2)

and M2 > 1, then CZ(X) = M2
1M

2
2 if and only if there exist s, t ∈ [0, 1] (s < t)

satisfying one of the following conditions:
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(1) ψ2(s) = M2ψ(s), ψ2(t) = M2ψ(t) and, if we put r = ψ(s)t+ψ(t)s
ψ(s)+ψ(t)

, then

ψ(r) = M1ψ2(r).

(2) ψ2(s) = M2ψ(s), ψ2(t) = M2ψ(t) and, if we put r = ψ(t)s+ψ(s)t
ψ(t)+ψ(s)(2t−1)

, then

ψ(r) = M1ψ2(r).

4. Examples

In this section, we calculate C ′
NJ(X) and CZ(X) of some Banach spaces X =

(R2, ‖ · ‖ψ), where ψ ∈ Ψ. First, we consider the case that ψ = ψp.

Example 4.1. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. We put t = min(p, q). Then

C ′
NJ(R2, ‖ · ‖p) = CZ(R2, || · ||p) = CNJ(R2, ‖ · ‖p) = 2

2
t
−1.

Suppose that 1 ≤ p ≤ 2. Since ψp ≥ ψ2, we have CZ(R2, || · ||p) = 2
2
p
−1 by

Proposition 3.1. On the other hand, as in Theorem 2.2, we take s = 0 and t = 1.

Since r = ψ(0)·1+ψ(1)·0
ψ(0)+ψ(1)

= 1
2

and M1 = ψp(1/2)/ψ2(1/2) = 2
1
p
− 1

2 , by Theorem 2.2,

we have C ′
NJ(R2, ‖ · ‖p) = M2

1 = 2
2
p
−1.

If 2 ≤ p ≤ ∞, then we similarly have, by Proposition 2.1 and Theorem 3.2,

C ′
NJ(R2, ‖ · ‖p) = CZ(R2, || · ||p) = CNJ(R2, ‖ · ‖p) = 2

2
p
−1.

In [14, Example], C. Yang and H. Li calculated the modified NJ constant of
the following normed linear space. From our theorems, we have

Example 4.2. Let λ > 0 and Xλ = R2 endowed with norm

||(x, y)||λ = (||(x, y)||2p + λ||(x, y)||2q)1/2.

(i) If 2 ≤ p ≤ q ≤ ∞, then CNJ(Xλ) = C ′
NJ(Xλ) = CZ(Xλ) = 2(λ+1)

22/p+λ22/q .

(ii) If 1 ≤ p ≤ q ≤ 2, then CNJ(Xλ) = C ′
NJ(Xλ) = CZ(Xλ) = 22/p+λ22/q

2(λ+1)
.

To see this, first, we remark that (p, q) is not necessarily a Hölder pair. We
define the normalized norm || · ||0λ by

||(x, y)||0λ =
||(x, y)||λ√

1 + λ
.

Then ||·||0λ is absolute and so put the corresponding function ψλ(t) = ||(1−t, t)||0λ.
(i) Suppose that 2 ≤ p ≤ q ≤ ∞. Since ψλ ≤ ψ2, by Proposition 2.1, we have

CNJ(Xλ) = C ′
NJ(Xλ) = M2

2 = 2(λ+1)

22/p+λ22/q . On the other hand, in Theorem 3.2, we

take s = 0 and t = 1. Then we have r = 1/2 and ψ2(1/2)
ψλ(1/2)

= M2. Thus we have

CZ(Xλ) = M2
2 = 22/p+λ22/q

2(λ+1)
.

(ii) Suppose that 1 ≤ p ≤ q ≤ 2. Since ψλ ≥ ψ2, by Theorem 2.2 and Proposition
3.1, we similarly have (ii).

Example 4.3. Put

ψ(t) =

 ψ2(t) (0 ≤ t ≤ 1/2),(
2−

√
2
)
t+

√
2− 1 (1/2 ≤ t ≤ 1).

Then C ′
NJ(R2, ‖ · ‖ψ) < CZ(R2, ‖ · ‖ψ) = CNJ(R2, ‖ · ‖ψ) = 2

√
2(
√

2− 1).
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In fact, ψ ∈ Ψ2 and the norm of ‖ · ‖ψ is

‖(a, b)‖ψ =


√
|a|2 + |b|2 (|a| ≥ |b|)(√

2− 1
)
|a|+ |b| (|a| ≤ |b|) .

Since ψ ≥ ψ2, by Proposition 3.1, we have CZ (R2, ‖ · ‖ψ) = M2
1 = 2

√
2
(√

2− 1
)
.

We assume that C ′
NJ(R2, ‖ · ‖ψ) = M2

1 . By Theorem 2.2, we can choose r ∈
[0, 1] such that ψ(r)

ψ2(r)
= ψ(1−r)

ψ2(1−r) = M1. This is impossible by the definition of ψ.

Therefore we have C ′
NJ(R2, ‖ · ‖ψ) < M2

1 .

Example 4.4. Let 1/2 ≤ β ≤ 1. We define a convex function ψβ ∈ Ψ2 by

ψβ(t) = max{1− t, t, β}.
By [11, Example 4], we have

CNJ(R2, ‖ · ‖ψβ
) =


β2 + (1− β)2

β2
(β ∈ [1

2
, 1√

2
])

2(β2 + (1− β)2) (β ∈ ( 1√
2
, 1]).

Indeed,

M1 =

{
1 (β ∈ [1

2
, 1√

2
])

ψβ(1/2)

ψ2(1/2)
= β

1/
√

2
=
√

2β (β ∈ ( 1√
2
, 1])

and

M2 =
ψ2(β)

ψβ(β)
=

1

β
{(1− β)2 + β2}1/2.

If 1/2 ≤ β ≤ 1/
√

2, then ψβ ≤ ψ2 and so, by Proposition 2.1, we have

C ′
NJ(R2, ‖ · ‖ψβ

) = M2
2 =

β2 + (1− β)2

β2
.

By Theorem 3.2, we have CZ(R2, ‖ · ‖ψβ
) < M2

2 .

Assume that 1/
√

2 < β ≤ 1. Since M1 =
ψβ(1/2)

ψ2(1/2)
, we have, by Proposition 2.3,

C ′
NJ(R2, ‖ · ‖ψβ

) = M2
1M

2
2 = 2(β2 + (1− β)2).

On the other hand, we take s = β and t = 1− β in Theorem 3.4. Then we have

r = ψ(β)(1−β)+ψ(1−β)β
ψ(β)+ψ(1−β)

= 1/2. By Theorem 3.4, we have

CZ(R2, ‖ · ‖ψβ
) = M2

1M
2
2 = 2(β2 + (1− β)2).

Example 4.5. We consider ψβ in Example 4.4 in case of β = 1/
√

2. Then we
have

C ′
NJ(R2, ‖ · ‖ψβ

) = CNJ(R2, ‖ · ‖ψβ
) = M2

2 = 2
√

2(
√

2− 1).

On the other hand, we have CZ(R2, ‖ · ‖ψβ
) = M2

2 = 2
√

2(
√

2− 1).
For this ψβ, define a convex function ϕ ∈ Ψ2 by

ϕ(t) =

{
ψβ(t) (0 ≤ t ≤ 1/2),

ψ2(t) (1/2 ≤ t ≤ 1).
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As in Example 4.2, we similarly have

CZ(R2, ‖ · ‖ϕ) < C ′
NJ(R2, ‖ · ‖ϕ) = CNJ(R2, ‖ · ‖ϕ) = M2

2 = 2
√

2
(√

2− 1
)
.
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