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Abstract. The sequence spaces `∞(p), c(p) and c0(p) were introduced and
studied by Maddox [Proc. Cambridge Philos. Soc. 64 (1968), 335–340]. In the
present paper, we introduce the sequence spaces `∞(B, p), c(B, p) and c0(B, p)
of non-absolute type which are derived by the triple band matrix B(r, s, t)
and is proved that the spaces `∞(B, p), c(B, p) and c0(B, p) are paranorm
isomorphic to the spaces `∞(p), c(p) and c0(p); respectively. Besides this, the
α-, β- and γ-duals of the spaces `∞(B, p), c(B, p) and c0(B, p) are computed
and the bases of the spaces c(B, p) and c0(B, p) are constructed. Finally, the
matrix mappings from the sequence spaces λ(B, p) to a given sequence space µ
and from the sequence space µ to the sequence space λ(B, p) are characterized,
where λ ∈ {`∞, c, c0}.

1. Introduction and preliminaries

By ω, we denote the space of all real valued sequences. Any vector subspace
of ω is called a sequence space. We write `∞, c and c0 for the sequence spaces of
all bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and
`p, we denote the spaces of all bounded, convergent, absolutely and p-absolutely
convergent series, respectively.

A sequence space λ with a linear topology is called a K-space provided each
of the maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N; where
C denotes the complex field and N = {0, 1, 2, . . .}. A K-space λ is called an FK-
space provided λ is a complete linear metric space. An FK-space whose topology
is normable is called a BK-space. An FK-space λ is said to have AK property, if
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φ ⊂ λ and {e(k)} is a basis for λ, where e(k) is a sequence whose only non-zero term
is a 1 in kth place for each k ∈ N and φ=span{e(k)}, the set of all finitely non-zero
sequences. If φ is dense in λ, then λ is called an AD-space, thus AK implies AD.
For example, the spaces c0, cs, and `p are AK-spaces, where 1 ≤ p <∞.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) =
g(−x) and scalar multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x)→ 0
imply g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero
vector in the linear space X. Assume here and after that (pk) be a bounded
sequence of strictly positive real numbers with sup pk = H and M = max {1, H}.
Then, the linear spaces `∞(p), c(p) and c0(p) were defined by Maddox [20] (see
also Simons [26] and Nakano [24]) as follows:

`∞(p) :=

{
x = (xk) ∈ ω : sup

k∈N

∣∣xk∣∣pk <∞} ,
c(p) :=

{
x = (xk) ∈ ω : lim

k→∞

∣∣xk − l∣∣pk = 0 for some l ∈ R
}
,

c0(p) :=
{
x = (xk) ∈ ω : lim

k→∞

∣∣xk∣∣pk = 0
}

which are the complete spaces paranormed by

g(x) = sup
k∈N

∣∣xk∣∣pk/M .
We assume throughout that p−1

k + (p
′

k)
−1 = 1 provided 1 < inf pk ≤ H <∞ and

denote the collection of all finite subsets of N by F .
Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of real

numbers ank, where n, k ∈ N. Then, we write Ax = {(Ax)n}, the A-transform of
x, if (Ax)n =

∑
k ankxk converges for each n ∈ N. For simplicity in notation, here

and in what follows, the summation without limits runs from 0 to ∞. If x ∈ λ
implies that Ax ∈ µ then we say that A defines a matrix mapping from λ into µ
and denote it by A : λ→ µ. By (λ : µ), we mean the class of all infinite matrices
A such that A : λ→ µ.

Let us define some triangle limitation matrices which are needed in text. Define

the summation matrix S = (snk), the difference matrix ∆ = (∆
(1)
nk ) and the

generalized difference matrix B(r, s) = {bnk(r, s)} by

snk :=

{
1 , 0 ≤ k ≤ n,
0 , k > n,

∆
(1)
nk :=

{
(−1)n−k , n− 1 ≤ k ≤ n,

0 , 0 ≤ k < n− 1 or k > n,

bnk(r, s) :=

 r , k = n,
s , k = n− 1,
0 , 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N; where r, s ∈ R \ {0}. The domain λA of an infinite matrix A in
a sequence space λ is defined by

λA := {x = (xk) ∈ ω : Ax ∈ λ}, (1.1)
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which is a sequence space. If A is triangle, then one can easily observe that the
normed sequence spaces λA and λ are norm isomorphic, i.e., λA ∼= λ. If λ is a
sequence space, then the continuous dual λ∗A of the space λA is defined by

λ∗A := {f : f = g ◦ A, g ∈ λ∗}

Although in most cases the new sequence space λA generated by the limitation
matrix A from a sequence space λ is the expansion or the contraction of the orig-
inal space λ, it may be observed in some cases that those spaces overlap. Indeed,
one can easily see that the inclusion λS ⊂ λ strictly holds for λ ∈ {`∞, c, c0}.
Further, one can deduce that the inclusion λ ⊂ λ∆(1) also strictly holds for
λ ∈ {`∞, c, c0, `p}. However, if we define λ := c0 ⊕ span{z} with z = {(−1)k},
i.e., x ∈ λ if and only if x := s + ax for some s ∈ c0 and some a ∈ C, and
consider the matrix A with the rows An defined by An := (−1)ne(n) for all n ∈ N,
we have Ae = z ∈ λ but Az = e 6∈ λ which lead us to the consequences that
z ∈ λ\λA and e ∈ λA\λ, where e = (1, 1, 1, . . .) and e(n) is a sequence whose only
non-zero term is a 1 in nth place for each n ∈ N. Hence the sequence spaces
λA and λ overlap but neither contains the other. The approach constructing a
new paranormed sequence space by means of the matrix domain of a particular
limitation method has recently been employed by Malkowsky [22], Choudhary
and Mishra [15], Altay and Başar [2, 4, 5], Aydın and Başar [7, 8], Başar et al.
[13]. c0(u, p) and c(u, p) are the spaces consisting of the sequences x = (xk) such
that ux = (ukxk) in the spaces c0(p) and c(p) for u = (uk) with uk 6= 0 for all
k ∈ N, and are studied by Başarır [14]. More recently, generalized difference ma-
trix B(r, s) = {bnk(r, s)} have been used by Kirişçi and Başar [18] to generalize
the difference spaces `∞(∆), c(∆), c0(∆) and bvp. Finally, the new technique for
deducing certain topological properties, for example AB-, KB-, AD-properties,
etc., and determining the β− and γ−duals of the domain of a triangle matrix in
a sequence space is given by Altay and Başar [5].

Let X be a seminormed space. A set Y ⊂ X is called fundamental if the span
of Y is dense in X. The useful result on fundamental set which is an application
of Hahn-Banach Theorem as follows: If Y is the subset of a seminormed space X
and f ∈ X ′, f(Y ) = 0 implies f = 0, then Y is fundamental [28, p. 39].

Let r, s, t be non-zero reel numbers and define the triple band matrixB(r, s, t) =
{bnk(r, s, t)} by

bnk(r, s, t) :=


r , n = k,
s , n = k + 1,
t , n = k + 2,
0 , 0 ≤ k < n− 2 or k > n,

for all k, n ∈ N. The inverse matrix B−1(r, s, t) = C = {cnk(r, s, t)} is given by
Furkan et al. [16] as follows:

cnk(r, s, t) :=


1
r

∑n−k
j=0

(
−s+

√
s2−4tr

2r

)n−k−j (
−s−

√
s2−4tr

2r

)j
, 0 ≤ k ≤ n,

0 , k > n

(1.2)
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for all k, n ∈ N. We should record here that B(r, s, 0) = B(r, s), B(1,−2, 1) =
∆(2) and B(1,−1, 0) = ∆(1). So, the results related to the matrix domain of the
triple band matrix B(r, s, t) are more general and more comprehensive than the
consequences on the matrix domain of B(r, s), ∆(2) and ∆(1), and include them.

The main purpose of this paper is to introduce the paranormed sequence spaces
λ(B, p) and normed sequence spaces λB of non-absolute type which are the set of
all sequences whose generalized B(r, s, t)-transforms are in the spaces λ(p) and
λ, and to compute their α-, β- and γ-duals. Here and after, by λ we denote any
of the classical spaces `∞, c or c0. Besides this, the basis of the spaces c(B, p)
and c0(B, p) are derived, and the concept of the pair of summability methods
is defined and given an analysis about this type methods. Finally, the matrix
mappings from the sequence spaces λ(B, p) to a given sequence space µ and from
the sequence space µ to the sequence spaces λ(B, p) are characterized.

The rest of this paper is organized, as follows:
In section 2, the sequence spaces `∞(B, p), c(B, p) and c0(B, p) of non-absolute

type are introduced and determined their α-, β- and γ-duals. This section is
terminated with the results on the bases for the spaces c(B, p) and c0(B, p).
Section 3 is devoted to the characterization of matrix transformations on/in the
new sequence spaces. As a consequence of the analysis related to the pair of
summability methods, a basic theorem is given and the classes (λ(B, p) : µ)
and (µ : λ(B, p)) of infinite matrices are characterized, where λ(B, p) denotes
any of the spaces `∞(B, p), c(B, p) and c0(B, p), and µ denotes any normed
sequence space. In the final section of the paper, we note the significance of
the present results in the literature about difference sequences and record some
further suggestions.

2. The Paranormed Sequence spaces `∞(B, p), c(B, p) and c0(B, p) of
Non-absolute Type

In this section, we define the sequence spaces `∞(B, p), c(B, p) and c0(B, p)
of non-absolute type derived by the triple band matrix, and prove that these
are the complete paranormed linear spaces and determine their β- and γ-duals.
Furthermore, we give the bases for the spaces c(B, p) and c0(B, p).

Başar and Altay [12] have recently examined the space bs(p) which is formerly
defined in [9] as the set of all series whose sequence of partial sums are in `∞(p).

Choudhary and Mishra [15] defined the sequence space `(p) which consists of all
sequences whose S-transforms are in the space `(p), the space of all sequences
x = (xk) ∈ ω such that

∑
k |xk|pk <∞. Quite recently, Altay and Başar [2] have

studied the space rt∞(p) which consists of all sequences whose Riesz transforms

are in the space `∞(p). With the notation of (1.1), the spaces bs(p), `(p) and
rt∞(p) can be redefined by

bs(p) := [`∞(p)]S, `(p) := [`(p)]S and rt∞(p) := [`∞(p)]Rt .

Following Başar and Altay [12], Choudhary and Mishra [15], Altay and Başar
[2], we define the sequence spaces λ(B, p) for λ ∈ {`∞, c, c0} by

λ(B, p) := {x = (xk) ∈ ω : y = (txk−2 + sxk−1 + rxk) ∈ λ(p)} .
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If pk = 1 for every k ∈ N, we write λ(B) instead of λ(B, p). If λ is any normed
or paranormed sequence space then we call the matrix domain λB(r,s,t) as the
generalized difference space of sequences. It is natural that these spaces may also
be defined with the notation of (1.1) that

λ(B, p) := {λ(p)}B(r,s,t) and λ(B) := λB(r,s,t).

Define the sequence y = (yk), which will be frequently used, by the B(r, s, t)-
transform of a sequence x = (xk), i.e.,

yk := txk−2 + sxk−1 + rxk for all k ∈ N. (2.1)

Although Theorems 2.1, 2.2 and 2.3 below, are related to the sequence spaces
`∞(B, p), c(B, p) and c0(B, p), we give the proof only for one of those spaces.
Since the proof can also be obtained in the similar way for the other spaces, to
avoid undue repetition in the statements, we leave the detail to the reader. Now,
we may begin with the following theorem which is essential in the study.

Theorem 2.1. The following statements hold:

(a) `∞(B, p), c(B, p) and c0(B, p) are the complete linear metric spaces para-
normed by h, defined by

h(x) := sup
k∈N
|txk−2 + sxk−1 + rxk|pk/M .

h is a paranorm for the spaces `∞(B, p) and c(B, p) only in the trivial
case inf pk > 0 when `∞(B, p) = (`∞)B(r,s,t) and c(B, p) = cB(r,s,t).

(b) The sets λB(r,s,t) are Banach spaces with the norm ‖x‖λB(r,s,t)
= ‖y‖λ.

Proof. We prove the theorem for the space c0(B, p). The linearity of c0(B, p) with
respect to the coordinatewise addition and scalar multiplication of the sequences
follows from the following inequalities which are satisfied for u = (uk), x = (xk) ∈
c0(B, p) (see [21, p. 30])

sup
k∈N
|t(uk−2 + xk−2) + s(uk−1 + xk−1) + r(uk + xk)|pk/M ≤ (2.2)

≤ sup
k∈N
|tuk−2 + suk−1 + ruk|pk/M + sup

k∈N
|txk−2 + sxk−1 + rxk|pk/M

and for any α ∈ R (see [20])∣∣α∣∣pk ≤ max{1, |α|M}. (2.3)

It is clear that h(θ) = 0 and h(x) = h(−x) for all x ∈ c0(B, p). Again the
inequalities (2.2) and (2.3) yield the subadditivity of h and

h(αx) ≤ max{1, |α|}h(x).

Let {xn} be any sequence of the points c0(B, p) and (αn) also be any sequence
of scalars such that h(xn − x) → 0 and αn → α, as n → ∞, respectively. Then,
since the inequality

h(xn) ≤ h(x) + h(xn − x)
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holds by subadditivity of h, {h(xn)} is bounded and we thus have

h(αnx
n − αx)

= sup
k∈N

∣∣∣t(αnx(n)
k−2 − αxk−2

)
+ s

(
αnx

(n)
k−1 − αxk−1

)
+ r

(
αnx

(n)
k − αxk

)∣∣∣pk/M
≤ |αn − α|h(xn) + |α|h(xn − x)

which tends to zero as n → ∞. That is to say that the scalar multiplication is
continuous. Hence, h is a paranorm on the space c0(B, p).

It remains to prove the completeness of the space c0(B, p). Let {xi} be any

Cauchy sequence in the space c0(B, p), where xi =
{
x

(i)
0 , x

(i)
1 , x

(i)
2 , . . .

}
. Then, for

a given ε > 0 there exists a positive integer n0(ε) such that h(xi− xj) < ε for all
i, j ≥ n0(ε). We obtain by using definition of h for each fixed k ∈ N that∣∣{B(r, s, t)xi

}
k
−
{
B(r, s, t)xj

}
k

∣∣ ≤ sup
k∈N

∣∣{B(r, s, t)xi
}
k
−
{
B(r, s, t)xj

}
k

∣∣ pkM < ε (2.4)

for every i, j ≥ n0(ε), which leads us to the fact that

{(B(r, s, t)x0)k, (B(r, s, t)x1)k, (B(r, s, t)x2)k, . . .}
is a Cauchy sequence of real numbers for every fixed k ∈ N. Since R is complete,
it converges, say {B(r, s, t)xi}k → {B(r, s, t)x}k as i→∞. Using these infinitely
many limits (B(r, s, t)x)0, (B(r, s, t)x)1, (B(r, s, t)x)2, . . ., we define the sequence
{(B(r, s, t)x)0, (B(r, s, t)x)1, (B(r, s, t)x)2, . . .}. We have from (2.4) with j → ∞
that ∣∣{B(r, s, t)xi

}
k
− {B(r, s, t)x}k

∣∣ ≤ ε, (i ≥ n0(ε)) (2.5)

for every fixed k ∈ N. Since xi = {x(i)
k } ∈ c0(B, p),∣∣{B(r, s, t)xi
}
k

∣∣pk/M < ε

for all k ∈ N. Therefore, we obtain by (2.5) that

|{B(r, s, t)x}k|
pk/M ≤

∣∣{B(r, s, t)x}k −
{
B(r, s, t)xi

}
k

∣∣pk/M +
∣∣{B(r, s, t)xi

}
k

∣∣pk/M < ε

for all i ∈ N such that i ≥ n0(ε). This shows that the sequence B(r, s, t)x
belongs to the space c0(p). Since {xi} was an arbitrary Cauchy sequence, the
space c0(B, p) is complete and this terminates the proof. �

Therefore, one can easily check that the absolute property does not hold on
the spaces `∞(B, p), c(B, p) and c0(B, p) that is h(x) 6= h(|x|) for at least one
sequence in those spaces, and this says that `∞(B, p), c(B, p) and c0(B, p) are the
sequence spaces of non-absolute type; where |x| = (|xk|).

Theorem 2.2. The generalized difference spaces of sequences `∞(B, p), c(B, p)
and c0(B, p) of non-absolute type are paranorm isomorphic to the spaces `∞(p),
c(p) and c0(p), respectively; where 0 < pk ≤ H <∞.

Proof. We establish this for the space `∞(B, p). To prove the theorem, we should
show the existence of a paranorm preserving linear bijection between the spaces
`∞(B, p) and `∞(p) for 1 ≤ pk ≤ H < ∞. With the notation of (2.1), define
the transformation T from `∞(B, p) to `∞(p) by x 7→ y = Tx. The linearity of
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T is trivial. Further, it is obvious that x = θ whenever Tx = θ and hence T is
injective.

Let y = (yk) ∈ `∞(p) and define the sequence x = (xk) by

xk := {B−1(r, s, t)y}k

=
k∑
j=1

1

r

j−1∑
v=0

(
−s+

√
s2 − 4tr

2r

)k−v−1(−s−√s2 − 4tr

2r

)v
yk−j+1

for all k ∈ N. Then, we have

{B(r, s, t)x}k = txk−2 + sxk−1 + rxk

= t

k−2∑
j=1

1

r

j−1∑
k=0

(
−s+

√
s2 − 4tr

2r

)j−v−1(
−s−

√
s2 − 4tr

2r

)v
yk−j−1

+s
k−1∑
j=1

1

r

j−1∑
k=0

(
−s+

√
s2 − 4tr

2r

)j−v−1(
−s−

√
s2 − 4tr

2r

)v
yk−j

+r
k∑
j=1

1

r

j−1∑
v=0

(
−s+

√
s2 − 4tr

2r

)j−v−1(
−s−

√
s2 − 4tr

2r

)v
yk−j+1

= yk

for all k ∈ N, which leads us to the fact that

h(x) = sup
k∈N
|txk−2 + sxk−1 + rxk|pk/M = sup

k∈N

∣∣yk∣∣pk/M = g(y) <∞.

Thus, we deduce that x ∈ `∞(B, p) and consequently T is surjective and is
paranorm preserving. Hence, T is a linear bijection and this says us that the
spaces `∞(B, p) and `∞(p) are paranorm isomorphic, as desired. �

Theorem 2.3. Suppose that | − s+
√
s2 − 4tr| > |2r|. Then, the sequence space

c0(B) has AD property.

Proof. Suppose that f ∈ [c0(B)]′. Then, f(x) = g(Ax) for some g ∈ c′0 = `1.
Since c0 has AK property and c′0

∼= `1,

f(x) =
∑
j

aj{B(r, s, t)x}j

for some a = (aj) ∈ `1 and the inclusion φ ⊂ c0(B) holds. For any f ∈ [c0(B)]′

and e(k) ∈ φ, we have

f(e(k)) =
∑
j

aj{B(r, s, t)e(k)}j = {B′(r, s, t)a}k; (k ∈ N),

where B′(r, s, t) denotes the transpose of the matrix B(r, s, t). Hence, from Hahn-
Banach theorem, φ is dense in c0(B) if and only if B′(r, s, t)a = θ for a ∈ `1 implies
a = θ. Under the condition | − s +

√
s2 − 4tr| > |2r| since the null space of the

operator B′(r, s, t) on w is {θ}, c0(B) has AD property. �
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For the sequence spaces λ and µ, the set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (2.6)

is called the multiplier space of λ and µ. One can easily observe for a sequence
space ν with λ ⊃ ν and ν ⊃ µ that the inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (2.6), the α-, β- and γ-duals of a sequence space λ,
which are respectively denoted by λα, λβ and λγ, are defined by

λα := S(λ, `1) λβ := S(λ, cs) and λγ := S(λ, bs).

It is also known that the f -dual λf of a sequence space λ is λf :=
{
{f(ek)} : f ∈

λ′
}

.

Lemma 2.4. [28, pp. 106, 108] Let λ be an FK-space which contains φ. Then,
the following statements hold:

(i) λβ ⊆ λγ.
(ii) If λ has AD then λβ = λγ.
(iii) λ has AD iff λf = λ′.

Now, as an easy consequence of Theorem 2.3 and Lemma 2.4 (iii), we have

Corollary 2.5. The f -dual and the continuous dual of the space c0(B) is the seta = (ak) ∈ ω :

 ∞∑
j=k

j−k∑
v=0

(
−s+

√
s2 − 4tr

2r

)j−k−v (
−s−

√
s2 − 4tr

2r

)v
aj
r


k∈N

∈ `1

 .

Now, we can give the theorems determining the α-, β- and γ-duals of the
sequence space `∞(B, p). In proving them, we apply the technique used for the
spaces of single sequences by Altay and Başar [2, 3, 4, 5]. Since the α−, β− and
γ−duals of the sequence spaces c(B, p) and c0(B, p) are determined in the similar
way, we omit the detail.

We quote some lemmas which are needed in proving our theorems.

Lemma 2.6. [17, Theorem 5.1.3 with qn = 1] A = (ank) ∈ (`∞(p) : `1) if and
only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

ankB
1/pk

∣∣∣∣∣ <∞ for all integers B > 1.

Lemma 2.7. [19, Theorem 3] Let pk > 0 for every k. Then A = (ank) ∈ (`∞(p) :
`∞) if and only if

sup
n∈N

∑
k

∣∣ank∣∣B1/pk <∞ for all integers B > 1. (2.7)

Lemma 2.8. [19, Corollary for Theorem 3] Let pk > 0 for every k. Then A =
(ank) ∈ (`∞(p) : c) if and only if (2.7) holds and limn→∞ ank = αk for each fixed
k ∈ N.
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Theorem 2.9. Define the matrix D = (dnk) by means of a sequence a = (an) ∈ ω
whose nth row Dn is the product of the nth row Cn of the matrix C given by (1.2)
and the sequence a, that is to say that Dn = Cna for all n ∈ N. Then,

[`∞(B, p)]α :=

{
a = (an) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣∑
k∈K

dnkB
1/pk

∣∣∣∣∣ <∞ for all integers B > 1

}
.

Proof. Let a = (an) ∈ ω. Then, we have by (2.1) that

anxn = an(Cy)n (2.8)

=
n∑
k=0

an
r

[
k∑
j=0

(
−s+

√
s2 − 4tr

2r

)k−j (−s−√s2 − 4tr

2r

)j]
yk

=
n∑
k=0

dnk(r, s, t)yk = (Dy)n

for all n ∈ N. Therefore, one can see from (2.8) that ax = (anxn) ∈ `1 whenever
x = (xn) ∈ `∞(B, p) if and only if Dy ∈ `1 whenever y = (yn) ∈ `∞(p). This
gives that a = (an) ∈ [`∞(B, p)]α if and only if D ∈ (`∞(p) : `1). Thus, Lemma
2.6 leads to the desired result. �

Theorem 2.10. Define the matrix G = {gnk(r, s, t)} by means of a sequence
a = (an) ∈ ω and the matrix C given by (1.2) as

gnk(r, s, t) :=

{ ∑n
j=k cjk aj , 0 ≤ k ≤ n,

0 , k > n,
(2.9)

for all k, n ∈ N. Then, [`∞(B, p)]β = {a = (ak) ∈ ω : G ∈ (`∞(p) : c)}.

Proof. Take any a = (ak) ∈ ω and consider the equality obtained with (2.1) that

n∑
k=0

akxk =
n∑
k=0

n∑
j=k

1

r

j−k∑
v=0

(
−s+

√
s2 − 4tr

2r

)j−k−v (−s−√s2 − 4tr

2r

)v
ajyk

=
n∑
k=0

gnk(r, s, t)yk = (Gy)n for all n ∈ N. (2.10)

Thus, we deduce from (2.10) that ax = (akxk) ∈ cs whenever x = (xk) ∈ `∞(B, p)
if and only if Gy ∈ c whenever y = (yk) ∈ `∞(p), where G = {gnk(r, s, t)} is
defined by (2.9). Therefore, we obtain that a = (ak) ∈ [`∞(B, p)]β if and only if
G = (gnk) ∈ (`∞(p) : c). Thus, Lemma 2.8 yields the result. �

Theorem 2.11. [`∞(B, p)]γ := {a = (ak) ∈ ω : G ∈ (`∞(p) : `∞)}, where the
matrix G = {gnk(r, s, t)} is defined by (2.9).

Proof. This is obtained in the similar way to the proof of Theorem 2.10. So, we
omit the detail. �
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If a sequence space λ paranormed by h1 contains a sequence (bk) with the
property that for every x ∈ λ there is a unique sequence of scalars (αk) such that

lim
n→∞

h1

(
x−

n∑
k=0

αkbk

)
= 0

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

k αkbk
which has the sum x is then called the expansion of x with respect to (bn) and
written as x =

∑
k αkbk. Now, we may give the sequence of the points of the spaces

c0(B, p) and c(B, p) which form the Schauder bases for those spaces. Because of
the isomorphism T , defined in the proof of Theorem 2.2, between the sequence
spaces c0(B, p) and c0(p), c(B, p) and c(p) is onto, the inverse image of the bases
of the spaces c0(p) and c(p) are the bases of our new spaces c0(B, p) and c(B, p),
respectively. Therefore, we have:

Theorem 2.12. Let αk = {B(r, s, t)x}k and 0 < pk ≤ H < ∞ for all k ∈ N.
Define the sequence z = (zn) and b(k)(r, s, t) = {b(k)(r, s, t)}n∈N for every fixed
k ∈ N by

zn :=
n∑
k=0

cnk and b(k)
n (r, s, t) :=

{
0 , n < k,
cnk , n ≥ k.

Then, the following statements hold:

(a) The sequence {b(k)(r, s, t)}k∈N is a basis for the space c0(B, p) and any x
in c0(B, p) has a unique representation of the form x =

∑
k αkb

(k).
(b) The set

{
z, b(k)(r, s, t)

}
is a basis for the space c(B, p) and any x in c(B, p)

has a unique representation of the form x = lz +
∑

k[αk − l]b(k)(r, s, t),
where l = limk→∞{B(r, s, t)x}k.

3. Some Matrix Mappings Related to the Sequence Spaces λ(B, p)

In this section, subsequent to defining the pair of summability methods such
that one of them applied to the sequences in the space λ(B, p) and the other
one applied to the sequences in the space λ(p), we give a basic theorem as a
consequence of an analysis related to this type summability methods. The reader
may refer to Başar [10] and Başar [11, pp. 41–45 and Chapter 4]. Finally, we
characterize the classes (λ(B, p) : µ) and (µ : λ(B, p)) of infinite matrices and
derive the characterization of some other classes from them, where µ is any given
sequence space. We use the convention that any term with negative subscript is
equal to zero.

Let us suppose that the infinite matrices E = (enk) and F = (fnk) map the
sequences x = (xk) and y = (yk) which are connected with the relation (2.1) to
the sequences u = (un) and v = (vn), respectively, i.e.,

un :=
(
Ex
)
n

=
∑
k

enkxk for each fixed n ∈ N, (3.1)

vn :=
(
Fy
)
n

=
∑
k

fnkyk for each fixed n ∈ N. (3.2)
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One can immediately deduce here that the method F is applied to the B(r, s, t)-
transform of the sequence x = (xk) while the method E is directly applied to
the terms of the sequence x = (xk). So, the methods E and F are essentially
different.

Let us assume that the matrix product FB(r, s, t) exists in general. We shall
say in this situation that the methods E and F in (3.1) and (3.2) are the pair of
summability methods, shortly PSM, if un becomes vn (or vn becomes un) under
the application of the formal summation by parts. This leads us to the fact that
FB(r, s, t) exists and is equal to E and [FB(r, s, t)]x = F [B(r, s, t)x] formally
holds, if one side exists. This statement is equivalent to the relation

enk := rfnk + sfn,k+1 + tfn,k+2 or equivalently (3.3)

fnk :=
∞∑
j=k

j−k∑
v=0

(
−s+

√
s2 − 4tr

2r

)j−k−v (−s−√s2 − 4tr

2r

)v
enj
r
,

for all k, n ∈ N.
Now, we can give a short analysis on the PSM. One can see that vn reduces to

un as follows:

vn =
∑
k

fnkyk =
∑
k

fnk(rxk + sxk−1 + txk−2)

=
∑
k

(rfnk + sfn,k+1 + tfn,k+2)xk

=
∑
k

enkxk = un.

The partial sums of the series on the right of (3.1) and (3.2) are connected with
the relation

m∑
k=0

enkxk =
m−1∑
k=0

(
−s+

√
s2 − 4tr

2r

)n−j (
−s−

√
s2 − 4tr

2r

)j
enk
r
yk +

menm
r

ym (3.4)

for every fixed m,n ∈ N. Hence if, for a given n ∈ N, one of the series on the
right of (3.1) and (3.2) converges then the other converges if and only if

lim
m→∞

menm
r

ym = zn (3.5)

for every fixed n ∈ N. If (3.5) holds then we have from (3.4) by letting m → ∞
that un = vn+zn for all n ∈ N. Hence, if (yn) is summable by one of the methods
E and F then it is summable by the other one if and only if (3.5) holds and

lim
n→∞

zn = α. (3.6)

Hence the limits of (un) and (vn) differ by α. Therefore the E- and F -limits of
any sequence summable by one of them agree if and only if F summability implies
that (3.6) holds with α = 0. The similar result holds with E and F interchanged.
It follows by the validity of (3.6) with α 6= 0 that the methods E and F are
inconsistent, and conversely.
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The analysis given above, leads us to the following basic theorem related to
the matrix mappings on the sequence space λ(B, p):

Theorem 3.1. Let the matrices E = (enk) and F = (fnk) are connected with the
relation (3.3) and µ be any given sequence space. Then, E ∈ (λ(B, p) : µ) if and
only if F ∈ (λ(p) : µ) and

F (n) ∈ (λ(p) : c), (3.7)

for every fixed n ∈ N, where F (n) =
(
f

(n)
mk

)
with

f
(n)
mk :=


1
r

(
−s+

√
s2−4tr

2r

)n−j (
−s−

√
s2−4tr

2r

)j
enk , k < m

menm
r

, k = m

0 , k > m

for all k,m ∈ N.

Proof. Suppose that E and F be PSM, that is to say that (3.3) holds, µ be any
given sequence space and take into account that the spaces λ(B, p) and λ(p) are
paranorm isomorphic.

Let E ∈ (λ(B, p) : µ) and take any y ∈ λ(p). Then, FB(r, s, t) exists and
(enk)k∈N ∈ [λ(B, p)]β which yields that (3.7) is necessary and (fnk)k∈N ∈ λβ(p) for
each n ∈ N. Hence, Fy exists for each y ∈ λ(p) and thus by letting m→∞ in the
equality (3.4), we have by (3.3) that Ex = Fy which leads us to the consequence
F ∈ (λ(p) : µ).

Conversely, let F ∈ (λ(p) : µ) and (3.7) holds, and take any x ∈ λ(B, p).
Then, we have (fnk)k∈N ∈ λβ(p) which gives together with (3.7) that (enk)k∈N ∈
[λ(B, p)]β for each n ∈ N. Hence, Ex exists. Therefore, we obtain from the
equality (3.4) as m→∞ that Fy = Ex and this shows that E ∈ (λ(B, p) : µ).

This completes the proof. �

By changing the roles of the spaces λ(B, p) and λ(p) with µ, we have

Theorem 3.2. Suppose that the elements of the infinite matrices A = (ank) and
B = (bnk) are connected with the relation

bnk := tan−2,k + san−1,k + rank

for all k, n ∈ N and µ be any given sequence space. Then, A ∈ (µ : λ(B, p)) if
and only if B ∈ (µ : λ(p)).

Proof. Let z = (zk) ∈ µ and consider the following equality

m∑
k=0

bnkzk =
m∑
k=0

(rank + san−1,k + tan−2,k)zk for all m,n ∈ N,

which yields as m → ∞ that (Bz)n = [B(r, s, t)(Az)]n. Therefore, one can
immediately observe from here that Az ∈ λ(B, p) whenever z ∈ µ if and only if
Bz ∈ λ(p) whenever z ∈ µ.

This step concludes the proof. �



44 F. BAŞAR AND A.F. ÇAKMAK

It is clear that Theorem 3.1 and Theorem 3.2 have several consequences de-
pending on the choice of the sequence spaces λ, µ and the sequence p = (pk).
Therefore by Theorem 3.1 and Theorem 3.2, the necessary and sufficient condi-
tions for (λ(B, p) : µ) and (µ : λ(B, p)) may be derived by replacing the entries
of E and A by those of the entries of F = EB−1(r, s, t) and B = B(r, s, t)A,
respectively; where the necessary and sufficient conditions on the matrices F and
B are read from the concerning results in the existing literature. We may give
the following lemma due to Grosse-Erdmann [17]:

Lemma 3.3. The necessary and sufficient conditions for A = (ank) ∈ (λ : µ)
when λ ∈ {`∞(p), c(p), c0(p), `(p)} and µ ∈ {`∞(p), c(p), c0(p)} can be read from
the following table:

From
To

`∞(p) c(p) c0(p) `(p)

`∞(q) 1. 2. 3. 4.
c(q) 5. 6. 7. 8.
c0(q) 9. 10. 11. 12.

Table 1: Characterization of matrix transformations between some Maddox’
sequence spaces,
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where

1. (3.8) ∀M ∈ N, sup
n∈N

(∑
k

|ank|M1/pk

)qn
<∞

2. (3.9) ∃M 3 sup
n∈N

(∑
k

|ank|M−1/pk

)qn
<∞

(3.10) sup
n∈N

∣∣∣∣∑
k

ank

∣∣∣∣qn <∞
3. (3.9)
4. (3.11) ∃L 3 sup

n∈N
sup
k∈K1

∣∣ankL−1/qn
∣∣pk <∞

(3.12) ∃L 3 sup
n∈N

∑
k∈K2

∣∣ankL−1/qn
∣∣p′k <∞

5. (3.13) ∀M ∈ N, sup
n∈N

∑
k

|ank|M1/pk <∞

(3.14) ∃(αk) ∈ ω 3 ∀M ∈ N, lim
n→∞

(∑
k

|ank − αk|M1/pk

)qn
= 0

6. (3.15) ∃M 3 sup
n∈N

∑
k

|ank|M−1/pk <∞

(3.16) ∃α ∈ C 3 lim
n→∞

∣∣∣∣∑
k

ank − α
∣∣∣∣qn = 0

(3.17) ∃M and (αk) ∈ ω 3 ∀L, sup
n∈N

∑
k

|ank − αk|L1/qnM−1/pk <∞

(3.18) ∃(αk) ∈ ω 3 ∀k ∈ N, lim
n→∞

|ank − αk|qn = 0

7. (3.15), (3.17), (3.18)
8. (3.18),

(3.19) sup
n∈N

sup
k∈K1

|ank|pk <∞

(3.20) ∃M 3 sup
n∈N

∑
k∈K2

|ankM−1|p
′
k <∞

(3.21) ∃(αk) ∈ ω 3 ∀L, sup
n∈N

sup
k∈K1

(
|ank − αk|L1/qn

)pk <∞
(3.22) ∃M and (αk) ∈ ω 3 ∀L, sup

n∈N

∑
k∈K2

(
|ank − αk|L1/qnM−1

)p′k <∞
9. (3.23) ∀M ∈ N, lim

n→∞

(∑
k

|ank|M1/pk

)qn
= 0

10. (3.24) ∀k ∈ N, lim
n→∞

|ank|qn = 0

(3.25) ∃M 3 ∀L, sup
n∈N

∑
k

|ank|L1/qnM−1/pk <∞

(3.26) lim
n→∞

∣∣∣∣∑
k

ank

∣∣∣∣qn = 0

11. (3.24), (3.25)
12. (3.24),

(3.27) ∀L, sup
n∈N

sup
k∈K1

∣∣ankL1/qn
∣∣pk <∞

(3.28) ∃M 3 ∀L, sup
n∈N

∑
k∈K2

∣∣ankL1/qnM−1
∣∣p′k <∞

Now, by combining Theorem 3.2 and Lemma 3.3, as an easy consequence we
have the following:
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Corollary 3.4. Let A = (ank) be an infinite matrix and define the matrix B =
(bnk) as in Theorem 3.2. Then,

(i) A ∈ (`∞(p) : `∞(B, q)) if and only if (3.8) holds with bnk instead of ank.
(ii) A ∈ (c(p) : `∞(B, q)) if and only if (3.9) and (3.10) hold with bnk instead

of ank.
(iii) A ∈ (c0(p) : `∞(B, q)) if and only if (3.9) holds with bnk instead of ank.
(iv) A ∈ (`(p) : `∞(B, q)) if and only if (3.11) and (3.12) hold with bnk instead

of ank.
(v) A ∈ (`∞(p) : c(B, q)) if and only if (3.13) and (3.14) hold with bnk instead

of ank.
(vi) A ∈ (c(p) : c(B, q)) if and only if (3.15), (3.16), (3.17) and (3.18) hold

with bnk instead of ank.
(vii) A ∈ (c0(p) : c(B, q)) if and only if (3.15), (3.17) and (3.18) hold with bnk

instead of ank.
(viii) A ∈ (`(p) : c(B, q)) if and only if (3.18), (3.19), (3.20), (3.21) and (3.22)

hold with bnk instead of ank.
(ix) A ∈ (`∞(p) : c0(B, q)) if and only if (3.23) holds with bnk instead of ank.
(x) A ∈ (c(p) : c0(B, q)) if and only if (3.24), (3.25) and (3.26) hold with bnk

instead of ank.
(xi) A ∈ (c0(p) : c0(B, q)) if and only if (3.24) and (3.25) hold with bnk instead

of ank.
(xii) A ∈ (`(p) : c0(B, q)) if and only if (3.24), (3.27) and (3.28) hold with bnk

instead of ank.

4. Conclusion

Quite recently, as a nice generalization of Kirişçi and Başar [18], Sönmez [27]
has examined the domain of the triple band matrix B(r, s, t) in the classical
spaces `∞, c, c0 and `p. Although the domain of some particular matrices in
certain normed sequence spaces were studied by several researchers, the domain
of matrices in some paranormed sequence spaces were not sufficiently worked
except Altay and Başar [2, 3, 4], Aydın and Başar [7, 8], Aydın and Altay [6].
So, there is many number of open problems and to work on the domain of some
infinite matrices in the paranormed sequence spaces is meaningful. In the cases

B(r, s, 0) ≡ B(r, s) and pk = 1 for all k ∈ N, since `∞(B, p) ≡ ̂̀∞(p), c(B, p) ≡
ĉ(p), c0(B, p) ≡ ĉ0(p) and `∞(B, e) ≡ `∞(B), c(B, e) ≡ c(B), c0(B, e) ≡ c0(B)
our results are much more general than the corresponding results of Aydın and
Altay [6], and Sönmez [27], respectively.

Finally, we should note from now on that our next paper will be devoted to the
investigation of the domain of the triple band matrix B(r, s, t) in the Maddox’s
space `(p).
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Büyükçekmece, 34500–İstanbul, Turkey
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