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A MOMENT PROBLEM ON SOME TYPES OF
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Communicated by C. P. Niculescu

ABSTRACT. The classical moment problem is formulated for commutative hy-
pergroups and the uniqueness is proved for polynomial hypergroups in a single
variable and for Sturm—Liouville hypergroups.

1. INTRODUCTION

The classical moment problem published in 1894 by Thomas Jan Stieltjes (see
[8]) is the following: Given a sequence So, s1, ... of real numbers. Find necessary
and sufficient conditions for the existence of a measure p on [0, 0o so that

0

holds for n = 0,1,.... Another form of the moment problem, also called ”Haus-
dorff’s moment problem” or the "little moment problem,” may be stated as fol-
lows: Given a sequence of numbers (s,)0%,, under what conditions is it possible
to determine a function « of bounded variation in the interval 0, 1] such that

1
sn:/ " da(z)
0

for n = 0,1,.... Such a sequence is called a moment sequence, and Felix Haus-
dorff (see [2], [3]) was the first to obtain necessary and sufficient conditions for a
sequence to be a moment sequence. In both cases the question of uniqueness of u,
resp. « arise. For a detailed discussion on classical moment problems see e.g. [1].
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Let K be a commutative hypergroup and N a nonnegative integer. We say that
the continuous functions ¢, : K — C (k = 0,1,...) form a generalized moment
function sequence if the equations

ey = (’“) 21(2) oy (1) (1.1)

J=0 J

hold for k = 0,1,... and for each z,y in K (see [5]). In this case the function
oy is called a generalized moment function of order k. In particular, generalized
moment functions of order 0 are exactly the exponentials on K. For more about
generalized moment function sequences see [9, 5, 4, 6, 7].

Let i be a compactly supported measure on K and let (¢;)22, be a generalized
moment function sequence. Then for each natural number n the complex number

mn:/ ©n dpt
K

is called the n-th generalized moment of p with respect to the given generalized
moment function sequence. In this case the sequence (m,), is called the gen-
eralized moment sequence of the measure p with respect to the given generalized
moment function sequence.

In this setting we can formulate the problem of existence: Let the generalized
moment function sequence ()52, and the sequence of complex numbers (m,,)5
be given. Under what conditions is there a compactly supported measure p on
K such that (m,)22, is the generalized moment sequence of the measure p with
respect to the given generalized moment function sequence? The other basic
question is about the uniqueness: if the compactly supported measures p and v
have the same generalized moment sequences with respect to the given generalized
moment function sequence, then does it follow yu =v 7

In this paper we study the problem of uniqueness and solve it in the case of
polynomial hypergroups in a single variable and in the case of Sturm-Liouville
hypergroups.

2. THE CASE OF POLYNOMIAL HYPERGROUPS

In this section we shall use the results in [5] on the representation of generalized
moment functions on polynomial hypergroups in the following form.

Let K = (N, P,) be a polynomial hypergroup, and let (¢)2, be a generalized
moment function sequence on K. Then there exists a sequence (cx)52, such that
for each natural number N we have

pr(n) = (P, o /)®(0) (k=0,1,...,N),

where

f(t) :Z Cjt;

for each t in R.
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Theorem 2.1. Let Let K = (N, P,)) be a polynomial hypergroup, p a finitely sup-
ported measure on N and let (vr)72, be a generalized moment function sequence

on K. If o1 # 0 and
[ ontm dutm) =0
fork=0,1,2,..., then up = 0.

Proof. First we remark that

N

[ vty dutm) = 3 rlmh

n=0
Hence, by assumption, we have the following system of equations

N

> () =0 (2.1)

n=0
for k=0,1,2,...,N.
On the other hand, by the result quoted from [5] we have that
k
er(n) = (Pao f)*(0) (22)
for k=0,1,2,....N, n=0,1,2,..., N, where

N
=) e i
i=0
is a polynomial. Let A = f(0). From (2.2) we have for k = 1
pr(n) = FL(A) e,

which implies ¢; # 0.
Let n be a fixed nonnegative integer and we let for k = 0,1,2,..., N and for
each t in R:

k
Fu(t) = (Poo )™ ().
We show that for £ =0,1,2,..., N and for each t in R

k
Fit) = Y praOPP (F(1) (23)

where py ; is a polynomial and py () = f(¢)".

We prove (2.3) by induction on k. For k = 0 the statement is trivial with
poo(t) = 1. Supposing that (2.3) is proved we show it for k£ + 1 instead of k. We
have
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and this is the form (2.3) with k+1 for k. Moreover, pii15+1(t) = pei(t)- f'(t) =
f'(t)¥1. Then, using (2.2), we have

k
<,0k<7’L)ZZCkJP7§])()\) k:()7172>"'7N7
=0
where ¢ = f/(0)" # 0, coo = 1. By (2.1) it follows
N k
> ey PPN =0 (2.4)
n=0 j=0

for k=0,1,2,...,N. For kK = 0 this means

> Pu(Mpa = 0. (2.5)

Now let k =1 in (2.4), then we have by (2.5)

N N N
D cro PaNn + cia Py(Npn = e10 ) PaMptn + 11 Pa(A)pn =
n=0 n=0 n=0

N
11 Z P (N, =0.
n=0
As c11 # 0, then it follows:
N
> Pi(Mpn = 0.
n=0
Continuing this process we get the system of equations
N
S PO =0, (2.6)
n=0

for k=0,1,2,..., N. Observe, that the degree of P, is exactly n, hence we can
rewrite (2.6) in the form

N

n=~k
for k =0,1,2,..., N. This is a homogeneous system of linear equations for the
unknowns pu,, n = 0,1,..., N. The fundamental matrix of this system is an

N x N upper triangular matrix with the nonzero numbers P,Ek)()\) in the main
diagonal, hence this matrix is regular, which means that the system has only
trivial solution: p, =0 forn =0,1,2,..., N. This means ¢ = 0 and the proof is
complete. O

This result obviously implies the following uniqueness theorem.
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Theorem 2.2. Let Let K = (N, P,,) be a polynomial hypergroup, p, v finitely sup-
ported measures on N and let (i), be a generalized moment function sequence
on K. If o1 # 0 and the generalized moment sequences of i and v with respect
to the given generalized moment function sequence are the same, then p = v.

3. THE CASE OF STURM—LIOUVILLE HYPERGROUPS

Following the previous ideas in this section we extend consider the same prob-
lem on Sturm-Liouville hypergroups. We shall use the results in [6] on the rep-
resentation of generalized moment functions on polynomial hypergroups in the
following form.

Let K = (R, A) be a Sturm—Liouville hypergroup, and let ® the exponential
family of the hypergroups K (see [0]). This means that for each z in C and x in

R, the function ® satisfies
Al(x)
xP
1 (33', Z) + A( x)
further ®(0, z) = 1 and 0,P(0, z) = 0. It follows, that the function z — ®(z, 2) is
entire for each z in Ry. Let (¢x)p2, be a generalized moment function sequence
on K. Then there exists a sequence (cg)72, such that for each natural number N
we have

0 P(z,2) =2P(z,2),

dk
i) = 22 (e, [(1) (0)
for k=0,1,2,...,N, x in Ry, t in C, where

N

f(t) = Z Ci il
=0

is a polynomial.

Theorem 3.1. Let K = (Ry, A) be a Sturm—Liouville hypergroup, 1 a compactly
supported measure on Ry and let (vr)72, be a generalized moment function se-
quence on K. If o1 # 0 and

| evt@)dut) =0

Ro

fork=0,1,2,..., then 4 = 0.

Proof. We show that if
| ert@)duta) =0 (3.1)
Ro

for k=0,1,2,..., then u = 0.
Let N be a fixed positive integer. By the result quoted above from [(] we have
k

orla) = (e, S() 0 (52)

for k=0,1,2,...,N z in Rq, t in C, where
N

f(t):ZCi:,—:

=0
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is a polynomial. Let A = f(0). From (3.2) we have for k = 1

p1(r) = ) ((2, f(1) (0) = DD(w, N e,

which implies ¢; # 0.
Let x be a fixed nonnegative real number and we let for £k =0,1,2,..., N and

for each ¢ in R: .

d
Fit) = 528 (e, (1)
We show that for £k =0,1,2,..., N and for each t in R

= > a8 1), 33

where py,; is a polynomial, and py 1. (t) = f'(¢)*.
We prove (3.3) by induction on k. For k = 0 the statement is trivial. Supposing
that (3.3) is proved we show it for k + 1 instead of k. We have

Frr(t) ij +ng o (x., £(1)) £(1)

and this is the form (3.3) with k41 for k. Moreover, Dit1k+1(t) = pri(t) - f/(t) =
().
Then, using (3.2), we have
k

cpk(x)zz ckvjaéj)q)(m,/\) k=0,1,2,...,N,

J=0

where ¢ # 0, co0 = 1.
By (3.1) it follows

k
chj/ ])Cbx)\)du() 0
j=0 Ro
for k=0,1,2,...,. For k =0 this gives
/ Oz, \)du(x) =0. (3.4)
Ro
For k =1 we have
€10 / Q(z, \) dp(x) + c11 / 0@ (, \) dp(z) = 0. (3.5)
]RO RO
By (3.4) and ¢;1 # 0 this implies
/ 0P (z, \)du(z) =0.
Ro

Continuing this process we arrive at

8§k)cl>(x, A dp(z) =0 (3.6)

Ro
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for k = 0,1,2,...,N. As N is arbitrary, we actually have that (3.6) holds for
kE=0,1,....
We recall that the function i : C — C defined for each complex z by

Az) = / B(z, 2) du(x) (3.7)

is the Fourier—Laplace transform of the measure p. As p is compactly supported,
ftis an entire function. On the other hand, as the integration in (3.7) is performed
on the compact support of p and z — ®(z, z) is an entire function, hence the
differentiation and the integration in (3.5) can be interchanged. This means that
we have

i () / B(z, 2) du(2)

holds for £k =0,1,2,..., and for all z in C. In particular, for z = A

. d*
0T [ e dut) =0,
z Ro

As [i is an entire function, it follows i = 0. Then p = 0 and our statement is
proved. (]

Similarly as above, we have the corresponding uniqueness result.

Theorem 3.2. Let K = (Ry, A) be a Sturm—Liouville hypergroup, u,v compactly
supported measures on Ry and let (vr)7, be a generalized moment function se-
quence on K. If o1 # 0 and the generalized moment sequences of u and v with
respect to the given generalized moment function sequence are the same, then

w=rv.
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