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HARDY–HILBERT TYPE INEQUALITIES FOR HILBERT
SPACE OPERATORS

MOHSEN KIAN

Communicated by L. Székelyhidi

Abstract. Some Hardy–Hilbert type inequalities for Hilbert space operators
are established. Several particular cases of interest are given as well.

1. Introduction and preliminaries

One of the applicable inequalities in analysis and differential equations is the
Hardy inequality which says that if p > 1 and {an}∞n=1 are positive real numbers
such that 0 <

∑∞
n=1 a

p
n <∞, then

∞∑
n=1

(
1

n

n∑
k=1

ak

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn. (1.1)

The inequality is sharp, i.e., the constant
(

p
p−1

)p
is the smallest number such

that the inequality holds. A continuous form of inequality (1.1) is as follows:

If p > 1 and f is a non-negative p-integrable function on (0,∞), then∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞
0

f(x)pdx. (1.2)

This inequality has been studied by many mathematicians [1, 3, 6]. A weighted
version of inequality (1.2) was given in [2]. A developed inequality, the so-called
Hardy–Hilbert inequality reads as follows:
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If p > 1, 1
p
+ 1

q
= 1, an, bn ≥ 0 such that 0 <

∑∞
n=1 a

p
n <∞ and 0 <

∑∞
n=1 b

q
n <∞,

then

∞∑
n=1

∞∑
m=1

anbm
n+m

<
π

sin(π/p)

(
∞∑
n=1

apn

) 1
p
(
∞∑
n=1

bqn

) 1
q

. (1.3)

An integral form of inequality (1.3) can be stated as the following:
If p > 1, 1

p
+ 1

q
= 1, f, g ≥ 0 with 0 <

∫∞
0
f(x)pdx <∞ and 0 <

∫∞
0
g(x)qdx <∞,

then ∫ ∞
0

∫ ∞
0

f(x)g(y)

x+ y
dxdy <

π

sin(π/p)

(∫ ∞
0

f(x)pdx

) 1
p
(∫ ∞

0

g(x)qdx

) 1
q

.

There are many refinements and reformulations of the above inequality. Yang
[7] proved the following generalization of (1.3):

∞∑
n=1

∞∑
m=1

anbm
(n+m)s

< L1

(
∞∑

m=1

m1−sapm

) 1
p
(
∞∑
n=1

n1−sbqn

) 1
q

and
∞∑
n=1

n(s−1)(p−1)

(
∞∑

m=1

am
(n+m)s

)p

< L1

∞∑
m=1

m1−sapm

in which 2 − min{p, q} < s ≤ 2 and L1 = B(p+s−2
p

, q+s−2
q

), where B(u, v) is the

β-function. Also Yang [8] presented some reverse Hardy integral inequalities.
Hansen [4] gave an operator version of inequality (1.1) in the C∗-algebra B(H )

of all bounded linear operators on a complex Hilbert space H , in the case when
1 ≤ p ≤ 2:
Theorem.[4] Let 1 < p ≤ 2 be a real number and let f from (0,∞) to the set
B(H )+ of all positive operators in B(H ), be a weakly measurable map such that
the integral ∫ ∞

0

f(x)pdx

defines a bounded linear operator on H . Then the inequality∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞
0

f(x)pdx

holds, and the constant
(

p
p−1

)p
is the best possible. In the same paper Hansen

proved a similar trace inequality in the case where p > 1.
An operator version of inequality (1.3) was also given in [5]

In this paper, we give some inequalities analogue to (1.3) for operators in the real
space B(H )h of all self-adjoint operators on H .

2. Main results

We start this section with an analogous inequality to (1.3) for operators acting
on a Hilbert space H .
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Theorem 2.1. Let f, g be continuous functions defined on an interval J and
f, g ≥ 0. If p > 1, 1

p
+ 1

q
= 1, then

1

2
〈f(A)g(A)x, x〉+

1

3
〈f(A)x, x〉〈g(B)y, y〉

+
1

3
〈f(A)y, y〉〈g(B)x, x〉+

1

4
〈f(B)g(B)y, y〉

≤ π

sin(π/p)

〈
(f(A)p + f(B)p)

1
p (g(A)q + g(B)q)

1
q x, x

〉
for all operators A,B ∈ B(H )h with spectra contained in J and all unit vectors
x, y ∈H .

Proof. Let a1, a2, b1, b2 be positive scalars. Using (1.3) we have

a1b1
2

+
a1b2

3
+
a2b1

3
+
a2b2

4
≤ π

sin(π/p)
(ap1 + ap2)

1
p (bq1 + bq2)

1
q . (2.1)

Let t, s ∈ J . Noticing that f(t) ≥ 0 and g(t) ≥ 0 for all t ∈ J and putting
a1 = f(t), a2 = f(s), b1 = g(t) and b2 = g(s) in (2.1) we obtain

f(t)g(t)

2
+
f(t)g(s)

3
+
f(s)g(t)

3
+
f(s)g(s)

4

≤ π

sin(π/p)
(f(t)p + f(s)p)

1
p (g(t)q + g(s)q)

1
q (2.2)

for all s, t ∈ J . Using the functional calculus for A to inequality (2.2) we get

f(A)g(A)

2
+
f(A)g(s)

3
+
f(s)g(A)

3
+
f(s)g(s)

4

≤ π

sin(π/p)
(f(A)p + f(s)p)

1
p (g(A)q + g(s)q)

1
q ,

whence

1

2
〈f(A)g(A)x, x〉+

1

3
g(s)〈f(A)x, x〉+

1

3
f(s)〈g(A)x, x〉+

f(s)g(s)

4

≤ π

sin(π/p)

〈
(f(A)p + f(s)p)

1
p (g(A)q + g(s)q)

1
q x, x

〉
for any unit vector x ∈H and any s ∈ J . Applying the functional calculus once
more to the self-adjoint operator B we get

1

2
〈f(A)g(A)x, x〉+

1

3
g(B)〈f(A)x, x〉+

1

3
f(B)〈g(A)x, x〉+

f(B)g(B)

4

≤ π

sin(π/p)

〈
(f(A)p + f(B)p)

1
p (g(A)q + g(B)q)

1
q x, x

〉
. (2.3)
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If y ∈H is a unit vector, then it follows from inequality (2.3) that

1

2
〈f(A)g(A)x, x〉+

1

3
〈g(B)y, y〉〈f(A)x, x〉

+
1

3
〈f(B)y, y〉〈g(A)x, x〉+

1

4
〈f(B)g(B)y, y〉

≤ π

sin(π/p)

〈
(f(A)p + f(B)p)

1
p (g(A)q + g(B)q)

1
q x, x

〉
.

�

Replacing B by A and y by x in Theorem 2.1 we get:

Corollary 2.2. If f, g are continuous functions defined on an interval J and
f, g ≥ 0, then

〈f(A)x, x〉〈g(A)x, x〉 ≤ 3

2

(
2π − 3

4

)
〈f(A)g(A)x, x〉 (2.4)

for any self-adjoint operator A and any unit vector x ∈H .

With p = q = 2 in Theorem 2.1 we obtain

Corollary 2.3. If f, g are continuous functions defined on an interval J and
f, g ≥ 0, then

1

2
〈f(A)g(A)x, x〉+

1

3
〈f(A)x, x〉〈g(B)y, y〉

+
1

3
〈f(A)y, y〉〈g(B)x, x〉+

1

4
〈f(B)g(B)y, y〉

≤ π
〈(
f(A)2 + f(B)2

) 1
2
(
g(A)2 + g(B)2

) 1
2 x, x

〉
for all operators A,B ∈ B(H )h with spectra contained in J and all unit vectors
x, y ∈H .

Another version of inequality (1.3) is given in the next theorem.

Theorem 2.4. Let f, g be continuous functions defined on an interval J and
f, g ≥ 0. If p > 1 and 1

p
+ 1

q
= 1, then

1

2
〈f(B)y, y〉〈f(A)x, x〉+

1

3
〈g(B)y, y〉〈f(A)x, x〉

+
1

3
〈f(B)y, y〉〈g(A)x, x〉+

1

4
〈g(B)y, y〉〈g(A)x, x〉

≤ π

sinπ/p

〈
(f(B)q + g(B)q)

1
q y, y

〉〈
(f(A)p + g(A)p)

1
p x, x

〉
(2.5)

for all operators A,B ∈ B(H )h with spectra contained in J and all unit vectors
x, y ∈H .



132 M. KIAN

Proof. Let s, t ∈ J . We use inequality (2.1) with a1 = f(t), a2 = g(t), b1 = f(s)
and b2 = g(s) to get

f(t)f(s)

2
+
f(t)g(s)

3
+
g(t)f(s)

3
+
g(t)g(s)

4

≤ π

sin π/p
(f(t)p + g(t)p)

1
p (f(s)q + g(s)q)

1
q .

Applying the functional calculus for A to the above inequality we get

f(A)f(s)

2
+
f(A)g(s)

3
+
g(A)f(s)

3
+
g(A)g(s)

4

≤ π

sin π/p
(f(A)p + g(A)p)

1
p (f(s)q + g(s)q)

1
q ,

whence

f(s)

2
〈f(A)x, x〉+

g(s)

3
〈f(A)x, x〉+

f(s)

3
〈g(A)x, x〉+

g(s)

4
〈g(A)x, x〉

≤ π

sin π/p
(f(s)q + g(s)q)

1
q

〈
(f(A)p + g(A)p)

1
p x, x

〉
for any unit vector x ∈ H . Using the functional calculus for B to the last
inequality we obtain

1

2
〈f(B)y, y〉〈f(A)x, x〉+

1

3
〈g(B)y, y〉〈f(A)x, x〉

+
1

3
〈f(B)y, y〉〈g(A)x, x〉+

1

4
〈g(B)y, y〉〈g(A)x, x〉

≤ π

sinπ/p

〈
(f(B)q + g(B)q)

1
q y, y

〉〈
(f(A)p + g(A)p)

1
p x, x

〉
for any unit vector y ∈H . �

With A = B and x = y, inequality (2.5) gives rise to

1

2
〈f(A)x, x〉2 +

2

3
〈g(A)x, x〉〈f(A)x, x〉+

1

4
〈g(A)x, x〉2

≤ π

sin π/p

〈
(f(A)q + g(A)q)

1
q x, x

〉〈
(f(A)p + g(A)p)

1
p x, x

〉
.

Putting p = q = 2 in the above inequality we obtain

1

2
〈f(A)x, x〉2 +

2

3
〈g(A)x, x〉〈f(A)x, x〉+

1

4
〈g(A)x, x〉2

≤ π
〈(
f(A)2 + g(A)2

) 1
2 x, x

〉2
≤ π

〈(
f(A)2 + g(A)2

)
x, x
〉
.

In the case where the functions f and g are convex, we reach to the next result:
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Theorem 2.5. Let f, g : J → [0,∞) be convex functions and let p, q > 1 with
1
p

+ 1
q

= 1. Then

1

2
f(〈Ax, x〉)g(〈Ax, x〉) +

1

3
f(〈Ax, x〉)g(〈By, y〉)

+
1

3
g(〈Ax, x〉)f(〈By, y〉) +

1

4
〈f(B)g(B)y, y〉

≤ π

sin(π/p)

(
1

p
(〈f(A)px, x〉+ 〈f(B)py, y〉) +

1

q
(〈g(A)qx, x〉+ 〈g(B)qy, y〉)

)
for all A,B ∈ B(H )h with spectra contained in J and all unit vectors x, y.

Proof. Put t = 〈Ax, x〉 in (2.2) to get

1

2
f(〈Ax, x〉)g(〈Ax, x〉) +

1

3
f(〈Ax, x〉)g(s) +

1

3
f(s)g(〈Ax, x〉) +

1

4
f(s)g(s)

≤ π

sin(π/p)
(f(〈Ax, x〉)p + f(s)p)

1
p (g(〈Ax, x〉)q + g(s)q)

1
q .

A use of the functional calculus for B to the above inequality yields that

1

2
f(〈Ax, x〉)g(〈Ax, x〉) +

1

3
f(〈Ax, x〉)〈g(B)y, y〉

+
1

3
〈f(B)y, y〉g(〈Ax, x〉) +

1

4
〈f(B)g(B)y, y〉

≤ π

sin(π/p)

〈
(f(〈Ax, x〉)p + f(B)p)

1
p (g(〈Ax, x〉)q + g(B)q)

1
q y, y

〉
. (2.6)

It follows from the convexity of f and g that f(〈By, y〉) ≤ 〈f(B)y, y〉 and
g(〈By, y〉) ≤ 〈g(B)y, y〉. Therefore

1

2
f(〈Ax, x〉)g(〈Ax, x〉) +

1

3
f(〈Ax, x〉)〈g(B)y, y〉)

+
1

3
g(〈Ax, x〉)〈f(B)y, y〉+

1

4
〈f(B)g(B)y, y〉

≥ 1

2
f(〈Ax, x〉)g(〈Ax, x〉) +

1

3
f(〈Ax, x〉)g(〈By, y〉)

+
1

3
g(〈Ax, x〉)f(〈By, y〉) +

1

4
〈f(B)g(B)y, y〉. (2.7)

The convexity of f and g and the power functions tr (r ≥ 1) follow that

f(〈Ax, x〉)p ≤ 〈f(A)x, x〉p ≤ 〈f(A)px, x〉,
g(〈Ax, x〉)q ≤ 〈g(A)x, x〉q ≤ 〈g(A)qx, x〉.

Therefore

(f(〈Ax, x〉)p + f(B)p)
1
p (g(〈Ax, x〉)q + g(B)q)

1
q

≤ (〈f(A)px, x〉+ f(B)p)
1
p (〈g(A)qx, x〉+ g(B)q)

1
q . (2.8)
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Since the operators 〈f(A)px, x〉 + f(B)p and 〈g(A)px, x〉 + g(B)q commute, we
infer from the arithmetic-geometric mean inequality that

(〈f(A)px, x〉+ f(B)p)
1
p (〈g(A)qx, x〉+ g(B)q)

1
q ≤ 1

p
(〈f(A)px, x〉+ f(B)p)

+
1

q
(〈g(A)qx, x〉+ g(B)q).

(2.9)

Combining (2.8) and (2.9) we obtain〈
(f(〈Ax, x〉)p + f(B)p)

1
p (g(〈Ax, x〉)q + g(B)q)

1
q y, y

〉
≤ 1

p
(〈f(A)px, x〉+ 〈f(B)py, y〉) +

1

q
(〈g(A)qx, x〉+ 〈g(B)qy, y〉). (2.10)

The result now follows by combining (2.6), (2.7) and (2.10). �

An application of Corollary 2.5 with A = B yields that:

Corollary 2.6. Let f, g : J → [0,∞) be convex functions and let If p, q > 1 with
1
p

+ 1
q

= 1. Then

f(〈Ax, x〉)g(〈Ax, x〉) ≤ 12

17

π

sin(π/p)

(
2

p
〈f(A)px, x〉+

2

q
〈g(A)qx, x〉

)
for any A ∈ B(H )h and any unit vector x ∈H . In particular if f = g we get

f(〈Ax, x〉)2 ≤ 12

17

π

sin(p/π)

(
2

p
〈f(A)px, x〉+

2

q
〈f(A)qx, x〉

)
.
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