

Ann. Funct. Anal. 3 (2012), no. 1, 19–31

 \mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

p-POWER QUASICONCAVITY OF A REARRANGEMENT INVARIANT FUNCTION SPACE

CHONGSUNG LEE1* AND KYUGEUN CHO2

Communicated by C. P. Niculescu

ABSTRACT. We define the p-power quasiconcave function and show relationships between p-power quasiconcave fundamental function and r.i. spaces like Lorentz space and Marcinkiewicz space.

1. Introduction

Let E be a rearrangement invariant function space (or r.i. space, in short), which consists of measurable functions defined on a measure space (Ω, Σ, μ) . The general theory on r.i. space can be found in [4]. In this paper, we focus on r.i. space defined on a positive real line with Legesque measure since our objectivity is to investigate relationships between the fundamental function $\varphi_E = ||\chi_{[0,t]}||_E$ and some geometric properties of a space E. We say a positive function $\varphi(t)$ on the positive real line is called quasiconcave if $\varphi(t)$ is positive and nondecreasing and $\varphi(t)/t$ is nonincreasing. In [6], it has been revealed that the necessary and sufficient condition of a positive function $\varphi(t)$ is a fundamental function of r.i. space $\varphi(t)$ that is quasiconcave and $\varphi(0) = 0$. The followings are the known results of a positive concave function $\varphi(t)$ on $[0, \infty)$ and their proof can be found in [3] and [5].

Property 1.1. A positive function $\varphi(t)$ is equivalent to a positive concave function if and only if

$$\varphi(t) \le C \max\left(1, \frac{t}{s}\right) \varphi(s)$$
 for all $s, t > 0$.

Date: Received: 7 October 2011; Accepted: 30 December 2011.

Key words and phrases. p-power concavity, upper p-estimate, rearrangement invariant space.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46B03; Secondary 46B04, 46B42.

In particular, when C=1, there exists a concave function $\widetilde{\varphi}(t)$ such that

$$\frac{1}{2}\widetilde{\varphi}(t) \le \varphi(t) \le \widetilde{\varphi}(t).$$

Indeed, we can find a concave function which is equivalent to a given quasiconcave function.

Property 1.2. If $\varphi(t)$ is positive and everywhere finite on $(0, \infty)$, which satisfies $\varphi(t_1 \cdot t_2) \leq \varphi(t_1) \cdot \varphi(t_2)$, then we get

$$\lim_{t\to\infty}\frac{\log\varphi(t)}{\log t}=\inf_{1< t}\frac{\log\varphi(t)}{\log t}=\overline{\alpha}$$

and

$$\lim_{t \to 0} \frac{\log \varphi(t)}{\log t} = \inf_{t < 1} \frac{\log \varphi(t)}{\log t} = \underline{\alpha}$$

Furthermore, we have $-\infty < \underline{\alpha} \leq \overline{\alpha} < \infty$.

Definition 1.3. For a given positive, everywhere finite function $\varphi(t)$ on $(0, \infty)$, we define the function $D_{\varphi}(s)$, which is called the dilation function of $\varphi(t)$, by

$$D_{\varphi}(s) = \sup_{0 < t < \infty} \frac{\varphi(st)}{\varphi(t)}.$$

When $\varphi(t)$ is quasiconcave, it is easy to show that $D_{\varphi}(s)$ is everywhere finite and satisfies the submultiplicativity condition of Property 1.2. Therefore, we can define the following two indices, which were introduced by Zippin for the fundamental function $\varphi_E(t)$ of r.i. space E (see [8]).

Definition 1.4. Let $\varphi(t)$ be a positive quasiconcave function. We then define two indices, $\overline{r}(\varphi)$ and $\underline{r}(\varphi)$, which will be called the upper and lower indices of $\varphi(t)$, by

$$\overline{r}(\varphi) = \lim_{t \to \infty} \frac{\log D_{\varphi}(t)}{\log t} = \inf_{1 < t} \frac{\log D_{\varphi}(t)}{\log t}$$

and

$$\underline{r}(\varphi) = \lim_{t \to 0} \frac{\log D_{\varphi}(t)}{\log t} = \sup_{0 < t < 1} \frac{\log D_{\varphi}(t)}{\log t}.$$

The following simple facts are also mentioned in [8] for the case of a fundamental function $\varphi_E(t)$ and [3].

Property 1.5. Let $\varphi(t)$ be a quasiconcave function. We then have

- i) $0 \le \underline{r}(\varphi) \le \overline{r}(\varphi) \le 1$
- ii) $\underline{r}(\varphi) + \overline{r}(\varphi) = 1$
- iii) If $\Psi(t)$ is equivalent to $\varphi(t)$, then $\overline{r}(\Psi) = \overline{r}(\varphi)$ and $\underline{r}(\Psi) = \underline{r}(\varphi)$.

Property 1.6. Let $\varphi(t)$ be nondecreasing and $D_{\varphi}(s_1) \leq s_1$ for some $s_1 > 1$. Then there exists a concave function $\Psi(t)$ which is equivalent to $\varphi(t)$.

2. p-Power quasiconcave function

Definition 2.1. Let $\varphi(t)$ be a positive quasiconcave function on $[0, \infty)$. We say that $\varphi(t)$ is p-power quasiconcave with a constant C if it satisfies

$$\sum_{i=1}^{n} \varphi^{p}(a_{i}) \leq C \varphi^{p} \left(\sum_{i=1}^{n} a_{i} \right), \quad \text{for all } a_{i} \text{ in } [0, \infty).$$
 (2.1)

In particular, if $\varphi(t)$ is concave and satisfies (2.1), we say that $\varphi(t)$ is p-power concave with a constant C.

It is clear that the concave function $x^{1/p}$ is p-power concave. In the following, we consider some conditions, which are useful in showing the existence of nontrivial p-power quasiconcave functions.

Lemma 2.2. i) If $\varphi(t)$ is a p-power quasiconcave function with a constant C, then $\varphi(t)$ is also q-power quasiconcave with a constant $C^{q/p}$ when $p \leq q$.

- ii) Let $\varphi(t)$ satisfy (2.1) and $\Psi(t)$ be a positive nondecreasing function. Then $\varphi(t)\Psi(t)$ also satisfies (2.1).
- iii) Let $\varphi(t)$ be a positive p-power quasiconcave function on $[0,\infty)$. If $\Psi(t)$ is equivalent to $\varphi(t)$, then $\Psi(t)$ also satisfies (2.1).

Proof. i) It is clear since $\|\cdot\|_{l_p} \geq \|\cdot\|_{l_q}$ for $p \leq q$. Indeed, we have

$$\left\{\sum_{i=1}^n \varphi^q(a_i)\right\}^{1/q} \le \left\{\sum_{i=1}^n \varphi^p(a_i)\right\}^{1/p} \le C^{1/p} \varphi\left(\sum_{i=1}^n a_i\right).$$

Hence,

$$\sum_{i=1}^{n} \varphi^{q}(a_i) \le C^{q/p} \varphi^{q} \left(\sum_{i=1}^{n} a_i \right).$$

ii)

$$\sum_{i=1}^{n} \varphi^{p}(a_{i}) \Psi^{p}(a_{i}) \leq \left(\sum_{i=1}^{n} \varphi^{p}(a_{i})\right) \Psi^{p} \left(\sum_{i=1}^{n} a_{i}\right)$$

$$\leq C \varphi^{p} \left(\sum_{i=1}^{n} a_{i}\right) \Psi^{p} \left(\sum_{i=1}^{n} a_{i}\right)$$

iii) Suppose that $C_1\varphi(t) \leq \Psi(t) \leq C_2\varphi(t)$. Then,

$$\sum_{i=1}^{n} \Psi^{p}(a_{i}) \leq \sum_{i=1}^{n} C_{2}^{p} \varphi^{p}(a_{i}) \leq C_{2}^{p} \cdot C \varphi^{p} \left(\sum_{i=1}^{n} a_{i} \right)$$

$$\leq C \cdot \left(\frac{C_{2}}{C_{1}} \right)^{p} \Psi^{p} \left(\sum_{i=1}^{n} a_{i} \right).$$

Theorem 2.3. Let $\varphi(t)$ be a positive quasiconcave function with $\overline{r}(\varphi) < 1$ and w(t) be a quasiconcave function. If $\Psi(t) = \varphi(t)w^{\alpha}(t)$ for $0 \le \alpha < 1 - \overline{r}(\varphi)$, then $\Psi(t)$ is quasiconcave. Furthermore, if $\varphi(t)$ is p-power quasiconcave, there exists a concave function $\Phi(t)$ which is also p-power quasiconcave and equivalent to $\Psi(t)$.

Proof. By Property 1.6, it is enough to show that $\Psi(t)$ is nondecreasing and $D_{\Psi}(s_1) \leq s_1$, for some $s_1 > 1$. Since $\varphi(t)$ and w(t) are quasiconcave and α is nonnegative, $\Psi(t)$ is nondecreasing. In order to show that $D_{\Psi}(s_1) \leq s_1$, for some $s_1 > 1$, take ϵ such that $\alpha + \epsilon \leq 1 - \overline{r}(\varphi)$. With this ϵ , choose s_1 sufficiently large such that $D_{\varphi}(s_1) \leq s_1^{\overline{r}(\varphi) + \epsilon}$ from the definition of upper index of φ . Then, for all t > 0,

$$\frac{\Psi(s_1t)}{\Psi(t)} = \frac{\varphi(s_1t)\{w(s_1t)\}^{\alpha}}{\varphi(t)\{w(t)\}^{\alpha}}$$

$$= \frac{\varphi(s_1t)\{w(s_1t)/s_1t\}^{\alpha}(s_1t)^{\alpha}}{\varphi(t)\{w(t)/t\}^{\alpha}t^{\alpha}}$$

$$\leq \frac{\varphi(s_1t)}{\varphi(t)}s_1^{\alpha},$$
since $w(t)/t$ is nonincreasing and α is nonnegative,
$$\leq D_{\varphi}(s_1)s_1^{\alpha}$$

$$\leq s_1^{\alpha+\overline{r}(\varphi)+\epsilon} \leq s_1$$

since $\overline{r}(\varphi) + \alpha + \epsilon \leq 1$ and $s_1 \geq 1$. This implies that $D_{\Psi}(s_1) \leq s_1$ for some $s_1 > 1$. Hence, $\Psi(t)$ is quasiconcave and p-power quasiconcave by Lemma 2. 2. ii. The existence of a concave function which is equivalent to $\Psi(t)$ is also obtained by Property 1.1

The above theorem tells us that for a given p-power quasiconcave function $\varphi(t)$, we can construct another p-power quasiconcave function which is nonequivalent to $\varphi(t)$. The next example is a p-power concave function which is not equivalent to $x^{1/p}$. The following concave function has 1/p as its lower and upper indices. Thus, the converse of Property 1.5-iii) is not true.

Example 2.4. Let p > 1 be fixed. Define

$$\varphi(t) = \begin{cases} 1 & 0 \le t \le 1\\ 1 + \log t & 1 \le t \end{cases}$$

Define $\Psi(t) = t^{1/p}\varphi(t)$. We now compute the dilation function $D_{\Psi}(s)$ of $\Psi(t)$. When s > 1, a simple calculation shows that

$$\frac{\Psi(st)}{\Psi(t)} = \begin{cases} s^{1/p} & 0 < t \le 1/s \\ s^{1/p}(1 + \log st) & 1/s < t \le 1 \\ s^{1/p}(1 + \log st)/(1 + \log t) & 1 < t. \end{cases}$$

Therefore,

$$D_{\Psi} = \sup_{0 < t} \{ \Psi(st) / \Psi(t) \}$$

=
$$\sup_{1/s < t \le 1} s^{1/p} (1 + \log st) = s^{1/p} (1 + \log s).$$

From this, we get

$$\overline{r}(\Psi) = \lim_{s \to \infty} \left[\log \left\{ s^{1/p} (1 + \log s) \right\} / \log s \right]$$

$$= 1/p + \lim_{s \to \infty} \log \{ 1 + \log s \} / \log s = 1/p$$

Since 1/p is strictly less than 1 and $\Psi(t)$ is nondecreasing, we take α such that $\overline{r}(\Psi) = \frac{1}{p} < \alpha \leq 1$. We then have $D_{\Psi}(s) \leq s^{\alpha} \leq s$ for s > 1 hence there is a concave function $\overline{\Psi}(t)$ by Property 1.6. When $s \leq 1$, we get

$$\frac{\Psi(st)}{\Psi(t)} = \begin{cases} s^{1/p} & t \le 1\\ s^{1/p}(1 + \log t) & 1 < t \le 1/s\\ s^{1/p}(1 + \log st)/(1 + \log t) & 1/s < t. \end{cases}$$

Thus, by computation,

$$D_{\Psi}(s) = \sup_{0 < t} \Psi(st)/\Psi(t)$$
$$= \sup_{0 < t \le 1} \Psi(st)/\Psi(t) = s^{1/p}.$$

Therefore, $\underline{r}(\Psi) = 1/p$. Finally, $\overline{\Psi}(t)$ is not equivalent to $t^{1/p}$ since $\Psi(t)$ is not equivalent to $t^{1/p}$. Also, $\overline{\Psi}(t)$ is p-power concave by Lemma 2.2.

Theorem 2.5. Let $\varphi(t)$ be a p-power quasiconcave function with a constant C and a lower index $\underline{r}(\varphi)$. Then, $1/\underline{r}(\varphi) \leq p$.

Proof. By taking t for each a_i in (2.1), we get

$$D_{\varphi}(1/n) \leq C^{1/p} (1/n)^{1/p}$$
.

Dividing both sides by $\log(1/n) < 0$, we get

$$\frac{D_{\varphi}(1/n)}{\log(1/n)} \ge \frac{(1/p)\log C}{\log(1/n)} + \frac{(1/p)\log(1/n)}{\log(1/n)}.$$

Letting n go to ∞ , we have $\underline{r}(\psi) \geq 1/p$.

From this result, we know that if $\varphi(t)$ is p-power quasiconcave, then we have $p \geq 1$ by Property 1.5. We now consider conditions under which a given quasiconcave function $\varphi(t)$ is p-power quasiconcave.

Lemma 2.6. Let $\varphi(t)$ be a positive quasiconcave function with $\underline{r}(\varphi) > 0$. Then there exists a constant $1 \leq C$ and a positive quasiconcave differentiable function $\Psi(t)$ with $\Psi(0) = 0$ such that

$$\varphi(t) \le \Psi(t) \le C\varphi(t)$$

and

$$\frac{1}{C}\frac{\Psi(t)}{t} \le \frac{d\Psi}{dt}(t) \le \frac{\Psi(t)}{t}.$$

Proof. Define $\Psi(t) = \int_0^t \frac{\varphi(x)}{x} dx$ and let $\widetilde{\varphi}(x) = \frac{x}{\varphi(x)}$.

 $\Psi(t)$ is nondecreasing and we show that $\frac{\Psi(t)}{t}$ is nonincreasing. We have, for $t_1 \leq t_2$,

$$\frac{\Psi(t_1)}{t_1} = \frac{1}{t_1} \int_0^{t_1} \frac{\varphi(x)}{x} dx
\geq \frac{1}{t_1} \int_0^{t_1} \frac{\varphi(t_1)}{t_1} dx = \frac{\varphi(t_1)}{t_1}.$$

Thus,

$$\Psi(t_2) = \int_0^{t_2} \frac{\varphi(x)}{x} dx
= \int_0^{t_1} \frac{\varphi(x)}{x} dx + \int_{t_1}^{t_2} \frac{\varphi(x)}{x} dx
\leq \Psi(t_1) + \frac{\varphi(t_1)}{t_1} (t_2 - t_1)
\leq \Psi(t_1) + \frac{\Psi(t_1)}{t_1} (t_2 - t_1)
= \frac{t_2}{t_1} \Psi(t_1).$$

Therefore, we have shown that $\Psi(t)$ is qusiconcave. We now show that $\Psi(t)$ is equivalent to $\varphi(t)$. Since $\underline{r}(\varphi) > 0$, we know that $\overline{r}(\widetilde{\varphi}) < 1$ by Property 1.5. We take α such that $\overline{r}(\widetilde{\varphi}) < \alpha < 1$. By definition of $\overline{r}(\widetilde{\varphi})$, there exists M > 1 such that

$$D_{\widetilde{\varphi}}(s) \le s^{\alpha}$$
 for $s > M$.

Now, let t be fixed and let $\beta = tM$. If x is in (0,t) we have $M < \frac{\beta}{x}$. Thus we get

$$\frac{\widetilde{\varphi}(\beta)}{\widetilde{\varphi}(x)} \le D_{\widetilde{\varphi}}\left(\frac{\beta}{x}\right) \le \left(\frac{\beta}{x}\right)^{\alpha}$$

and

$$\frac{\widetilde{\varphi}(t)}{\widetilde{\varphi}(\beta)} \le 1.$$

We then have

$$\Psi(t) = \int_{0}^{t} \frac{1}{\widetilde{\varphi}(x)} dx = \frac{1}{\widetilde{\varphi}(t)} \cdot \frac{\widetilde{\varphi}(t)}{\widetilde{\varphi}(\beta)} \int_{0}^{t} \frac{\widetilde{\varphi}(\beta)}{\widetilde{\varphi}(x)} dx$$

$$\leq \frac{1}{\widetilde{\varphi}(t)} \int_{0}^{\frac{\beta}{M}} \left(\frac{\beta}{x}\right)^{\alpha} dx$$

$$= \frac{\beta^{\alpha}}{\widetilde{\varphi}(t)} \frac{1}{1 - \alpha} \left(\frac{\beta}{M}\right)^{1 - \alpha}$$

$$= \frac{\beta}{1 - \alpha} \cdot \frac{1}{M^{1 - \alpha}} \cdot \frac{1}{\widetilde{\varphi}(t)}$$

$$= \frac{M^{\alpha}}{1 - \alpha} \frac{t}{\widetilde{\varphi}(t)} = \frac{M^{\alpha}}{1 - \alpha} \varphi(t).$$

Now take $C = \frac{M^{\alpha}}{1-\alpha}$ then we have the right inequality. For the left inequality, the nonincreasing property of $\frac{\varphi(t)}{t}$ gives

$$\varphi(t) = \frac{t}{\widetilde{\varphi}(t)} = \int_0^t \frac{dx}{\widetilde{\varphi}(t)} \le \int_0^t \frac{dx}{\widetilde{\varphi}(x)} = \Psi(t).$$

By definition of $\Psi(t)$, we have $\frac{d\Psi(t)}{dt} = \frac{\varphi(t)}{t}$. Thus,

$$\frac{1}{C}\Psi(t) \leq \varphi(t) = t \cdot \frac{d\Psi(t)}{dt} \leq \Psi(t)$$

and we get the result by dividing the above inequality by t.

Theorem 2.7. Let $\varphi(t)$ be a quasiconcave function with $\underline{r}(\varphi) > 0$. Then there exists a finite p such that $\varphi(t)$ becomes a p-power concave function.

Proof. By Lemma 2.2, it is enough to show that $\Psi(t) = \int_0^t \frac{\varphi(x)}{x} dx$ satisfies (2.1) since $\Psi(t)$ is equivalent to $\varphi(t)$ by Lemma 2.6. First, we want to show that $\frac{\Psi^p(t)}{t}$ is nondecreasing for some finite p. Note that $\Psi(t)$ is differentiable. We then have

$$\begin{split} \frac{d}{dt} \left(\frac{\Psi^p(t)}{t} \right) &= \frac{p \Psi^{p-1}(t) \Psi'(t) \cdot t - \Psi^p(t)}{t^2} \\ &= \frac{\Psi^{p-1}(t)}{t^2} \left\{ p \Psi'(t) \cdot t - \Psi(t) \right\} \\ &\geq \frac{\Psi^{p-1}(t)}{t^2} \left\{ \frac{p \Psi(t)}{C} - \Psi(t) \right\} \quad \text{by Lemma 2.6} \\ &= \frac{\Psi^p(t)}{t^2} \left(\frac{p}{C} - 1 \right). \end{split}$$

Hence, for $1 \le C , <math>\frac{d}{dt} \left(\frac{\Psi^p(t)}{t} \right) \ge 0$ and so $\frac{\Psi^p(t)}{t}$ is nondecreasing. We now show that $\Psi(t)$ satisfies (2.1).

$$\Psi^{p}\left(\sum_{i=1}^{n} a_{i}\right) = \sum_{i=1}^{n} a_{i} \left\{ \Psi^{p}\left(\sum_{i=1}^{n} a_{i}\right) / \sum_{i=1}^{n} a_{i} \right\}$$

$$\geq \sum_{i=1}^{n} a_{i} \left\{ \Psi^{p}(a_{i}) / a_{i} \right\}$$

$$= \sum_{i=1}^{n} \Psi^{p}(a_{i}).$$

Theorem 2.8. Let $\varphi(t)$ be the fundamental function of r.i. space E.

- i) Suppose that $\varphi(t)$ is p_1 -power quasiconcave. If E satisfies an upper q-estimate, then $q \leq p_1$.
- ii) Suppose that $\widetilde{\varphi}(t) = \frac{t}{\varphi(t)}$ is equivalent to $\Psi(t)$ which is p_2 -power quasiconcave. If E satisfies a lower q estimate, then $q \geq \widetilde{p}_2$ where $1/p_2 + 1/\widetilde{p}_2 = 1$.

Proof. i) Since $\varphi(t)$ is p_1 -power quasiconcave and the fundamental function of r.i.-space, there exist constant C_1 and C_2 such that

$$\frac{1}{C_1}n^{1/p_1} \le \varphi(n) \le C_2 n^{1/q}$$

for all integers n. Thus we have $q \leq p_1$.

ii) Since $\widetilde{\varphi}(t)$ is equivalent to the p_2 -power concave function, there exists C_3 such that

$$\widetilde{\varphi}(\frac{1}{n}) = \left(\frac{1}{n}\right) \varphi\left(\frac{1}{n}\right) \le C_3 \left(\frac{1}{n}\right)^{1/p_2}.$$

By the lower q estimate property, we have C_4 such that

$$\varphi(\frac{1}{n}) \le C_4 \left(\frac{1}{n}\right)^{1/q}.$$

Thus,

$$\frac{1}{C_3} \left(\frac{1}{n} \right)^{1 - (1/p_2)} \le \varphi \left(\frac{1}{n} \right) \le C_4 \left(\frac{1}{n} \right)^{1/q}$$

for all integers. Thus, we have $1/q \le 1 - (1/p_2) = 1/\widetilde{p}_2$.

3. Main result

We now apply the p-power quasiconcave property to some r.i. space like Lorentz space and Marcinkiewicz space. Although there are several versions of these spaces, we take Sharpley's version with minor modifications [7]. Let f be a real valued function defined on $[0, \infty)$ with Lebegue measure μ . The distribution function of f, denoted by $\lambda_f(t)$, is defined by $\mu(\{x:|f(x)|>t\})$. We define $f^*(t)$

is the non-increasing, right continuous function which is equimeasurable with f and $f^{**}(t) = \frac{1}{t} \int_0^t f^*(x) dx$.

For an explicit formula of $f^*(t)$, we have $f^*(t) = \inf\{y \ge 0 : \lambda_f(y) \le t\}$ [1].

Definition 3.1. Let $\varphi(t)$ be a quasiconcave function on $[0, \infty)$ with $0 < \underline{r}(\psi) \le \overline{r}(\psi) < 1$ and $1 \le q < \infty$.

The Lorentz space $\Lambda_{\psi,q}$ is the set of all measurable functions f such that f^* exists and

$$||f||_{\Lambda_{\psi,q}} = \left\{ \int_0^\infty \left(f^{**}(t)\psi(t) \right)^q \frac{dt}{t} \right\}^{1/q} < \infty.$$

The Marcinkiewicz space M_{ψ} is the set of all measurable functions f such that

$$||f||_{M_{\psi}} = \sup_{t>0} \psi(t) f^{**}(t) < \infty.$$

By definition, we can easily show that $||f||_{\Lambda_{\varphi,q}}$ and $||f||_{M_{\varphi}}$ are equivalent to $||f||_{\Lambda_{\psi,q}}$ and $||f||_{M_{\psi}}$ respectively when φ and ψ are equivalent. It is well known that $\int_0^t f^*(x)dx = \sup_{\mu(E)=t} \int_A |f|dx$ (See page 64 in [3]). Thus we have an alternate form of $||f||_{M_{\varphi}}$:

$$||f||_{M_{\psi}} = \sup_{\mu(E)>0} \frac{\psi(\mu(E))}{\mu(E)} \int_{A} |f| d\mu.$$

For the space $\Lambda_{\psi,q}$, we have also useful form of its norm

$$||f||_{\Lambda_{\psi,q}}^* = \left\{ \int_0^\infty \left[f^*(t)\psi(t) \right]^q \frac{dt}{t} \right\}^{1/q},$$

which is equivalent to $||f||_{\Lambda_{\psi,q}}$ (see [7, Theorem 2.3]).

We now introduce some functional which is convenient to compute the norm in $\Lambda_{\Psi,q}$. We modify the proof in Sharpley's version of Lorentz space (see [3, 7]).

Lemma 3.2. i) Let f be an element in $\Lambda_{\psi,q}$. Then, the functional

$$||f||_{\Lambda_{\psi,q}}^0 = \left\{ \int_0^\infty ((f^*(t))^q d\psi^q) \right\}^{1/q}$$

is equivalent to $||f||_{\Lambda_{\psi,q}}$.

- ii) The fundamental function $\varphi_{\Lambda_{\psi,q}}$ in $\Lambda_{\psi,q}$ is equivalent to $\psi(t)$.
- iii) If $f \in \Lambda_{\psi,q}$, we have

$$||f||_{\Lambda_{\psi,q}}^0 = \left\{ q \int_0^\infty y^{q-1} \left[\psi^q(\lambda_f(y)) \right] dy \right\}^{1/q}.$$

Proof. i) By Lemma 2.6, $\psi(t)$ has an equivalent quasiconcave differentiable function $\Psi(t) = \int_0^t \frac{\psi}{x} dx$ and we can renorm $\Lambda_{\psi,q}$ by replacing $\psi(t)$ with $\Psi(t)$. Thus we may assume, for some constant C,

$$\frac{1}{C}\frac{\psi(t)}{t} \leq \frac{d\psi}{dt}(t) \leq \frac{\psi(t)}{t}.$$

Then, by the improper Stieltjes integral, we have

$$\left\{ \|f\|_{\Lambda_{\psi,q}}^{0} \right\}^{q} = \psi(+0)(f^{*}(+0))^{q} + \int_{+0}^{\infty} (f^{*}(t))^{q} d\psi^{q},
\text{ since } 0 < \underline{r}(\psi), \text{ it is easy to get } \lim_{s \to 0} \psi(s) = 0,
= \int_{0}^{\infty} (f^{*}(t))^{q} q\psi^{q-1}(t) \frac{d\psi(t)}{dt} t \frac{dt}{t}.$$

Since $\frac{q}{C}\psi^q(t) \leq q\psi^{q-1} \cdot \frac{d\psi(t)}{dt} \cdot t \leq q\psi^q(t)$, we have

$$\frac{q}{C} \|f\|_{\Lambda_{\psi,q}}^* \le \|f\|_{\Lambda_{\psi,q}}^0 \le q \|f\|_{\Lambda_{\psi,q}}^*.$$

Thus $||f||_{\psi_{\Lambda,q}}^0$ is equivalent to $||f||_{\Lambda_{\psi,q}}$.

- ii) Since $\|\chi_{[0,t]}\|_{\Lambda_{\psi,q}}^0 = \left\{ \int_0^t d\psi^q \right\}^{1/q} = \psi(t)$, the fundamental function $\varphi_{\Lambda_{\psi,q}}$ is equivalent to $\psi(t)$.
- iii) Since simple functions are dense in $\Lambda_{\psi,q}$ (see [2, 7]), we show the result for a simple function $f = \sum_{i=1}^n a_i \chi_{A_i}$, where $\{A_i\}$ are pairwise disjoint measurable sets. Without loss of generality, we may assume $a_1 > \cdots > a_n$. Define $d_i = \sum_{j=1}^i \mu(A_i)$ and $d_0 = 0$. Then, we have

$$\lambda_f(y) = \begin{cases} d_i & a_{i+1} \le y < a_i \\ 0 & a_1 \le y \end{cases}$$

Hence,

$$||f||_{\Lambda_{\psi,q}}^{0} = \left\{ \int_{0}^{\infty} (f^{*}(t))^{q} d\psi^{q} \right\}^{1/q}$$

$$= \left\{ \sum_{i=1}^{n} a_{i}^{q} \left[\psi^{q}(d_{i}) - \psi^{q}(d_{i-1}) 0 \right] \right\}^{1/q}$$

On the other hand,

$$\left(q \int_{0}^{\infty} y^{q-1} \left\{ \psi[\lambda_{f}(y)] \right\}^{q} dy \right)^{1/q}$$

$$= \left\{ \psi^{q}(d_{n}) a_{n}^{q} + \psi^{q}(d_{n-1}) (a_{n-1}^{q} - a_{n}^{q}) + \dots + \psi^{q}(d_{1}) (a_{1}^{q} - a_{2}^{q}) \right\}^{1/q}$$

$$= \left(\sum_{i=1}^{n} a_{1}^{q} \left[\psi^{q}(d_{i}) - \psi^{q}(d_{i-1}) \right] \right)^{1/q}$$

$$= \|f\|_{\Lambda_{\psi,q}}^{0}$$

Theorem 3.3. If $\psi(t)$ is p-power quasiconcave with constant C, the space $\Lambda_{\psi,q}$ satisfies a lower-p-estimate for $1 \leq q < p$.

Proof. Since a lower estimate is metric invariant, we use the equivalent functional $||f||_{\Lambda_{\psi,q}}^0$ by Lemma 3.2. Let $\{f_i\}$ be elements in $\Lambda_{\psi,q}$ with pairwise disjoint support. Note that $\sum_{i=1}^n \lambda_{f_i}(y) = \lambda \sum_{i=1}^n f_i(y)$.

By Lemma 3.2, we have

$$\left\{ \sum_{i=1}^{n} \left(\|f_i\|_{\Lambda_{\psi,q}}^{0} \right)^p \right\}^{1/p} = \left(\sum_{i=1}^{n} \left\{ \int_{0}^{\infty} \psi^q(\lambda_{f_i}(y)) dy^q \right\}^{p/q} \right)^{1/p} \\
= \left(\sum_{i=1}^{n} \left\{ \int_{0}^{\infty} \left[\psi^p(\lambda_{f_i}(y)) \right]^{q/p} dy^q \right\}^{p/q} \right)^{1/p} \\
\leq \left(\int_{0}^{\infty} \left\{ \sum_{i=1}^{n} \psi^p(\lambda_{f_i}(y)) \right\}^{q/p} dy^q \right)^{1/q} \\
\text{since } \sum_{i=1}^{n} \|f_i\|_{L_r} \leq \left\| \sum_{i=1}^{n} f_i \right\|_{L_r} \text{ when } r < 1 \\
\leq \left(\int_{0}^{\infty} \left\{ C\psi^p \left[\sum_{i=1}^{n} \lambda_{f_i}(y) \right] \right\}^{q/p} dy^q \right)^{1/q} \\
\text{since } \psi \text{ is } p\text{-power quasiconcave} \\
= C^{1/p} \left(\int_{0}^{\infty} \left\{ \psi \left(\sum_{i=1}^{n} \lambda_{f_i}(y) \right) \right\}^q dy^q \right)^{1/q} \\
= C^{1/p} \left\| \sum_{i=1}^{n} f_i \right\|_{\Lambda_r}^{0}$$

Theorem 3.4. Let $\psi(t)$ be quasiconcave such that $\widetilde{\psi}(t) = \frac{t}{\psi(t)}$ is q-power quasiconcave with constant C. Then M_{ψ} satisfies an upper p-estimate where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. Let $\{f_i\}_{i=1}^n$ be a set of measurable functions with disjoint supports $\{E_i\}_{i=1}^n$ respectively. Let E be any measurable set in $[0, \infty)$. Define $F_i = A \cap E_i$. Since

each E_i 's are disjoint, we know $\sum_{i=1}^n \mu(F_i) \leq \mu(E)$. Thus

$$\frac{\psi(\mu(E))}{\mu(E)} \int_{E} \sum_{i=1}^{m} f_{i} = \frac{\psi(\mu(E))}{\mu(E)} \sum_{i=1}^{m} \int_{E} f_{i}$$

$$\leq \frac{\psi(\mu(E))}{\mu(E)} \sum_{i=1}^{m} \frac{\mu(F_{i})}{\psi(\mu(F_{i}))} \|f_{i}\|_{M_{\psi}}$$

$$\leq \frac{\psi(\mu(E))}{\mu(E)} \left\{ \sum_{i=1}^{n} \left(\frac{\mu(F_{i})}{\psi(\mu(F_{i}))} \right)^{q} \right\}^{1/q} \left\{ \sum_{i=1}^{m} \|f_{i}\|_{M_{\psi}}^{p} \right\}^{1/p}$$

$$\leq \frac{\psi(\mu(E))}{\mu(E)} \left\{ \sum_{i=1}^{n} \widetilde{\psi} \left(\sum_{i=1}^{m} \mu(F_{i}) \right)^{q} \right\}^{1/q} \left\{ \sum_{i=1}^{m} \|f_{i}\|_{M_{\psi}}^{p} \right\}^{1/p}$$

$$= \frac{\psi(\mu(E))}{\mu(E)} \left\{ \sum_{i=1}^{n} \widetilde{\psi} \left(\sum_{i=1}^{m} \mu(F_{i}) \right) \right\} \left\{ \sum_{i=1}^{n} \|f_{i}\|_{M_{\psi}}^{p} \right\}^{1/p}$$

$$= C \frac{\psi(\mu(E))}{\mu(E)} \sum_{i=1}^{n} \mu(F_{i})}{\psi(\sum_{i=1}^{n} \mu(F_{i}))} \left\{ \sum_{i=1}^{n} \|f_{i}\|_{M_{\psi}}^{p} \right\}^{1/p}$$

$$\leq C \left\{ \sum_{i=1}^{n} \|f_{i}\|_{M_{\psi}}^{p} \right\}^{1/p},$$

since $\frac{\psi(t)}{t}$ is nonincreasing and $\sum_{i=1}^{n} \mu(F_i) \leq \mu(E)$. We thus have

$$\left\| \sum_{i=1}^{n} f_i \right\|_{M_{psi}} \le C \left\{ \sum_{i=1}^{n} \|f_i\|_{M_{\psi}}^{p} \right\}^{1/p}.$$

The following are easily obtained from the above theorems.

Corollary 3.5. Weak L_p satisfies an upper p-estimate.

Corollary 3.6. Let $\psi(t)$ be a quasiconcave with $\overline{r}(\psi) < 1$. Then there exists p such that $1 and <math>M_{\psi}$ satisfies an upper p-estimate.

Acknowledgement. This work was supported by the Inha University Research Grant.

REFERENCES

- 1. M. Cwikel, The dual of weak L_p , Ann. Inst. Fourier, Grenoble 25 (1975), 81–126
- 2. R.A. Hunt, On $L_{p,q}$ spaces, Enseignement Math. **12** (1966), 249–276.
- S. Krein, J. Petunim and E. Semenov, Interpolation of linear operators, English transl., Transl. Math. Mono. vol 54, AMS Providence, R.I. 1980

- 4. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Function Spaces, Ergeb. der Math. u. ihr. Grenzgeb, 97, Berlin, Springer, 1979
- 5. J. Peetree, Concave majorants of positive functions, Acta. Math. Acad. Sci. Hunger 21 (1970), 327–333
- E.M. Semenov, Embedding theorems for Banach spaces of measurable functions (Russian), Dokl. Akad. Nauk SSSR 156 (1964), 1292–1295.
- 7. R. Sharpley, Spaces $\Lambda_{\alpha}(X)$ and interpolation, J. Functional Analysis 11 (1972), 479–513
- 8. M. Zippin, Interpolation of operators of weak type between rearrangement invariant function spaces, J. Funct. Anal. 7 (1971), 267–284
- $^{\rm 1}$ Department of Mathematics Education, Inha University, Inchon 402-751, Korea.

E-mail address: cslee@inha.ac.kr

 2 Bangmok College of General Education, Myong Ji University, Yong-In 449-728, Korea.

E-mail address: kgjo@mju.ac.kr