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Abstract. In this paper, among others, we prove the following results:
(1) Let (X, d) be a complete cone metric space partially ordered by v and q
be a c-distance on X. Suppose F : X × X → X and g : X → X be two
continuous and commuting functions with F (X × X) ⊆ g(X). Let F satisfy
mixed g-monotone property and q(F (x, y), F (u, v)) � k

2 (q(gx, gu) + q(gy, gv))
for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or
(gx w gu) and (gy v gv). If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0)
and F (y0, x0) v gy0, then there exist x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and
F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗). (2)
If, in (1), we replace completeness of (X, d) by completeness of (g(X), d) and
commutativity, continuity of mappings F and g by the condition: (i) for any
nondecreasing sequence {xn} in X converging to x we have xn v x for all n.
(ii) for any nonincreasing sequence {yn} in Y converging to y we have y v yn
for all n, then F and g have a coupled coincidence point (x∗, y∗).

1. Introduction and preliminaries

Since Banach’s fixed point theorem in 1922, because of its simplicity and useful-
ness, it has become a very important tool in solving the existence problems in
many branches of nonlinear analysis. Ran and Reurings [15] extended the Banach
contraction principle to metric spaces endowed with a partial ordering, and they
gave application of their results to matrix equations. In [14] Nieto and López
extended the result of Ran and Reurings [15] for nondecreasing mappings and
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applied their results to get a unique solution for a first order differential equa-
tion.

Bhaskar and Lakshmikantham [4] introduced the notion of a coupled fixed point
of a mapping F : X×X → X. They established some coupled fixed point results
and applied their results to the study of existence and uniqueness of solution for
a periodic boundary value problem. Lakshmikantham and Ćirić [12] introduced
the concept of coupled coincidence points and proved coupled coincidence and
coupled common fixed point results for mappings F : X×X → X and g : X → X
satisfying nonlinear contractive condition in ordered metric space.

The concept of cone metric spaces is a generalization of metric spaces, where
each pair of points is assigned to a member of a real Banach space with a cone.
This cone naturally induces a partial order in the Banach spaces. The concept
of cone metric space was introduced in the work of Huang and Zhang [7] where
they also established the Banach contraction mapping principle in this space.
Then, several authors have studied fixed point problems in cone metric spaces.
For more study on fixed point theory on cone metric spaces see [1, 2, 6, 7] and for
many recent results on fixed point theory on other spaces see [3, 9, 11, 16, 17].
The studies of asymmetric structures and their application in mathematics are
important (see, e.g. [8, 13, 19, 20, 22, 23, 24, 25, 26, 27]).

Recently Cho et al. [6] introduced a new concept of c-distance in cone metric
spaces which is a cone version of w-distance of Kada et al. [8]. In [5] Cho et
al. established coupled fixed point theorems under weak contraction mappings
by using the concept of mixed monotone property and c-distance in partially
ordered cone metric spaces. In this paper we extend the results of Cho et al. [5] and
establish the existence of coupled coincidence point for mappings F : X×X → X
and g : X → X satisfying nonlinear contractive condition and mixed g-monotone
property under c-distance in cone metric spaces.

Throughout this paper, (X,v) denotes a partially ordered set with partial
order v.

Definition 1.1 ([4]). A mapping F : X×X → X is said to have mixed monotone
property if for any x, y ∈ X

x1, x2 ∈ X, x1 v x2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, y1 v y2 =⇒ F (x, y1) w F (x, y2).

Definition 1.2 ([12]). A mapping F : X × X → X is said to have mixed
g-monotone property if for any x, y ∈ X

x1, x2 ∈ X, gx1 v gx2 =⇒ F (x1, y) v F (x2, y),

y1, y2 ∈ X, gy1 v gy2 =⇒ F (x, y1) w F (x, y2).

Definition 1.3 ([4]). An element (x, y) ∈ X ×X is called a coupled fixed point
of the mappings F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 1.4 ([12]). An element (x, y) ∈ X×X is called a coupled coincidence
point of the mappings F : X × X → X and g : X → X if F (x, y) = gx and
F (y, x) = gy.
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Definition 1.5 ([12]). Let F : X × X → X and g : X → X. The mappings F
and g are said to commute if gF (x, y) = F (gx, gy) for all x, y ∈ X.

In [7], cone metric space was introduced in the following manner:

Let (E, ‖·‖) be a real Banach space and θ denote the zero element in E. Assume
that P is a subset of E. Then P is called a cone if and only if:

(1) P is non empty, closed and P 6= {θ}.
(2) If a, b are nonnegative real numbers and x, y ∈ P then ax+ by ∈ P .
(3) x ∈ P and −x ∈ P implies x = θ.

For any cone P ⊆ E and x, y ∈ E, the partial ordering � on E with respect to
P is defined by x � y if and only if y−x ∈ P . The notation of ≺ stand for x � y
but x 6= y. Also, we used x � y to indicate that y − x ∈ intP . It can be easily
shown that λ · intP ⊆ intP for all λ > 0 and intP + intP ⊆ intP . A cone P is
called normal if there is a number K > 0 such that for all x, y ∈ E, θ � x � y
implies ‖x‖ ≤ K‖y‖. The least positive number K satisfying above is called the
normal constant of P .

In the following we always suppose E is a real Banach space, P is a cone in E
with intP 6= φ and � is partial ordering with respect to P .

Definition 1.6 ([7]). Let X be a non empty set and E be a real Banach space
equipped with the partial ordering � with respect to the cone P . Suppose that
the mapping d : X ×X → E satisfies the following conditions:

(i) θ ≺ d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ ⇔ x = y.
(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.7 ([7]). Let (X, d) be a cone metric space, {xn} be a sequence in
X and x ∈ X.

(1) For all c ∈ E with θ � c, if there exists a positive integer N such that
d(xn, x)� c for all n > N then xn is said to be convergent and x is the limit
of {xn}. We denote this by xn → x.

(2) For all c ∈ E with θ � c, if there exists a positive integer N such that
d(xn, xm)� c for all n,m > N then {xn} is called a Cauchy sequence in X.

(3) A cone metric space (X, d) is called complete if every Cauchy sequence in X
is convergent.

Lemma 1.8 ([7]). Let (X, d) be a cone metric space, P be a normal cone with
normal constant K, and {xn} be a sequence in X. Then,

(1) the sequence {xn} converges to x if and only if d(xn, x) → 0 (or equivalently
‖d(xn, x)‖ → 0),

(2) the sequence {xn} is Cauchy if and only if d(xn, xm) → 0 (or equivalently
‖d(xn, xm)‖ → 0).

(3) the sequence {xn} (respectively, {yn}) converges to x (respectively, y) then
d(xn, yn)→ d(x, y).
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Lemma 1.9 ([21]). Every cone metric space (X, d) is a topological space. For
c � 0, c ∈ E, x ∈ X let B(x, c) = {y ∈ X : d(y, x) � c} and β = {B(x, c) : x ∈
X, c � 0}. Then τc = {U ⊆ X : ∀x ∈ U,∃B ∈ β, x ∈ B ⊆ U} is a topology on
X.

Definition 1.10 ([21]). Let (X, d) be a cone metric space. A map T : (X, d)→(X, d)
is called sequentially continuous if xn ∈ X, xn → x implies Txn → Tx.

Lemma 1.11 ([21]). Let (X, d) be a cone metric space, and T : (X, d)→ (X, d)
be any map. Then, T is continuous if and only if T is sequentially continuous.

Let (X, d) be a cone metric space and X2 = X × X. Define a function ρ :
X2 × X2 → E by ρ((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2) for all (x1, y1) and
(x2, y2) ∈ X2. Then (X2, ρ) is a cone metric space [10].

Lemma 1.12 ([10]). Let zn = (xn, yn) ∈ X2 be a sequence and z = (x, y) ∈ X2.
Then zn → z if and only if xn → x and yn → y.

Next we give the notation of c-distance on a cone metric space which is gener-
alization of w-distance of Kada et al. [8] with some properties.

Definition 1.13 ([6]). Let (X, d) be a cone metric space. A function q :X×X→E
is called a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,
(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,
(q3) For each x ∈ X and n ∈ N, if q(x, yn) � u for some u = ux ∈ P , then

q(x, y) � u whenever {yn} is a sequence in X converging to a point y ∈ X,
(q4) For all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x)� e

and q(z, y)� e imply d(x, y)� c.

Remark 1.14. The c-distance q is a w-distance on X if we let (X, d) be a metric
space, E = R, P = [0,∞), and (q3) is replaced by the following condition: for any
x ∈ X, q(x, ·) : X → R is lower semicontinuous. Moreover, (q3) holds whenever
q(x, ·) is lower semi-continuous. Thus, if (X, d) is a metric space, E = R, and
P = [0,∞), then every w-distance is a c-distance. But the converse is not true in
the general case. Therefore, the c-distance is a generalization of the w-distance.

Example 1.15 ([18]). Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞)
and define a mapping d : X ×X → E by d(x, y) = |x− y| for all x, y ∈ X. Then
(X, d) is a cone metric space. Define a mapping q : X × X → E by q(x, y) = y
for all x, y ∈ X. Then q is a c-distance on X.

Example 1.16 ([18]). Let X be a non empty set and E be a real Banach space
equipped with the partial ordering � with respect to the normal cone P . Let d :
X×X → E be the corresponding cone metric. Define a mapping q : X×X → E
by q(x, y) = d(x, y) for all x, y ∈ X. Then, q is c-distance.

Example 1.17 ([18]). Let E = C1
R[0, 1] with ‖x‖1 = ‖x‖∞+‖x′‖∞ and P = {x ∈

E : x(t) ≥ 0, t ∈ [0, 1]}. Let X = [0,+∞) (with usual order), and d(x, y)(t) =
|x− y|ϕ(t) where ϕ : [0, 1]→ R is given by ϕ(t) = et for all t ∈ [0, 1]. Then (X, d)
is an ordered cone metric space (see [6, Example 2.9]). This cone is not normal.
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Define a mapping q : X ×X → E by q(x, y) = (x+ y)ϕ for all x, y ∈ X. Then q
is a c-distance.

Example 1.18 ([18]). Let X be a non empty set and E be a real Banach space
equipped with the partial ordering � with respect to the normal cone P . Let d :
X×X → E be the corresponding cone metric. Define a mapping q : X×X → E
by q(x, y) = d(u, y) for all x, y ∈ X, where u is a fixed point in X. Then, q is a
c-distance.

Lemma 1.19 ([6]). Let (X, d) be a cone metric space and q be a c-distance on X.
Let {xn} and {yn} be sequences in X and y, z ∈ X. Suppose that un is a sequence
in P converging to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.
(2) If q(xn, yn) � un and q(xn, z) � un, then yn converges to z.
(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.
(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 1.20 ([6]). (1) q(x, y) = q(y, x) may not be true for all x, y ∈ X.
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

2. Main Results

Theorem 2.1. Let (X,v) be a partially ordered set and suppose that (X, d) is a
complete cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X
and g :X→X be two continuous and commuting functions with F (X×X) ⊆ g(X).
Let F satisfy mixed g-monotone property and

q(F (x, y), F (u, v)) � k

2
(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or
(gx w gu) and (gy v gv). If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0)
and F (y0, x0) v gy0, then there exist x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and
F (y∗, x∗) = gy∗, that is, F and g have a coupled coincidence point (x∗, y∗).

Proof. Choose x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0. Since
F (X × X) ⊆ g(X), one can find x1, y1 ∈ X in a way that gx1 = F (x0, y0)
and gy1 = F (y0, x0). Repeating the same argument one can find x2, y2 ∈ X in
a way that gx2 = F (x1, y1) and F (y1, x1) = gy2. Continuing this process one
can construct sequences {xn} and {yn} in X that satisfy gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) for all n ≥ 0. It is asserted that {gxn} is a nondecreasing and
{gyn} is a nonincreasing sequence. That is

gxn v gxn+1 and gyn w gyn+1 (2.1)

for all n ≥ 0. For n = 0, (2.1) follows by the choice of x0 and y0. Let us assume
that (2.1) holds good for n = k, k ≥ 0. So we have gxk v gxk+1 and gyk w gyk+1.
Mixed g-monotonicity of F now implies that gxk+1 = F (xk, yk) v F (xk+1, yk) v
F (xk+1, yk+1) = gxk+2. Similarly we have gyk+1 w gyk+2. Thus (2.1) follows for
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k + 1. Hence, by induction, our assertion follows. Now for all n ∈ N

q(gxn, gxn+1) = q(F (xn−1, yn−1), F (xn, yn))

� k

2
(q(gxn−1, gxn) + q(gyn−1, gyn))

and

q(gyn, gyn+1) = q(F (yn−1, xn−1), F (yn, xn))

� k

2
(q(gyn−1, gyn) + q(gxn−1, gxn)).

Put qn = q(gxn, gxn+1) + q(gyn, gyn+1). Then, we have

qn = q(gxn, gxn+1) + q(gyn, gyn+1)

� k qn−1
...

� kn q0.

Let m > n ≥ 1. It follows that

q(gxn, gxm) � q(gxn, gxn+1) + q(gxn+1, gxn+2) + . . .+ q(gxm−1, gxm)

and

q(gyn, gym) � q(gyn, gyn+1) + q(gyn+1, gyn+2) + . . .+ q(gym−1, gym).

Then we have

q(gxn, gxm) + q(gyn, gym) � qn + qn+1 + . . .+ qm−1

� kn q0 + kn+1 q0 + . . .+ km−1 q0

� kn

1− k
q0. (2.2)

From (2.2) we have

q(gxn, gxm) � kn

1− k
q0 (2.3)

and also

q(gyn, gym) � kn

1− k
q0. (2.4)

Thus, Lemma 1.19(3) shows that gxn and gyn are Cauchy sequences in X. Since X
is complete, there exists there exists x∗, y∗ ∈ X such that gxn → x∗ and gyn → y∗

as n → ∞. By continuity of g we get lim
n→∞

ggxn = gx∗ and lim
n→∞

ggyn = gy∗

Commutativity of F and g now implies that

ggxn = g(F (xn−1, yn−1)) = F (gxn−1, gyn−1)

for all n ∈ N and

ggyn = gF (yn−1, xn−1) = F (gyn−1, gxn−1)
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for all n ∈ N. Since F is continuous, therefore,

gx∗ = lim
n→∞

ggxn

= lim
n→∞

F (gxn−1, gyn−1)

= F
(

lim
n→∞

gxn−1, lim
n→∞

gyn−1

)
= F (x∗, y∗)

and

gy∗ = lim
n→∞

ggyn

= lim
n→∞

F (gyn−1, gxn−1)

= F
(

lim
n→∞

gyn−1, lim
n→∞

gxn−1

)
= F (y∗, x∗).

Thus (x∗, y∗) is a coupled coincidence point of F and g. �

Corollary 2.2 ([5]). Let (X,v) be a partially ordered set and suppose that (X, d)
is a complete cone metric space. Let q be a c-distance on X. Suppose F : X×X →
X is a continuous functions satisfying mixed monotone property and

q(F (x, y), F (u, v)) � k

2
(q(x, u) + q(y, v))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (x v u) and (y w v) or (x w u) and
(y v v). If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0,
then there exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is,
F has a coupled fixed point (x∗, y∗).

Theorem 2.3. Let (X,v) be a partially ordered set and suppose that (X, d) is
a cone metric space. Let q be a c-distance on X. Suppose F : X ×X → X and
g : X → X be two functions such that F (X × X) ⊆ g(X) and (g(X), d) is
complete subspace of X. Let F satisfy mixed g-monotone property and

q(F (x, y), F (u, v)) � k

2
(q(gx, gu) + q(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx v gu) and (gy w gv) or
(gx w gu) and (gy v gv). Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.
(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying gx0 v F (x0, y0) and F (y0, x0) v gy0, then
there exist x∗, y∗ ∈ X such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗, that is, F
and g have a coupled coincidence point (x∗, y∗).

Proof. Consider Cauchy sequences {gxn} and {gyn} as in the proof of Theorem 2.1.
Since (g(X), d) is complete, there exists x∗, y∗ ∈ X such that gxn → gx∗ and
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gyn → gy∗. By (q3), (2.3) and (2.4) we have

q(gxn, gx
∗) � kn

1− k
q0 (2.5)

for all n ≥ 0 and

q(gyn, gy
∗) � kn

1− k
q0 (2.6)

for all n ≥ 0. Sequence {gxn} is nondecreasing and converges to gx∗. By given
condition (i) we have, therefore, gxn v gx∗ for all n ≥ 0 and similarly gyn w gy∗

for all n ≥ 0. Thus for all n ∈ N

q(gxn, F (x∗, y∗)) = q(F (xn−1, yn−1), F (x∗, y∗))

� k

2
[q(gxn−1, gx

∗) + q(gyn−1, gy
∗)]

� k

2

[
kn−1

1− k
q0 +

kn−1

1− k
q0

]
=

kn

1− k
q0 (2.7)

and

q(gyn, F (y∗, x∗)) = q(F (yn−1, xn−1), F (y∗, x∗))

� k

2
[q(gyn−1, gy

∗) + q(gxn−1, gx
∗)]

� k

2

[
kn−1

1− k
q0 +

kn−1

1− k
q0

]
=

kn

1− k
q0. (2.8)

By Lemma 1.19(1), (2.5) and (2.7), we have F (x∗, y∗) = gx∗. Similarly, by Lemma
1.19(1), (2.6) and (2.8) we have F (y∗, x∗) = gy∗. Thus (x∗, y∗) is a coupled coin-
cidence point of F and g. �

Corollary 2.4. Let (X,v) be a partially ordered set and suppose that (X, d) is
a complete cone metric space. Let q be a c-distance on X. Suppose F : X ×X →
X is a functions satisfying mixed monotone property and

q(F (x, y), F (u, v)) � k

2
(q(x, u) + q(y, v))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (x v u) and (y w v) or (x w
u) and (y v v). Suppose X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn v x for all n.
(ii) if a nonincreasing sequence {yn} → y, then y v yn for all n.

If there exist x0, y0 ∈ X satisfying x0 v F (x0, y0) and F (y0, x0) v y0, then there
exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗, that is, F has a
coupled fixed point (x∗, y∗).
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Theorem 2.5. Under the hypothesis of either Theorem 2.1 or Theorem 2.3 we
have q(gx∗, gx∗) = θ and q(gy∗, gy∗) = θ.

Proof. We have

q(gx∗, gx∗) = q(F (x∗, y∗), F (x∗, y∗)

� k

2

(
q(gx∗, gx∗) + q(gy∗, gy∗)

)
and also

q(gy∗, gy∗) = q(F (y∗, x∗), F (y∗, x∗))

� k

2

(
q(gy∗, gy∗) + q(gx∗, gx∗)

)
.

This implies that q(gx∗, gx∗) + q(gy∗, gy∗) � k(q(gx∗, gx∗) + q(gy∗, gy∗)).
Since 0 ≤ k < 1, we have q(gx∗, gx∗) + q(gy∗, gy∗) = θ.
But q(gx∗, gx∗) ≥ θ and q(gy∗, gy∗) ≥ θ, hence q(gx∗, gx∗) = θ and q(gy∗, gy∗)=θ.

�

Corollary 2.6. Under the hypothesis of either Corollary 2.2 or Corollary 2.4 we
have q(x∗, x∗) = θ and q(y∗, y∗) = θ.

Theorem 2.7. In addition to hypothesis of either Theorem 2.1 or Theorem 2.3,
suppose that any two elements of g(X) are comparable and g is one-one. Then
there exists a coupled coincidence point of F and g which is of the form (x∗, x∗)
for some x∗ ∈ X.

Proof. Consider coupled coincidence point (x∗, y∗) of F and g. Then we have

q(gx∗, gy∗) = q(F (x∗, y∗), F (y∗, x∗)

� k

2

(
q(gx∗, gy∗) + q(gy∗, gx∗)

)
and also

q(gy∗, gx∗) = q(F (y∗, x∗), F (x∗, y∗))

� k

2

(
q(gy∗, gx∗) + q(gx∗, gy∗)

)
.

This implies that q(gx∗, gy∗) + q(gy∗, gx∗) � k(q(gy∗, gx∗) + q(gx∗, gy∗)).
Since 0 ≤ k < 1, we have q(gx∗, gy∗) + q(gy∗, gx∗) = θ.
But q(gx∗, gy∗) ≥ θ and q(gy∗, gx∗) ≥ θ, hence q(gx∗, gy∗)=θ and q(gy∗, gx∗)=θ.
Let un = θ, xn = gx∗ for all n ≥ 0, then we have q(xn, gx

∗) � un for all n ≥ 0
and q(xn, gy

∗) � un for all n ≥ 0. By Lemma 1.19(1) we have gx∗ = gy∗. Since
g is one-one, therefore, x∗ = y∗. Thus there exists a coupled coincidence point of
the form (x∗, x∗) for some x∗ ∈ X. This completes the proof. �

Corollary 2.8. In addition to hypothesis of either Corollary 2.2 or Corollary 2.4,
suppose that any two elements of X are comparable. Then there exists a coupled
fixed point of F which is of the form (x∗, x∗) for some x∗ ∈ X.



COUPLED COINCIDENCE POINT THEOREMS 147

Example 2.9. Let E = C1
R[0, 1] with ‖x‖1 = ‖x‖∞ + ‖x′‖∞ and

P = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]}. Let X = [0,+∞) (with usual order)
and d(x, y)(t) = |x − y| et. Then (X, d) is an ordered cone metric space (see
[6, Example 2.9]). Further, let q : X ×X → E be defined by q(x, y)(t) = y et. It
is easy to check that q is a c-distance on X. Consider now the function defined
by

F (x, y) =

{
1
8
(x− y) if x ≥ y

0 if x < y

and gx = 1
2
x for all x ∈ X. Then F (X × X) ⊆ g(X) = X and F satisfy

mixed g-monotone property. Also it can be seen easily that
q(F (x, y), F (u, v)) � 1

3
(q(gx, gu) + q(gy, gv)) for all x, y, u, v ∈ X with (gx v gu)

and (gy w gv) or (gx w gu) and (gy v gv). Further F and g are continuous,
commuting, g(0) v F (0, 1) and g(1) w F (1, 0). Thus, by Theorem 2.1, F and g
have a coincidence point. Here F and g have a coincidence point at (0, 0).
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