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A MOMENT PROBLEM ON SOME TYPES OF
HYPERGROUPS
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Communicated by C. P. Niculescu

Abstract. The classical moment problem is formulated for commutative hy-
pergroups and the uniqueness is proved for polynomial hypergroups in a single
variable and for Sturm–Liouville hypergroups.

1. Introduction

The classical moment problem published in 1894 by Thomas Jan Stieltjes (see
[8]) is the following: Given a sequence s0, s1, . . . of real numbers. Find necessary
and sufficient conditions for the existence of a measure µ on [0,∞[ so that

sn =

∫ ∞
0

xn dµ(x)

holds for n = 0, 1, . . . . Another form of the moment problem, also called ”Haus-
dorff’s moment problem” or the ”little moment problem,” may be stated as fol-
lows: Given a sequence of numbers (sn)∞n=0, under what conditions is it possible
to determine a function α of bounded variation in the interval ]0, 1[ such that

sn =

∫ 1

0

xn dα(x)

for n = 0, 1, . . . . Such a sequence is called a moment sequence, and Felix Haus-
dorff (see [2], [3]) was the first to obtain necessary and sufficient conditions for a
sequence to be a moment sequence. In both cases the question of uniqueness of µ,
resp. α arise. For a detailed discussion on classical moment problems see e.g. [1].
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Let K be a commutative hypergroup and N a nonnegative integer. We say that
the continuous functions ϕk : K → C (k = 0, 1, . . . ) form a generalized moment
function sequence if the equations

ϕk(x ∗ y) =
k∑

j=0

(
k

j

)
ϕj(x)ϕk−j(y) (1.1)

hold for k = 0, 1, . . . and for each x, y in K (see [5]). In this case the function
ϕk is called a generalized moment function of order k. In particular, generalized
moment functions of order 0 are exactly the exponentials on K. For more about
generalized moment function sequences see [9, 5, 4, 6, 7].

Let µ be a compactly supported measure on K and let (ϕk)∞k=0 be a generalized
moment function sequence. Then for each natural number n the complex number

mn =

∫
K

ϕn dµ

is called the n-th generalized moment of µ with respect to the given generalized
moment function sequence. In this case the sequence (mn)∞n=0 is called the gen-
eralized moment sequence of the measure µ with respect to the given generalized
moment function sequence.

In this setting we can formulate the problem of existence: Let the generalized
moment function sequence (ϕk)∞k=0 and the sequence of complex numbers (mn)∞n=0

be given. Under what conditions is there a compactly supported measure µ on
K such that (mn)∞n=0 is the generalized moment sequence of the measure µ with
respect to the given generalized moment function sequence? The other basic
question is about the uniqueness: if the compactly supported measures µ and ν
have the same generalized moment sequences with respect to the given generalized
moment function sequence, then does it follow µ = ν ?

In this paper we study the problem of uniqueness and solve it in the case of
polynomial hypergroups in a single variable and in the case of Sturm–Liouville
hypergroups.

2. The case of polynomial hypergroups

In this section we shall use the results in [5] on the representation of generalized
moment functions on polynomial hypergroups in the following form.

Let K = (N, Pn) be a polynomial hypergroup, and let (ϕk)∞k=0 be a generalized
moment function sequence on K. Then there exists a sequence (ck)∞k=0 such that
for each natural number N we have

ϕk(n) =
(
Pn ◦ f)(k)(0) (k = 0, 1, . . . , N) ,

where

f(t) =
N∑
j=0

cj
tj

j!

for each t in R.
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Theorem 2.1. Let Let K = (N, Pn) be a polynomial hypergroup, µ a finitely sup-
ported measure on N and let (ϕk)∞k=0 be a generalized moment function sequence
on K. If ϕ1 6= 0 and ∫

N
ϕk(n) dµ(n) = 0

for k = 0, 1, 2, . . . , then µ = 0.

Proof. First we remark that∫
N
ϕk(n) dµ(n) =

N∑
n=0

ϕk(n)µn.

Hence, by assumption, we have the following system of equations

N∑
n=0

ϕk(n)µn = 0 (2.1)

for k = 0, 1, 2, . . . , N .
On the other hand, by the result quoted from [5] we have that

ϕk(n) =
(
Pn ◦ f

)(k)
(0) (2.2)

for k = 0, 1, 2, . . . , N, n = 0, 1, 2, . . . , N , where

f(t) =
N∑
i=0

ci
ti

i!

is a polynomial. Let λ = f(0). From (2.2) we have for k = 1

ϕ1(n) = P ′n(λ) c1 ,

which implies c1 6= 0.
Let n be a fixed nonnegative integer and we let for k = 0, 1, 2, . . . , N and for

each t in R:

Fk(t) =
(
Pn ◦ f

)(k)
(t) .

We show that for k = 0, 1, 2, . . . , N and for each t in R

Fk(t) =
k∑

j=0

pk,j(t)P
(j)
n

(
f(t)

)
, (2.3)

where pk,j is a polynomial and pk,k(t) = f ′(t)k.
We prove (2.3) by induction on k. For k = 0 the statement is trivial with

p0,0(t) = 1. Supposing that (2.3) is proved we show it for k + 1 instead of k. We
have

Fk+1(t) = F ′k(t) =
k∑

j=0

p′k,j(t)P
(j)
n

(
f(t)

)
+

k∑
j=0

pk,j(t)P
(j+1)
n

(
f(t)

)
f ′(t)
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and this is the form (2.3) with k+1 for k. Moreover, pk+1,k+1(t) = pk,k(t) ·f ′(t) =
f ′(t)k+1. Then, using (2.2), we have

ϕk(n) =
k∑

j=0

ck,j P
(j)
n (λ) k = 0, 1, 2, . . . , N ,

where ck,k = f ′(0)k 6= 0, c0,0 = 1. By (2.1) it follows

N∑
n=0

k∑
j=0

ck,j P
(j)
n (λ)µn = 0 (2.4)

for k = 0, 1, 2, . . . , N . For k = 0 this means

N∑
n=0

Pn(λ)µn = 0 . (2.5)

Now let k = 1 in (2.4), then we have by (2.5)

N∑
n=0

c1,0 Pn(λ)µn + c1,1 P
′
n(λ)µn = c1,0

N∑
n=0

Pn(λ)µn + c1,1

N∑
n=0

P ′n(λ)µn =

c1,1

N∑
n=0

P ′n(λ)µn = 0 .

As c1,1 6= 0, then it follows:

N∑
n=0

P ′n(λ)µn = 0 .

Continuing this process we get the system of equations

N∑
n=0

P (k)
n (λ)µn = 0 , (2.6)

for k = 0, 1, 2, . . . , N . Observe, that the degree of Pn is exactly n, hence we can
rewrite (2.6) in the form

N∑
n=k

P (k)
n (λ)µn = 0 ,

for k = 0, 1, 2, . . . , N . This is a homogeneous system of linear equations for the
unknowns µn, n = 0, 1, . . . , N . The fundamental matrix of this system is an

N × N upper triangular matrix with the nonzero numbers P
(k)
k (λ) in the main

diagonal, hence this matrix is regular, which means that the system has only
trivial solution: µn = 0 for n = 0, 1, 2, . . . , N . This means µ = 0 and the proof is
complete. �

This result obviously implies the following uniqueness theorem.
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Theorem 2.2. Let Let K = (N, Pn) be a polynomial hypergroup, µ, ν finitely sup-
ported measures on N and let (ϕk)∞k=0 be a generalized moment function sequence
on K. If ϕ1 6= 0 and the generalized moment sequences of µ and ν with respect
to the given generalized moment function sequence are the same, then µ = ν.

3. The case of Sturm–Liouville hypergroups

Following the previous ideas in this section we extend consider the same prob-
lem on Sturm–Liouville hypergroups. We shall use the results in [6] on the rep-
resentation of generalized moment functions on polynomial hypergroups in the
following form.

Let K = (R0, A) be a Sturm–Liouville hypergroup, and let Φ the exponential
family of the hypergroups K (see [6]). This means that for each z in C and x in
R+ the function Φ satisfies

∂21Φ(x, z) +
A′(x)

A(x)
∂1Φ(x, z) = zΦ(x, z) ,

further Φ(0, z) = 1 and ∂1Φ(0, z) = 0. It follows, that the function z 7→ Φ(x, z) is
entire for each x in R0. Let (ϕk)∞k=0 be a generalized moment function sequence
on K. Then there exists a sequence (ck)∞k=0 such that for each natural number N
we have

ϕk(x) =
dk

dtk
Φ
(
x, f(t)

)
(0)

for k = 0, 1, 2, . . . , N , x in R0, t in C, where

f(t) =
N∑
i=0

ci
ti

i!

is a polynomial.

Theorem 3.1. Let K = (R0, A) be a Sturm–Liouville hypergroup, µ a compactly
supported measure on R0 and let (ϕk)∞k=0 be a generalized moment function se-
quence on K. If ϕ1 6= 0 and ∫

R0

ϕk(x) dµ(x) = 0

for k = 0, 1, 2, . . . , then µ = 0.

Proof. We show that if ∫
R0

ϕk(x) dµ(x) = 0 (3.1)

for k = 0, 1, 2, . . . , then µ = 0.
Let N be a fixed positive integer. By the result quoted above from [6] we have

ϕk(x) =
dk

dtk
Φ
(
x, f(t)

)
(0) (3.2)

for k = 0, 1, 2, . . . , N x in R0, t in C, where

f(t) =
N∑
i=0

ci
ti

i!
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is a polynomial. Let λ = f(0). From (3.2) we have for k = 1

ϕ1(x) =
d

dt
)Φ
(
(x, f(t)

)
(0) = ∂2Φ(x, λ) c1 ,

which implies c1 6= 0.
Let x be a fixed nonnegative real number and we let for k = 0, 1, 2, . . . , N and

for each t in R:

Fk(t) =
dk

dtk
Φ
(
x, f(t)

)
.

We show that for k = 0, 1, 2, . . . , N and for each t in R

Fk(t) =
k∑

j=0

pk,j(t)∂
(j)
2 Φ

(
x, f(t)

)
, (3.3)

where pk,j is a polynomial, and pk,k(t) = f ′(t)k.
We prove (3.3) by induction on k. For k = 0 the statement is trivial. Supposing

that (3.3) is proved we show it for k + 1 instead of k. We have

Fk+1(t) = F ′k(t) =
k∑

j=0

p′k,j(t)∂
(j)
2 Φ

(
x, f(t)

)
+

k∑
j=0

pk,j(t)∂
(j+1)
2 Φ

(
x, f(t)

)
f ′(t)

and this is the form (3.3) with k+1 for k. Moreover, pk+1,k+1(t) = pk,k(t) ·f ′(t) =
f ′(t)k.

Then, using (3.2), we have

ϕk(x) =
k∑

j=0

ck,j∂
(j)
2 Φ

(
x, λ
)

k = 0, 1, 2, . . . , N ,

where ck,k 6= 0, c0,0 = 1.
By (3.1) it follows

k∑
j=0

ck,j

∫
R0

∂
(j)
2 Φ

(
x, λ
)
dµ(x) = 0

for k = 0, 1, 2, . . . ,. For k = 0 this gives∫
R0

Φ(x, λ) dµ(x) = 0 . (3.4)

For k = 1 we have

c1,0

∫
R0

Φ(x, λ) dµ(x) + c1,1

∫
R0

∂2Φ
(
x, λ
)
dµ(x) = 0 . (3.5)

By (3.4) and c1,1 6= 0 this implies∫
R0

∂2Φ(x, λ) dµ(x) = 0 .

Continuing this process we arrive at∫
R0

∂
(k)
2 Φ(x, λ) dµ(x) = 0 (3.6)



64 L. SZÉKELYHIDI, L. VAJDAY

for k = 0, 1, 2, . . . , N . As N is arbitrary, we actually have that (3.6) holds for
k = 0, 1, . . . .

We recall that the function µ̂ : C→ C defined for each complex z by

µ̂(z) =

∫
R0

Φ(x, z) dµ(x) (3.7)

is the Fourier–Laplace transform of the measure µ. As µ is compactly supported,
µ̂ is an entire function. On the other hand, as the integration in (3.7) is performed
on the compact support of µ and z 7→ Φ(x, z) is an entire function, hence the
differentiation and the integration in (3.5) can be interchanged. This means that
we have

µ̂(k)(z)
dk

dzk

∫
R0

Φ(x, z) dµ(x)

holds for k = 0, 1, 2, . . . , and for all z in C. In particular, for z = λ

µ̂(k)(λ)
dk

dzk

∫
R0

Φ(x, λ) dµ(x) = 0 .

As µ̂ is an entire function, it follows µ̂ = 0. Then µ = 0 and our statement is
proved. �

Similarly as above, we have the corresponding uniqueness result.

Theorem 3.2. Let K = (R0, A) be a Sturm–Liouville hypergroup, µ, ν compactly
supported measures on R0 and let (ϕk)∞k=0 be a generalized moment function se-
quence on K. If ϕ1 6= 0 and the generalized moment sequences of µ and ν with
respect to the given generalized moment function sequence are the same, then
µ = ν.
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