

Ann. Funct. Anal. 3 (2012), no. 2, 58–65

ANNALS OF FUNCTIONAL ANALYSIS

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

A MOMENT PROBLEM ON SOME TYPES OF HYPERGROUPS

LÁSZLÓ SZÉKELYHIDI¹* AND LÁSZLÓ VAJDAY²

Communicated by C. P. Niculescu

ABSTRACT. The classical moment problem is formulated for commutative hypergroups and the uniqueness is proved for polynomial hypergroups in a single variable and for Sturm–Liouville hypergroups.

1. Introduction

The classical moment problem published in 1894 by Thomas Jan Stieltjes (see [8]) is the following: Given a sequence s_0, s_1, \ldots of real numbers. Find necessary and sufficient conditions for the existence of a measure μ on $[0, \infty[$ so that

$$s_n = \int_0^\infty x^n \, d\mu(x)$$

holds for $n = 0, 1, \ldots$ Another form of the moment problem, also called "Hausdorff's moment problem" or the "little moment problem," may be stated as follows: Given a sequence of numbers $(s_n)_{n=0}^{\infty}$, under what conditions is it possible to determine a function α of bounded variation in the interval [0, 1] such that

$$s_n = \int_0^1 x^n \, d\alpha(x)$$

for $n = 0, 1, \ldots$ Such a sequence is called a *moment sequence*, and Felix Hausdorff (see [2], [3]) was the first to obtain necessary and sufficient conditions for a sequence to be a moment sequence. In both cases the question of uniqueness of μ , resp. α arise. For a detailed discussion on classical moment problems see e.g. [1].

Date: Received: 26 February 2012; Accepted: 21 March 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 20N20; Secondary 30E05, 44A60.

Key words and phrases. Sturm-Liouville hypergroup, moment problem, polynomial hypergroups.

Let K be a commutative hypergroup and N a nonnegative integer. We say that the continuous functions $\varphi_k: K \to \mathbb{C}$ (k = 0, 1, ...) form a generalized moment function sequence if the equations

$$\varphi_k(x * y) = \sum_{j=0}^k {k \choose j} \varphi_j(x) \varphi_{k-j}(y)$$
(1.1)

hold for k = 0, 1, ... and for each x, y in K (see [5]). In this case the function φ_k is called a *generalized moment function of order* k. In particular, generalized moment functions of order 0 are exactly the exponentials on K. For more about generalized moment function sequences see [9, 5, 4, 6, 7].

Let μ be a compactly supported measure on K and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence. Then for each natural number n the complex number

$$m_n = \int_K \varphi_n \, d\mu$$

is called the *n*-th generalized moment of μ with respect to the given generalized moment function sequence. In this case the sequence $(m_n)_{n=0}^{\infty}$ is called the generalized moment sequence of the measure μ with respect to the given generalized moment function sequence.

In this setting we can formulate the problem of existence: Let the generalized moment function sequence $(\varphi_k)_{k=0}^{\infty}$ and the sequence of complex numbers $(m_n)_{n=0}^{\infty}$ be given. Under what conditions is there a compactly supported measure μ on K such that $(m_n)_{n=0}^{\infty}$ is the generalized moment sequence of the measure μ with respect to the given generalized moment function sequence? The other basic question is about the uniqueness: if the compactly supported measures μ and ν have the same generalized moment sequences with respect to the given generalized moment function sequence, then does it follow $\mu = \nu$?

In this paper we study the problem of uniqueness and solve it in the case of polynomial hypergroups in a single variable and in the case of Sturm–Liouville hypergroups.

2. The case of polynomial hypergroups

In this section we shall use the results in [5] on the representation of generalized moment functions on polynomial hypergroups in the following form.

Let $K = (\mathbb{N}, P_n)$ be a polynomial hypergroup, and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. Then there exists a sequence $(c_k)_{k=0}^{\infty}$ such that for each natural number N we have

$$\varphi_k(n) = (P_n \circ f)^{(k)}(0) \ (k = 0, 1, \dots, N),$$

where

$$f(t) = \sum_{j=0}^{N} c_j \frac{t^j}{j!}$$

for each t in \mathbb{R} .

Theorem 2.1. Let $Let K = (\mathbb{N}, P_n)$ be a polynomial hypergroup, μ a finitely supported measure on \mathbb{N} and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. If $\varphi_1 \neq 0$ and

$$\int_{\mathbb{N}} \varphi_k(n) \, d\mu(n) = 0$$

for $k = 0, 1, 2, ..., then \mu = 0$.

Proof. First we remark that

$$\int_{\mathbb{N}} \varphi_k(n) \, d\mu(n) = \sum_{n=0}^{N} \varphi_k(n) \mu_n.$$

Hence, by assumption, we have the following system of equations

$$\sum_{n=0}^{N} \varphi_k(n)\mu_n = 0 \tag{2.1}$$

for $k = 0, 1, 2, \dots, N$.

On the other hand, by the result quoted from [5] we have that

$$\varphi_k(n) = (P_n \circ f)^{(k)}(0) \tag{2.2}$$

for k = 0, 1, 2, ..., N, n = 0, 1, 2, ..., N, where

$$f(t) = \sum_{i=0}^{N} c_i \frac{t^i}{i!}$$

is a polynomial. Let $\lambda = f(0)$. From (2.2) we have for k = 1

$$\varphi_1(n) = P'_n(\lambda) c_1,$$

which implies $c_1 \neq 0$.

Let n be a fixed nonnegative integer and we let for k = 0, 1, 2, ..., N and for each t in \mathbb{R} :

$$F_k(t) = (P_n \circ f)^{(k)}(t).$$

We show that for k = 0, 1, 2, ..., N and for each t in \mathbb{R}

$$F_k(t) = \sum_{j=0}^k p_{k,j}(t) P_n^{(j)}(f(t)), \qquad (2.3)$$

where $p_{k,j}$ is a polynomial and $p_{k,k}(t) = f'(t)^k$.

We prove (2.3) by induction on k. For k = 0 the statement is trivial with $p_{0,0}(t) = 1$. Supposing that (2.3) is proved we show it for k + 1 instead of k. We have

$$F_{k+1}(t) = F'_k(t) = \sum_{j=0}^k p'_{k,j}(t) P_n^{(j)}(f(t)) + \sum_{j=0}^k p_{k,j}(t) P_n^{(j+1)}(f(t)) f'(t)$$

and this is the form (2.3) with k+1 for k. Moreover, $p_{k+1,k+1}(t) = p_{k,k}(t) \cdot f'(t) = f'(t)^{k+1}$. Then, using (2.2), we have

$$\varphi_k(n) = \sum_{j=0}^k c_{k,j} P_n^{(j)}(\lambda)$$
 $k = 0, 1, 2, \dots, N,$

where $c_{k,k} = f'(0)^k \neq 0$, $c_{0,0} = 1$. By (2.1) it follows

$$\sum_{n=0}^{N} \sum_{j=0}^{k} c_{k,j} P_n^{(j)}(\lambda) \mu_n = 0$$
 (2.4)

for $k = 0, 1, 2, \dots, N$. For k = 0 this means

$$\sum_{n=0}^{N} P_n(\lambda)\mu_n = 0. {(2.5)}$$

Now let k = 1 in (2.4), then we have by (2.5)

$$\sum_{n=0}^{N} c_{1,0} P_n(\lambda) \mu_n + c_{1,1} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P_n(\lambda) \mu_n + c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = c_{1,0} \sum_{n=0}^{N} P'_n(\lambda$$

$$c_{1,1} \sum_{n=0}^{N} P'_n(\lambda) \mu_n = 0.$$

As $c_{1,1} \neq 0$, then it follows:

$$\sum_{n=0}^{N} P_n'(\lambda)\mu_n = 0.$$

Continuing this process we get the system of equations

$$\sum_{n=0}^{N} P_n^{(k)}(\lambda)\mu_n = 0, \qquad (2.6)$$

for k = 0, 1, 2, ..., N. Observe, that the degree of P_n is exactly n, hence we can rewrite (2.6) in the form

$$\sum_{n=k}^{N} P_n^{(k)}(\lambda) \mu_n = 0,$$

for $k=0,1,2,\ldots,N$. This is a homogeneous system of linear equations for the unknowns μ_n , $n=0,1,\ldots,N$. The fundamental matrix of this system is an $N\times N$ upper triangular matrix with the nonzero numbers $P_k^{(k)}(\lambda)$ in the main diagonal, hence this matrix is regular, which means that the system has only trivial solution: $\mu_n=0$ for $n=0,1,2,\ldots,N$. This means $\mu=0$ and the proof is complete.

This result obviously implies the following uniqueness theorem.

Theorem 2.2. Let Let $K = (\mathbb{N}, P_n)$ be a polynomial hypergroup, μ, ν finitely supported measures on \mathbb{N} and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. If $\varphi_1 \neq 0$ and the generalized moment sequences of μ and ν with respect to the given generalized moment function sequence are the same, then $\mu = \nu$.

3. The case of Sturm-Liouville hypergroups

Following the previous ideas in this section we extend consider the same problem on Sturm-Liouville hypergroups. We shall use the results in [6] on the representation of generalized moment functions on polynomial hypergroups in the following form.

Let $K = (\mathbb{R}_0, A)$ be a Sturm-Liouville hypergroup, and let Φ the exponential family of the hypergroups K (see [6]). This means that for each z in \mathbb{C} and x in \mathbb{R}_+ the function Φ satisfies

$$\partial_1^2 \Phi(x,z) + \frac{A'(x)}{A(x)} \, \partial_1 \Phi(x,z) = z \, \Phi(x,z) \,,$$

further $\Phi(0,z) = 1$ and $\partial_1 \Phi(0,z) = 0$. It follows, that the function $z \mapsto \Phi(x,z)$ is entire for each x in \mathbb{R}_0 . Let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. Then there exists a sequence $(c_k)_{k=0}^{\infty}$ such that for each natural number N we have

$$\varphi_k(x) = \frac{d^k}{dt^k} \Phi(x, f(t))(0)$$

for k = 0, 1, 2, ..., N, x in \mathbb{R}_0 , t in \mathbb{C} , where

$$f(t) = \sum_{i=0}^{N} c_i \frac{t^i}{i!}$$

is a polynomial.

Theorem 3.1. Let $K = (\mathbb{R}_0, A)$ be a Sturm-Liouville hypergroup, μ a compactly supported measure on \mathbb{R}_0 and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. If $\varphi_1 \neq 0$ and

$$\int_{\mathbb{R}_0} \varphi_k(x) \, d\mu(x) = 0$$

for $k = 0, 1, 2, ..., then \mu = 0$.

Proof. We show that if

$$\int_{\mathbb{R}_0} \varphi_k(x) \, d\mu(x) = 0 \tag{3.1}$$

for k = 0, 1, 2, ..., then $\mu = 0$.

Let N be a fixed positive integer. By the result quoted above from [6] we have

$$\varphi_k(x) = \frac{d^k}{dt^k} \Phi(x, f(t))(0)$$
(3.2)

for k = 0, 1, 2, ..., N x in \mathbb{R}_0 , t in \mathbb{C} , where

$$f(t) = \sum_{i=0}^{N} c_i \frac{t^i}{i!}$$

is a polynomial. Let $\lambda = f(0)$. From (3.2) we have for k = 1

$$\varphi_1(x) = \frac{d}{dt} \Phi((x, f(t))(0)) = \partial_2 \Phi(x, \lambda) c_1,$$

which implies $c_1 \neq 0$.

Let x be a fixed nonnegative real number and we let for k = 0, 1, 2, ..., N and for each t in \mathbb{R} :

$$F_k(t) = \frac{d^k}{dt^k} \Phi(x, f(t)).$$

We show that for k = 0, 1, 2, ..., N and for each t in \mathbb{R}

$$F_k(t) = \sum_{j=0}^{k} p_{k,j}(t) \partial_2^{(j)} \Phi(x, f(t)), \qquad (3.3)$$

where $p_{k,j}$ is a polynomial, and $p_{k,k}(t) = f'(t)^k$.

We prove (3.3) by induction on k. For k = 0 the statement is trivial. Supposing that (3.3) is proved we show it for k + 1 instead of k. We have

$$F_{k+1}(t) = F'_k(t) = \sum_{j=0}^k p'_{k,j}(t)\partial_2^{(j)}\Phi(x, f(t)) + \sum_{j=0}^k p_{k,j}(t)\partial_2^{(j+1)}\Phi(x, f(t)) f'(t)$$

and this is the form (3.3) with k+1 for k. Moreover, $p_{k+1,k+1}(t) = p_{k,k}(t) \cdot f'(t) = f'(t)^k$.

Then, using (3.2), we have

$$\varphi_k(x) = \sum_{j=0}^k c_{k,j} \partial_2^{(j)} \Phi(x, \lambda) \qquad k = 0, 1, 2, \dots, N,$$

where $c_{k,k} \neq 0$, $c_{0,0} = 1$.

By (3.1) it follows

$$\sum_{j=0}^{k} c_{k,j} \int_{\mathbb{R}_0} \partial_2^{(j)} \Phi(x,\lambda) d\mu(x) = 0$$

for $k = 0, 1, 2, \ldots$. For k = 0 this gives

$$\int_{\mathbb{R}_0} \Phi(x,\lambda) \, d\mu(x) = 0. \tag{3.4}$$

For k = 1 we have

$$c_{1,0} \int_{\mathbb{R}_0} \Phi(x,\lambda) d\mu(x) + c_{1,1} \int_{\mathbb{R}_0} \partial_2 \Phi(x,\lambda) d\mu(x) = 0.$$
 (3.5)

By (3.4) and $c_{1,1} \neq 0$ this implies

$$\int_{\mathbb{P}_0} \partial_2 \Phi(x, \lambda) \, d\mu(x) = 0 \, .$$

Continuing this process we arrive at

$$\int_{\mathbb{R}_0} \partial_2^{(k)} \Phi(x, \lambda) \, d\mu(x) = 0 \tag{3.6}$$

for k = 0, 1, 2, ..., N. As N is arbitrary, we actually have that (3.6) holds for k = 0, 1, ...

We recall that the function $\hat{\mu}: \mathbb{C} \to \mathbb{C}$ defined for each complex z by

$$\hat{\mu}(z) = \int_{\mathbb{R}_0} \Phi(x, z) \, d\mu(x) \tag{3.7}$$

is the Fourier-Laplace transform of the measure μ . As μ is compactly supported, $\hat{\mu}$ is an entire function. On the other hand, as the integration in (3.7) is performed on the compact support of μ and $z \mapsto \Phi(x, z)$ is an entire function, hence the differentiation and the integration in (3.5) can be interchanged. This means that we have

$$\hat{\mu}^{(k)}(z) \frac{d^k}{dz^k} \int_{\mathbb{R}_0} \Phi(x,z) \, d\mu(x)$$

holds for $k=0,1,2,\ldots$, and for all z in \mathbb{C} . In particular, for $z=\lambda$

$$\hat{\mu}^{(k)}(\lambda) \frac{d^k}{dz^k} \int_{\mathbb{R}_0} \Phi(x, \lambda) d\mu(x) = 0.$$

As $\hat{\mu}$ is an entire function, it follows $\hat{\mu} = 0$. Then $\mu = 0$ and our statement is proved.

Similarly as above, we have the corresponding uniqueness result.

Theorem 3.2. Let $K = (\mathbb{R}_0, A)$ be a Sturm-Liouville hypergroup, μ, ν compactly supported measures on \mathbb{R}_0 and let $(\varphi_k)_{k=0}^{\infty}$ be a generalized moment function sequence on K. If $\varphi_1 \neq 0$ and the generalized moment sequences of μ and ν with respect to the given generalized moment function sequence are the same, then $\mu = \nu$.

Acknowledgement. The research was partly supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. T-031995. and T-043080.

References

- 1. N.I. Akhiezer, *The classical moment problem and some related questions in analysis*, (translated from the Russian by N. Kemmer), Hafner Publishing Co., New York, 1965.
- 2. F. Hausdorff, Summationsmethoden und Momentfolgen. I., Math. Z. 9 (1921), 74-109.
- F. Hausdorff, Summations methoden und Momentfolgen. II., Math. Z. 9 (1921), 280–299.
- 4. Á. Orosz and L. Székelyhidi, Moment Functions on Polynomial Hypergroups in Several Variables, Publ. Math. Debrecen 65 (2004), no. 3-4, 429–438.
- 5. Á. Orosz and L. Székelyhidi, Moment Functions on Polynomial Hypergroups, Arch. Math. 85 (2005), 141–150.
- A. Orosz and L. Székelyhidi, Moment functions on Sturm-Liouville-hypergroups, Ann. Univ. Sci Budapest, Sect. Comp., 29 (2008), 141–156.
- 7. L. Székelyhidi, Functional Equations on Sturm-Liouville Hypergroups, Math. Pannonica, 17 (2006), no.2, 169–182.
- T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, 8 (1894), 1–122; 9 (1894), 5–47.
- H. Zeuner, Moment functions and laws of large numbers on hypergroups, Math. Z. 211 (1992), 369–407.

 $^{^1}$ Institute of Mathematics, University of Debrecen, Hungary. $E\text{-}mail\ address:}$ lszekelyhidi@gmail.com

 $^{^2}$ Institute of Mathematics, University of Debrecen, Hungary. $E\text{-}mail\ address:}$ vlacika@gmail.com