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Abstract. In 1955, H. Dye defined certain projections of a C∗-matrix algebra
by

Pi,j(a) = (1 + aa∗)−1 ⊗ Ei,i + (1 + aa∗)−1a⊗ Ei,j

+ a∗(1 + aa∗)−1 ⊗ Ej,i + a∗(1 + aa∗)−1a⊗ Ej,j ,

which was used to show that in the case of factors not of type I2n, the unitary
group determines the algebraic type of that factor. We study these projections
and we show that in M2(C), the set of such projections includes all the pro-
jections. For infinite C∗-algebra A, having a system of matrix units, we have
A ' Mn(A). M. Leen proved that in a simple, purely infinite C∗-algebra A,
the ∗-symmetries generate U0(A). Assuming K1(A) is trivial, we revise Leen’s
proof and we use the same construction to show that any unitary close to the
unity can be written as a product of eleven ∗-symmetries, eight of such are of
the form 1− 2Pi,j(ω), ω ∈ U(A). In simple, unital purely infinite C∗-algebras
having trivial K1-group, we prove that all Pi,j(ω) have trivial K0-class. Con-
sequently, we prove that every unitary of On can be written as a finite product
of ∗-symmetries, of which a multiple of eight are conjugate as group elements.

1. Introduction and preliminaries

Let A be a unital C∗-algebra. The set of projections and the group of unitaries
of A are denoted by P(A) and U(A), respectively. Recall that the C∗-matrix
algebra over A which is denoted by Mn(A) is the algebra of all n × n matrices
(ai,j) over A, with the usual addition, scalar multiplication, and multiplication
of matrices and the involution (adjoint) is (ai,j)

∗ = (a∗j,i). As in Dye’s viewpoint
of Mn(A), let Sn(A) denote the direct sum of n copies of A, considered as a left

Date: Received: 22 February 2012; Revised: 20 May 2012; Accepted: 25 May 2012.
2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L80.
Key words and phrases. C∗-algebras, matrix projection, K0-class.
This paper was presented in the 3rd Conference of Settat on Operator Algebras and Appli-

cations, 1–5 November 2011, Morocco.
144



ON CERTAIN PROJECTIONS OF C∗-MATRIX ALGEBRAS 145

A-module. Addition of n-tuples x̄ = (x1, x2, . . . , xn) in Sn(A) is componentwise
and a ∈ A acts on x̄ by a(x̄) = (ax1, ax2, . . . , axn). Then Sn(A) is a Hilbert
C∗-algebra module, with the inner product defined by

< x̄, ȳ >=
n∑

i=1

xiy
∗
i .

By an A-endomorphism T of Sn(A), we mean an additive mapping on Sn(A)
which commutes with left multiplication: a(x̄T ) = (ax̄)T . In a familiar way,
assign to any T a uniquely determined matrix (tij) over A (1 ≤ i, j ≤ n) so that
x̄T = (

∑
i xiti1, . . . ,

∑
i xitin).

If p is a projection in Mn(A), then p is a mapping on Sn(A) having its range
as a sub-module of Sn(A). Then two projections are orthogonal means their sub-
module ranges are so. The C∗-algebra Mn(A) contains numerous projections.
For each a ∈ A and each pair of indices i, j(i 6= j, 1 ≤ i, j ≤ n), H. Dye in [7]
defined the projection Pi,j(a) in Mn(A), whose range consists of all left multiples
of the vector with 1 in the ith-place, a in the jth-place and zeros elsewhere. As a
matrix, it has the form

Pi,j(a) =



0 · · · · · · · · · · · · · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · (1 + aa∗)−1 · · · (1 + aa∗)−1a · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · a∗(1 + aa∗)−1 · · · a∗(1 + aa∗)−1a · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 · · · · · · · · · · · · · · · 0


Recall that (see [7], p.74) a system of matrix units of a unital C∗-algebra A is

a subset {eri,j}, 1 ≤ i, j ≤ n and 1 ≤ r ≤ m of A, such that

eri,je
r
j,k = eri,k, e

r
i,je

s
k,l = 0 if r 6= s or j 6= k, (eri,j)

∗ = erj,i,

n,m∑
i,r

eri,i = 1

and for every i, eri,i ∈ P(A). For the C∗-complex matrix algebra Mn(C), let
{Ei,j}ni,j=1 denote the standard system of matrix units of the algebra, that is Ei,j

is the n × n matrix over C with 1 at the place i × j and zeros elsewhere. It is
also known that Mn(A) is ∗-isomorphic to A ⊗ Mn(C) (see [11]). We will see
that having a system of matrix units is a necessary condition in order that a
C∗-algebra A is ∗-isomorphic to a C∗-matrix algebra Mn(B). Using the notion
of a system of matrix units, we write

Pi,j(a) = (1 + aa∗)−1 ⊗ Ei,i + (1 + aa∗)−1a⊗ Ei,j

+ a∗(1 + aa∗)−1 ⊗ Ej,i + a∗(1 + aa∗)−1a⊗ Ej,j ∈ P(Mn(A)).

If a = 0, then Pi,j(a) is the ith diagonal matrix unit of Mn(A), which is 1⊗ Ei,i,
or simply Ei.
Also in [10], M. Stone called the projection Pi,j(a) by the characteristics matrix
of a.
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H. Dye used these projections as a main tool to prove that an isomorphism
between the discrete unitary groups of von Neumann factors not of type In, is
implemented by a ∗-isomorphism between the factors themselves [[7], Theorem
2]. Indeed, let us recall main parts of his proof. Let A and B be two unital
C∗-algebras and let ϕ : U(A) → U(B) be an isomorphism. As ϕ preserves self-
adjoint unitaries, it induces a natural bijection θϕ : P(A) → P(B) between the
sets of projections of A and B given by

1− 2θϕ(p) = ϕ(1− 2p), p ∈ P(A).

This mapping is called a projection orthoisomorphism, if it preserves orthogonal-
ity, i.e. pq = 0 iff θ(p)θ(q) = 0.

Now, let θ be an orthoisomorphism from P(Mn(A)) onto P(Mn(B)). In [[7],
Lemma 8] when A and B are von Neumann algebras, Dye proved that for any
unitary u ∈ U(A), θ(Pi,j(u)) = Pi,j(v), for some unitary v ∈ U(B). A similar
result is proved in the case of simple, unital C∗-algebras by the author in [1].
Afterwards, Dye in [[7], Lemma 6], proved that there exists a ∗-isomorphism (or
∗-antiisomorphism) from Mn(A) onto Mn(B) which coincides with θ on the pro-
jections Pi,j(a). In fact, he proved that θ induces the ∗-isomorphism φ from A
onto B defined by the relation θ(Pi,j(a)) = Pi,j(φ(a)).

In this paper, we study the projections Pi,j(a) of a C∗-matrix algebra Mn(A),
for some C∗-algebra A, and we deduce main results concerning such projections.
The paper is organized as follows: In Section 2, we show that every projection
in M2(C) is of the form P1,2(a), for a ∈ C. In Section 3, we show that some
infinite C∗-algebra A is isomorphic to its matrix algebra Mn(A), such as the
Cuntz algebra On, so the projections Pi,j(a) can be considered as projections of
A.

In a simple, unital purely infinite C∗-algebra A, M. Leen proved that self-
adjoint unitaries (also called ∗-symmetries, or involutions) generate the connected
component U0(A) of the unitary group U(A). In Section 4, assuming in addition
that K1(A) is trivial, we revise Leen’s proof, we fix certain projections and then
following the same construction, we show that every unitary which is close to the
unity, can be written as a product of eleven ∗-symmetries, eight of which are of
the form 1− 2Pi,j(ω), ω ∈ U(A).

Consequently, since every unitary in the connected component of the unity can
be written as a finite product of unitaries that are close to the unity (see [11], §
4.2), we have the following result:

Theorem 1.1. Let A be a simple, unital purely infinite C∗-algebra, such that
K1(A) = 0 and for n ≥ 3, let {ei,j}ni,j=1 be a system of matrix units of A,
with e1,1 ∼ 1. Then every unitary of A can be written as a finite product of
∗-symmetries, of which a multiple of eight have the form 1 − 2Pi,j(ω), for some
ω ∈ U(A).

Finally in Section 5, we compute the K0-class of such certain projections, and
we prove that in simple, unital purely infinite C∗-algebras (assuming K1 = 0),
all projections of the form Pi,j(u), u ∈ U(A) have trivial K0-class. As a good
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application forOn, we have that every unitary can be written as a finite product of
∗-symmetries, of which a multiple of eight have the form 1−2Pi,j(ω), ω ∈ U(On).
Hence using [2] (Lemma 2.1), all such involutions of the form 1− 2Pi,j(ω) are in
fact conjugate, as group elements of U(On).

2. The 2× 2-Complex Algebra Case

Let A be a unital C∗-algebra, and let Pn
i,j(A) denote the family of all projections

in Mn(A) of the form Pi,j(a), 1 ≤ i, j ≤ n, a ∈ A. Also, let Un
i,j(A) denote the set

of all self-adjoint unitaries in Mn(A) of the form 1−2Pi,j(a), 1 ≤ i, j ≤ n, a ∈ A.
Notice that Pn

i,j(A) contains non-trivial projections. In this small section, we show

that in the case of M2(C), the set P2
i,j(C) includes all the non-trivial projections

P(M2(C)), i.e. every non-trivial projection is of the form Pi,j(a), for some complex
number a.

Proposition 2.1. If p ∈ P(M2(C))\{0, 1}, then p ∈ P2
i,j(C).

Proof. Let p =

(
a b
c d

)
be a non-trivial projection in P(M2(C)). Then a and d

are real numbers. If b = 0, then p is either the diagonal matrix unit E1,1 or E2,2.
Otherwise, we have a + b = 1, a = a2 + |b|2 and d = d2 + |b|2, therefore |b|2 ≤ 1

4
.

By strightforward computations, one can deduce that p is of the form

P1,2

(
2b

1 +
√

1− 4|b|2

)
, or P1,2

(
2b

1−
√

1− 4|b|2

)
.

�

Remark 2.2. The projections in Pn
i,j(C) are all of rank one by definition, this

implies that in the case of M3(C), the set P3
i,j(C) does not cover all the non-

trivial projections. Indeed, there are projections in P(M3(C)) of rank one which
do not belong to P3

i,j(C), since every projection in this latest family projects into

a subspace of C3 which lies entirely in one coordinate plan.

3. Some Results for infinite C∗-algebras

Let A be a unital C∗-algebra having a system of matrix units {ei,j}ni,j=1, for
some n ≥ 3. Recall that e1,1Ae1,1 is a C∗-algebra (corner algebra) which has e1,1
as a unit. This system of matrix units implements a ∗-isomorphism between A
and Mn(e1,1Ae1,1). Indeed, let us define the mapping

η1 : Mn(e1,1Ae1,1)→ A

by

η1((ai,j)
n) =

n∑
i,j=1

ei,1ai,je1,j.

Moreover if e1,1 is equivalent to 1 (i.e. A is assumed to be an infinite C∗-algebra),
then there exists a partial isometry v of A such that v∗v = e1,1 and vv∗ = 1,
and this defines the ∗-isomorphism ∆v : A → e1,1Ae1,1 by ∆v(x) = v∗xv. The
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isomorphism ∆v can be used to decompose a projection as a sum of orthogonal
equivalent projections.

Proposition 3.1. Let A be a unital C∗-algebra having a system of matrix units
{ei,j}ni=1. If p is equivalent to the unity, then p can be written as a sum of
orthogonal equivalent subprojections.

Proof. As p equivalent to 1, we consider the isomorphism ∆v, then apply it to
the equality 1 =

∑n
i=1 ei,i, to get p =

∑n
i=1 v

∗ei,iv. Then pi = v∗ei,iv, for all
1 ≤ i ≤ n, are equivalent subprojections of p. �

Recall that, for two unital C∗-algebras A and B, if α : A → B is a ∗-
isomorphism, then α induces the ∗-isomorphism α̂ : Mn(A) → Mn(B), which
is defined by (ai,j) 7→ (α(ai,j)). Then we have the following result.

Proposition 3.2. Let A be an infinite unital C∗-algebra having a system of ma-
trix units {ei,j}ni,j=1. If e1,1 is equivalent to 1, then Mn(A) is ∗-isomorphic to
A.

Proof. Let ∆v : A → e1,1Ae1,1 and η1 : Mn(e1,1Ae1,1) → A be defined as above.

Then the mapping η = η1◦∆̂v is a ∗-isomorphism from Mn(A) onto A. Moreover,

η(ai,j)
n =

n∑
i,j

ei,1v
∗ai,jve1,j, and

η−1(x) = (ve1,ixej,1v
∗)ni,j.

�

As a main example of purely infinite C∗-algebras, let us recall the Cuntz al-
gebra On; n ≥ 2, is the universal C∗-algebra which is generated by isometries
s1, s2, . . . , sn, such that

∑n
i=1 sis

∗
i = 1 with s∗i sj = 0, when i 6= j and s∗i si = 1

(for more details, see [5], [[6], p.149]). Let

ei,j = sis
∗
j , 1 ≤ i, j ≤ n .

Then {ei,j}ni,j=1 forms a system of matrix units for On. As s∗1 partial isometry
between e1,1 and the unity, then Proposition 3.2 shows that the mapping

η : Mn(On)→ On, (ai,j)i,j 7→
n∑

i,j=1

siai,js
∗
j

is a ∗-isomorphism. Moreover, for x ∈ On, η−1(x) = (s∗ixsj)i,j ∈Mn(On).
Therefore, we have proved the following result, which is in fact known, but for
sake of completeness:

Proposition 3.3. The Cuntz algebra On is isomorphic to the C∗-algebra Mn(On).

Then for a ∈ On, Pi,j(a) are considered as projections of On by applying the
mapping η. Therefore,

Pi,j(a) = si(1+aa∗)−1s∗i +si(1+aa∗)−1as∗j +sja
∗(1+aa∗)−1s∗i +sja

∗(1+aa∗)−1as∗j .
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4. Unitary Factors in Purely Infinite C∗-Algebras

Recall that in a unital C∗-algebra A, every self-adjoint unitary u can be written
as u = 1− 2p, for some projection p ∈ P(A), let us say ” the self-adjoint unitary
u is associated to the projection p”. In this section, we assume that A is purely
infinite simple C∗-algebra, and we study the factorizations of unitaries of A. In
order to prove our main theorem (Theorem 4.2), let us first recall the following
result of M. Leen.

Theorem 4.1 ([9], Theorem 3.8). Let A be a simple, unital purely infinite C∗-
algebra. Then the ∗-symmetries (self-adjoint unitaries) generate the connected
component of the unity U0(A).

Now, consider a system of matrix units {ei,j}ni,j=1 of A, with e1,1 ∼ 1. Let

us recall the ∗-isomorphisms η1 : Mn(e1,1Ae1,1) → A, and η = η1 ◦ ∆̂v from
Mn(A) onto A. In this section we revise Leens’ proof of Theorem 3.5 in [9] and
we fix some projections, then by following the same construction, we prove the
following main theorem, which shows that every unitary of A which lies within
a neighborhood of the unity can be factorized as a product of eleven self-adjoint
unitaries moreover, eight of such factors are associated to the projections Pi,j(µ),
for some µ ∈ U(A).

Theorem 4.2. Let A be a simple, unital purely infinite C∗-algebra, such that
K1(A) = 0 and for n ≥ 3, let {ei,j}ni,j=1 be a system of matrix units of A, with
e1,1 ∼ 1. Then there exists ε > 0 such that every unitary a of A with ‖a− 1‖ < ε
can be written as a product of eleven self-adjoint unitaries, of which eight have
the form:

1− 2η(P1,2(−α)), 1− 2η(P1,2(−1))

1− 2η(P1,3(−α)), 1− 2η(P1,3(−1))

1− 2η(P1,2(−γ)), 1− 2η(P1,2(−1))

1− 2η(P1,3(−γ)), 1− 2η(P1,3(−1)),

for some α, γ ∈ U(A).

Consequently, as the Cuntz algebra is simple, unital purely infinite C∗-algebra
with K1(On) = 0 (see [4]) and using Proposition 3.3, we have the following result.

Corollary 4.3. Let n be given, there is a positive number ε such that if u ∈ U(On)
with ‖u− 1‖ < ε , then

u = z1(1− 2P1,2(−α))(1− 2P1,2(−1))(1− 2P1,3(−α))(1− 2P1,3(−1))

(1− 2P1,2(−γ))(1− 2P1,2(−1))(1− 2P1,3(−γ))(1− 2P1,3(−1))z2z3,

for some self-adjoint unitaries z1, z2, z3 and α, γ ∈ U(On).

Let us introduce the following lemma which is used by M. Leen in his proof,
and we shall use it as well.
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Lemma 4.4. Let A be a simple, unital purely infinite C∗-algebra, and let ρ be a
non-trivial projections of A. There is a positive number ε such that if a ∈ U0(A)
with ‖a − 1‖ < ε, then there exist self-adjoint unitaries z1, z2, z3 of A and x ∈
U0(ρAρ) such that

z1az2z3 =

(
x 0
0 1− ρ

)
.

Proof. Mimic the first part of the proof of Theorem 3.5 in [9], with replacing
symmetries by ∗-symmetries and invertible by unitaries. �

Proof of Theorem 4.2:

Proof. Since A is a simple, unital purely infinite C∗-algebra, using [4], we have
K1(A) ' U(A)/U0(A). As K1(A) is assumed to be trivial, we have U(A) = U0(A).

Let p = e1,1, as p ∼ 1, use Proposition 3.1 and the isomorphism ∆u (u∗u =
e1,1, uu

∗ = 1) to find a projection p1 < p (precisely, p1 = u∗e1,1u) which is
equivalent to p moreover, set the partial isometry v = u∗e1,1, and put ρ = p− p1,
so ρ is a non-trivial projection. Therefore applying Lemma 4.4, there is a positive
number ε such that if a ∈ U(A) with ‖a − 1‖ < ε, then there exist self-adjoint
unitaries z1, z2 and z3 such that

z1az2z3 =

(
x 0
0 1− ρ

)
,

where x ∈ U(ρAρ).
Now, we shall use Leen’s approach to exhibit the desired factorization of a.

Choose q = e2,2, r = e3,3 and put r1 = p+ q + r, then we have q ∼ r < 1− p− q.
Following Leen’s notations, we choose v1 = e2,1, v2 = e3,2 and v3 = e1,3, so v1, v2
and v3 are partial isometries such that

v∗1v1 = p, v1v
∗
1 = q, v∗2v2 = q, v2v

∗
2 = r, v∗3v3 = r, and v3v

∗
3 = p.

Let w = v1 + v2 + vv3. Then following the construction in Leen’s proof, we get

z1az2z3 = (1− 2η1(P1,2(−αp)))(1− 2η1(P1,2(−p)))
(1− 2η1(P1,3(−αp)))(1− 2η1(P1,3(−p)))
(1− 2η1(P1,2(−γp)))(1− 2η1(P1,2(−p)))
(1− 2η1(P1,3(−γp)))(1− 2η1(P1,3(−p)))

where αp and γp are in U(pAp). Notice that the factors in the right hand side are
self-adjoint unitaries in A. Hence using the mapping η, we then get

a = z1 (1− 2η(P1,2(−α)))(1− 2η(P1,2(−1)))

(1− 2η(P1,3(−α)))(1− 2η(P1,3(−1)))

(1− 2η(P1,2(−γ)))(1− 2η(P1,2(−1)))

(1− 2η(P1,3(−γ)))(1− 2η(P1,3(−1)))z3z2

where α and γ are unitaries in A, and this ends the proof. �

Finally, let us finish this section by presenting the following open question:
Q. In the Cuntz algebra On, do self-adjoint unitaries of the form {1 − 2Pi,j(a)}
generate the unitary group U(On)?
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5. K-Theory of Certain Projections

In this section, we study the K0-class of the projections Pi,j(u), where u is a
unitary of some unital C∗-algebra A. In particular, if A is a simple purely infinite
C∗-algebra, with K1(A) = 0, or A is a von Neumann factor of type II1, or III,
then for any unitary u of A, Pi,j(u) has trivial K0-class. Afterwards, we present
an application of Theorem 4.2, to the case of Cuntz algebras.

Proposition 5.1. Let A be a unital C∗-algebra. If v is a unitary in A of finite
order, then [Pi,j(v)] = [1] in K0(A).

Proof. Consider a unitary v in A, such that vm = 1, for some positive integer m.
For i 6= j, let

W =
1√
2

(v ⊗ Ei,i + v ⊗ Ei,j + Ej,i − Ej,j +
∑

k/∈{i,j}

√
2⊗ Ek,k) ,

then W ∗ = 1√
2
(vm−1⊗Ei,i+Ei,j+vm−1⊗Ej,i−Ej,j+

∑
k/∈{i,j}

√
2⊗Ek,k), therefore

W ∈ U(Mn(A)). Moreover,

W ∗Pi,j(v)W =
1

4
(2vm−1 ⊗ Ei,i + 2⊗ Ei,j)(

√
2W )

=


0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0

 (1 at the i-th place)

= Ei,i.

This implies that the projection Pi,j(v) is unitarily equivalent to Ei,i in Mn(A),
therefore we have that [Pi,j(v)] = [1] in K0(A), hence the proposition has been
checked. �

Proposition 5.2. Let A be a unital C∗-algebra. If w1, w2 and v are unitaries of
A such that v has order m, then [Pi,j(w1vw2)] = [1] in K0(A).

Proof. As w1 and w2 are unitaries in A, then for all i 6= j, W = w1 ⊗Ei,i +w∗2 ⊗
Ej,j +

∑
k/∈{i,j}Ek,k ∈ U(Mn(A)). Moreover, WPi,j(v)W ∗ = Pi,j(w1vw2), therefore

by Proposition 5.1 we have [Pi,j(w1vw2)] = [Pi,j(v)] = [1]. �

Proposition 5.3. Let A be a unital C∗-algebra. If u and v are self-adjoint
unitaries in A, then [Pi,j(uv)] = [1] in K0(A).

Proof. For i 6= j, let

W =
1√
2

(uv ⊗ Ei,i + uv ⊗ Ei,j + Ej,i − Ej,j +
∑

k/∈{i,j}

√
2⊗ Ek,k) ,

then W ∈ U(Mn(A)). Moreover,
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W ∗Pi,j(uv)W =
1

4
(2uv ⊗ Ei,i + 2⊗ Ei,j)(

√
2W )

= Ei,i,

and this implies that the projection Pi,j(uv) is unitarily equivalent to Ei,i in
Mn(A), therefore we have that [Pi,j(uv)] = [1] in K0(A), hence the proposition
has been checked. �

Combining the previous results, we have the following theorem concerning the
K0-class of those projections Pi,j(u) in P(Mn(A)), evaluated at any unitary u of
A.

Theorem 5.4. Let A be a simple, unital purely infinite C∗-algebra, such that
K1(A) is the trivial group. If u ∈ U(A), then [Pi,j(u)] = [1] in K0(A).

Proof. Consider a unitary u of A. As K1(A) = 0, and we know by [[4], p.188]
that K1(A) ' U(A)/U0(A) then using M. Leen’s result (Theorem 4.1), we have
that u =

∏n
k=1 vk, where vk is a self-adjoint unitary (∗-symmetry) of A. If n = 1,

then the result holds by using Proposition 5.1. Proposition 5.3 proves the case
n = 2. If n ≥ 3, then the result is done by Proposition 5.2, hence the proof is
completed. �

Moreover, as M. Broise in [[3], Theorem 1] proved that in the case of von
Neumann factors of either type II1 or III, the unitaries are generated by the
self-adjoint unitaries, then a similar result in the case of von Neumann factors
can be deduced as follows:

Theorem 5.5. Let A be a von Neumann factor of type II1 or III. If u ∈ U(A),
then [Pi,j(u)] = [1] in K0(A).

Proof. Let u be a unitary of A. By [[3], Theorem 1], u can be written as a finite
product of self-adjoint unitaries of A, then mimic the proof of Theorem 5.4. �

Consequently, we have the following results concerning the K0-class of some cer-
tain projections.

Corollary 5.6. Let A be a unital C∗-algebra which is either:
(1) simple, purely infinite, with K1(A) = 0, or
(2) von Neumann factor of type II1, or III.
If v is a unitary of A, and p is the projection of Mn(A) defined by

p =
1

2
⊗ E1,1 +

v

2
⊗ E1,2 +

v∗

2
⊗ E2,1 +

1

2
⊗ E2,2 + E3,3 + E4,4 · · ·+ Em,m

for some positive integer m ≤ n− 2, then [p] = (m− 1)[1], in K0(A).

Proof. As the projection p is the orthogonal sums of P1,2(v)+E3,3+E4,4 · · ·+Em,m,
then by either Theorem 5.4 or 5.5,

[p] = [1] + ([1] + · · ·+ [1]) = (m− 1)[1].

�
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Corollary 5.7. Let A be a unital C∗-algebra which is either:
(1) simple, purely infinite, with K1(A) = 0, or
(2) von Neumann factor of type II1, or III.
If v1, v2 · · · vn are unitaries of A, and p is the projection of M2n(A) defined by

p =
1

2
⊗ E1,1 +

v1
2
⊗ E1,2 +

v∗1
2
⊗ E2,1 +

1

2
⊗ E2,2

+
1

2
⊗ E3,3 +

v2
2
⊗ E3,4 +

v∗2
2
⊗ E4,3 +

1

2
⊗ E4,4 + · · ·

+
1

2
⊗ E2n−1,2n−1 +

vn
2
⊗ E2n−1,2n +

v∗n
2
⊗ E2n,2n−1 +

1

2
⊗ E2n,2n,

then [p] = n[1], in K0(A).

Proof. Using Theorem 5.4 (or Theorem 5.5), we have

[p] = [P1,2(v1)] + [P3,4(v2) + · · ·+ [P2n−1,2n(vn)] = n[1].

�

Now let us prove the following lemma, which will be used in order to prove
our main result in this section (Theorem 5.9), which is in fact a consequence
application of Theorem 4.2, to the case of Cuntz algebras On.

Lemma 5.8. Let A be a unital, simple purely infinite C∗-algebra, with K1(A) = 0,
and let {ei,j}n, with e1,1 ∼ 1 be a system of matrix units of A . Then for any
unitary u ∈ U(A) we have [η(Pi,j(u))] = [1] in K0(A).

Proof. As we have seen in the proof of Propositions 5.1, 5.2, 5.3 and Theorem 5.4,
there exists a unitary W ∈ U(Mn(A)), such that W ∗Pi,j(u)W = Ei,i. Therefore,

η(W )∗η(Pi,j(u))η(W ) = η(Ei,i) = η1∆̂v(Ei,i) = η1(e1,1 ⊗ Ei,i) = ei,i.

Then
η(Pi,j(u)) ∼u ei,i ∼ e1,1 ∼ 1,

hence η(Pi,j(u)) and 1 have the same class in K0(A). �

Finally, let us consider the case of the Cuntz algebra On. Let u be a self-adjoint
unitary (involution), so u = 1 − 2p, for some p ∈ P(On). We recall the concept
type of involution which is introduced by the author in [2], as follows: Since
K0(On) ' Zn−1 (see [4]), then the type of u is defined to be the element [p] in
K0(On). By ([2], Lemma 2.1), two involutions are conjugate as group elements
in U(On) if and only if they have the same type.

As a consequence of Theorem 4.2, and the results concerning the K0-group of
the projections Pi,j(u), which are deduced in this section, we have the following
result.

Theorem 5.9. Let n be given. There is a positive number ε such that every
unitary of On that lies within ε-neighborhood of 1 can be written as a product of
eleven involutions, of which eight have the form (1 − 2ηPi,j(ω)), for some ω ∈
U(On) and consequently, all such eight involutions are conjugate group elements
of U(On).
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Proof. Using [4] and [5], the Cuntz algebra On is a simple, unital purely infinite
C∗-algebra with trivial K1-group. Then by Theorem 4.2, there exists ε > 0
such that for every u ∈ U(On) with ‖u − 1‖ < ε, then u can be written as a
product of eleven involutions, of which eight have the form (1 − 2ηPi,j(ω)), for
some ω ∈ U(On). The type of the involution (1− 2ηPi,j(ω)) is [ηPi,j(ω))] and by
Lemma 5.8 equals 1 in K0(On). Hence, by [[2], Lemma 2.1], all these involutions
are conjugate indeed, to the trivial involution −1. �

Consequently, and as every unitary (precisely in the connected component of
unity) can be written as a finite product of unitaries that are close to the unity
(see for example [11], § 4.2), we have the following:

Corollary 5.10. Every unitary of On can be written as a finite product of in-
volutions, of which a multiple of eight have the form (1 − 2ηPi,j(ω)), for some
ω ∈ U(On) and consequently, all such multiple of eight involutions are conjugate
group elements of U(On).
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