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ON THE CESÁRO OPERATOR IN WEIGHTED `2-SEQUENCE
SPACES AND THE GENERALIZED CONCEPT OF
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Abstract. The weighted Cesáro operator Ch in `2(h)-spaces is investigated
in terms of several concepts of normality, where h denotes a positive discrete
measure on N0. We classify exactly those h for which Ch is hyponormal. Two
examples related to the Haar measures of orthogonal polynomials are discussed.
We show that the Cesáro operator is not always paranormal. Furthermore, we
prove that the Cesáro operator is not quasinormal for any choice of h.

1. Introduction and preliminaries

In this paper we discuss the Cesáro operator in weighted `2-spaces. For a sequence
h = (h(n))n∈N0 of positive numbers, called weights and a sequence a = (a(n))n∈N0

of complex numbers the discrete weighted Cesáro operator Ch is defined by

(Cha)(n) =
1

H(n)

n∑
k=0

h(k)a(k), with H(n) =
n∑
k=0

h(k). (1.1)

Let 1 < p <∞ and

`p(h) = {a = (a(n))n∈N0 : a(n) ∈ C, ‖a‖pp,h :=
∞∑
n=0

h(n) |a(n)|p <∞}. (1.2)

It is well known that the Cesáro operator in `p(h) is bounded by ‖Ch‖ ≤ p
p−1 , see

[3, 7, 8, 9]. An easy computation shows that the dual operator C∗h of Ch in lq(h),
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1
p

+ 1
q

= 1, is

(C∗ha)(n) =
∞∑
k=n

h(k)a(k)

H(k)
. (1.3)

In the Hilbert space `2(h) the inner product is defined by

〈a, b〉h =
∞∑
n=0

h(n)a(n)b(n), a, b ∈ `2(h). (1.4)

We will focus our attention on the weighted Cesáro operator in `2(h) and the
property of normality in Hilbert spaces. One obtains the classical sequence space
`2 when choosing h = (1, 1, 1, · · · ). By weakening the conditions of normality
in various ways, the following classes of not necessarily normal operators are
obtained, see [5] and [6, Problems 137, 195, 203, 216]:

Definition 1.1 (generalised concept of normality). Let H be a Hilbert space and
T be a bounded linear operator in H, symbolically T ∈ B(H). Then, T is called

(1) normal, if and only if T ∗T = TT ∗.
(2) quasinormal, if and only if T ∗TT = TT ∗T.
(3) subnormal, if and only if T has a normal extension, i.e. there exists a

Hilbert space K, H can be embedded in K, and a normal operator N ∈

B(K), which has the shape N =

(
T B
0 A

)
, where A,B are bounded

operators.
(4) hyponormal, if and only if T ∗T ≥ TT ∗, i.e. T ∗T − TT ∗ is positive.
(5) paranormal, if and only if ‖T 2x‖ ≥ ‖Tx‖2 for all x ∈ H with ‖x‖ = 1.

As shown in [5], the following inclusion relations hold for the operator classes
and all of them are proper.

normal operators ⊂ quasinormal operators ⊂ subnormal operators

⊂ hyponormal operators ⊂ paranormal operators.

In their 1965 paper, Brown, Halmos and Shields showed that the Cesáro operator
in `2 is hyponormal, see [1]. Later on, Kriete, Trutt [10] and Cowen [4] proved
the subnormality of the Cesáro operator in `2. Here we investigate the properties
of the weighted Cesáro operator Ch in `2(h). To which class of operators from
Definition 1.1 the operator Ch belongs, depends on the sequence h.
The remaining part of the paper is organised as follows: First, we study necessary
and sufficient conditions for the hyponormality of the Cesáro operator. Then, the
Haar measures of Jacobi polynomials and polynomials related to homogeneous
trees are discussed as examples of weights for which Ch becomes hyponormal.
Afterwards, we analyse a sequence of weights for which Ch is not paranormal. Last
but not least, we show that Ch never satisfies the conditions of quasinormality,
independently of the choice of h.
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2. Weighted Cesáro Operator and the Generalised Concept of
Normality

Let ej be the jth unit sequence, ej(i) = δij, i, j ∈ N0. As Ch and C∗h are oper-
ators in a sequence space, they have matrix representations with respect to the
basis (ej)j∈N0 of l2(h) (in the following also denoted by Ch and C∗h, respectively).
From (1.1) and (1.3) we can infer that

Ch =


h(0)
H(0)

0
h(0)
H(1)

h(1)
H(1)

h(0)
H(2)

h(1)
H(2)

h(2)
H(2)

...
...

...
. . .

 , Ch
∗ =


h(0)
H(0)

h(1)
H(1)

h(2)
H(2)

· · ·
h(1)
H(1)

h(2)
H(2)

· · ·
0 h(2)

H(2)
· · ·
. . .

 .

Direct computation yields the matrix representations of ChC
∗
h and C∗hCh with

respect to (ej)j∈N0 :

ChC
∗
h =


h(0)α0 h(1)α1 h(2)α2 · · ·
h(0)α1 h(1)α1 h(2)α2 · · ·
h(0)α2 h(1)α2 h(2)α2 · · ·

...
...

...
. . .

 , with αn =
1

H(n)
(2.1)

and

C∗hCh =


h(0)β0 h(1)β1 h(2)β2 · · ·
h(0)β1 h(1)β1 h(2)β2 · · ·
h(0)β2 h(1)β2 h(2)β2 · · ·

...
...

...
. . .

 , with βn =
∞∑
k=n

h(k)

H(k)2
. (2.2)

The associated matrices of ChC
∗
h and C∗hCh in (2.1) and (2.2), respectively, have

the same shape. Despite the prefactor h(j) in the jth column, the above matrices
are “L-shaped” as analyzed in [1].

Theorem 2.1. The weighted Cesáro operator Ch in `2(h) is hyponormal (i.e.
C∗hCh − ChC∗h is positive), if and only if

(1)

∀n ∈ N0 :
∞∑
k=n

h(k)

H(k)2
− 1

H(n)
≥ 0 and

(2)

∀n ∈ N0 : H(n)2 ≥ H(n− 1)H(n+ 1) (H(−1) := 0).

Proof. Let

T := C∗hCh − ChC∗h, γn := βn − αn =
∞∑
k=n

h(k)

H(k)2
− 1

H(n)
.
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With (2.1) and (2.2) it follows that


h(0)γ0 h(1)γ1 h(2)γ2 · · ·
h(0)γ1 h(1)γ1 h(2)γ2 · · ·
h(0)γ2 h(1)γ2 h(2)γ2 · · ·

...
...

...
. . .


is the associated matrix of T .
In [1] the positivity of the matrix T acting on `2 was proved by considering the
determinants of its finite sections. In order to include the case when the matrix
T is positive semidefinite, we give a more detailed proof for the positivity of the
operator T here.
The bilinear form 〈., T.〉h is defined for all sequences a, b ∈ `2(h). Using the vector
representations for a and b, the matrix representation for T and the inner product
as defined in (1.4), we obtain

〈a, T b〉h =

 a(0)
a(1)

...

T  h(0) 0
0 h(1)

. . .


×

 h(0)γ0 h(1)γ1 · · ·
h(0)γ1 h(1)γ1 · · ·

...
...

. . .

 b(0)
b(1)

...



=


a(0)
a(1)
a(2)

...


T

Th


b(0)
b(1)
b(2)

...

 ,

with

Th =


h(0)h(0)γ0 h(0)h(1)γ1 h(0)h(2)γ2 · · ·
h(1)h(0)γ1 h(1)h(1)γ1 h(1)h(2)γ2 · · ·
h(2)h(0)γ2 h(2)h(1)γ2 h(2)h(2)γ2 · · ·

...
...

...
. . .

 .

Therefore,

〈ei, T ej〉h = Th(i, j) = h(i)h(j)γmax(i,j), for all i, j ∈ N0. (2.3)

For n ∈ N0, let us define

cn :=
1

h(n)
en −

1

h(n+ 1)
en+1 = (0, · · · , 0, 1

h(n)
,− 1

h(n+ 1)
, 0, · · · ).
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Now, (cn)n∈N0 is a basis for l2(h). Using (2.3), we conclude for all i, j ∈ N0, that

〈ci, T cj〉h =

〈
1

h(i)
ei −

1

h(i+ 1)
ei+1, T

(
1

h(j)
ej −

1

h(j + 1)
ej+1

)〉
h

=
〈ei, T ej〉h
h(i)h(j)

−
〈ei, T ej+1〉h
h(i)h(j + 1)

−
〈ei+1, T ej〉h
h(i+ 1)h(j)

+
〈ei+1, T ej+1〉h
h(i+ 1)h(j + 1)

= γmax(i,j) − γmax(i,j+1) − γmax(i+1,j) + γmax(i+1,j+1)

=


γi − γi − γi+1 + γi+1 = 0 for i > j,

γi − γi+1 − γi+1 + γi+1 = γi − γi+1 for i = j,

γj − γj+1 − γj + γj+1 = 0 for i < j

= (γi − γi+1)δij. (2.4)

Assume first that T is positive, then 〈a, Ta〉h ≥ 0 for all a ∈ `2(h).
In particular, for all n ∈ N0, by (2.3) and (2.4) we have

0 ≤ 〈en, T en〉h =h(n)2γn ⇔
∞∑
k=n

h(k)

H(k)2
− 1

H(n)
≥ 0

and

0 ≤ 〈cn, T cn〉h =γn − γn+1

⇔
∞∑
k=n

h(k)

H(k)2
− 1

H(n)
≥

∞∑
k=n+1

h(k)

H(k)2
− 1

H(n+ 1)

⇔ h(n)

H(n)2
− 1

H(n)
≥ − 1

H(n+ 1)

⇔ H(n− 1)

H(n)2
≤ 1

H(n+ 1)

⇔ H(n)2 ≥ H(n+ 1)H(n− 1),

which shows that the conditions (1) and (2) hold for hyponormal T .
Conversely, let us assume that γn ≥ γn+1 ≥ 0 for all n ∈ N0.
As (cn)n∈N0 is a basis for `2(h), each sequence a in `2(h) has a unique represen-
tation a =

∑∞
k=0 ac(k)ck, and in particular, en =

∑∞
k=n h(n)ck for the nth unit

sequence. It follows that

〈a, Ta〉h =
∞∑

i,j=0

ac(i)ac(j) 〈ci, T cj〉h =
∞∑
k=0

|ac(k)|2 (γk − γk+1) ≥ 0,

and therefore T is positive. �

Before we discuss several examples, the next theorem will give equivalent con-
ditions for the hyponormality of the Cesáro operator.

Theorem 2.2. The weighted Cesáro operator Ch in `2(h) is hyponormal, if and
only if

(1)’
H := lim

n→∞
H(n) =∞.
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(2)’
h(n)

H(n)
≥ h(n+ 1)

H(n+ 1)
∀n ∈ N0.

Proof. First note, that the conditions (2)’ and (2) are equivalent, because for all
n ∈ N0 and H(−1) := 0, we have

h(n)

H(n)
≥ h(n+ 1)

H(n+ 1)
⇔ H(n)−H(n− 1)

H(n)
≥ H(n+ 1)−H(n)

H(n+ 1)

⇔ H(n)

H(n+ 1)
≥ H(n− 1)

H(n)

⇔ H(n)2 ≥ H(n− 1)H(n+ 1).

If additionally condition (1)’ is satisfied, we obtain
∞∑
k=n

h(k)

H(k)2
− 1

H(n)
=

∞∑
k=n

h(k)

H(k)2
−
∞∑
k=n

(
1

H(k)
− 1

H(k + 1)

)

=
∞∑
k=n

1

H(k)

(
h(k)

H(k)
− h(k + 1)

H(k + 1)

)
(2)′

≥ 0,

which is (1). On the other hand, if H <∞, we have
∞∑
k=n

h(k)

H(k)2
≤

∫ H

H(n)

1

x2
dx+

h(n)

H(n)2

= − 1

H
+

1

H(n)
+

h(n)

H(n)2
n→∞→ 0.

Thus,

lim
n→∞

(
∞∑
k=n

h(k)

H(k)2
− 1

H(n)

)
= − 1

H
< 0,

and (1) is not satisfied. �

In the following two examples we will consider the case, when h is the Haar
measure of certain orthogonal polynomial sequences. First, we want to recall some
basic facts about orthogonal polynomials, see [2] and [12]. Let µ be a probability
measure on the real line and denote the support of µ by S and assume cardS =∞.
Let (Pn)n∈N0 denote an orthogonal polynomial sequence with respect to µ. Then
(Pn)n∈N0 satisfies a three term recurrence relation

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 1, (2.5)

with P0(x) = 1 and P1 = (x − b0)/a0. The coefficients are real numbers with
cnan−1 > 0, n > 0. Conversely, if we define (Pn)n∈N0 by (2.5), there is a measure µ
with the assumed properties. We consider those orthogonal polynomial sequences,
where we can additionally assume a0 + b0 = 1 and an + bn + cn = 1, n > 0. Then,
the Haar measure h satisfies

h(n)−1 =

∫
S

P 2
n(x)dµ(x) n ∈ N0,
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and

h(n+ 1) =
an
cn+1

h(n), for n ∈ N0,

see also [12].

Example 2.3 (Haar weights of the normalised Jacobi polynomials). Let α, β >

−1 and (P
(α,β)
n )n∈N0 be defined by (2.5), where

an =
2(n+ α + 1)(n+ α + β + 1)

(2n+ α + β + 1)(2n+ α + β + 2)
,

bn =
β2 − α2

(2n+ α + β)(2n+ α + β + 2)
,

cn =
2n(n+ β)

(2n+ α + β + 1)(2n+ α + β)
,

see [11]. Then, we obtain for the Haar weights

h(n) =
(α + 1)n(α + β + 1)n(2n+ α + β + 1)

(β + 1)nn!(α + β + 1)
,

where we denote by (a)n the Pochhammer symbol for a ∈ R and n ∈ N0, which
is

(a)n =

{
1 for n = 0,

a(a+ 1) . . . (a+ n− 1) for n ≥ 1.

Inductively, one has

H(n) =
(α + β + 1)n+1(α + 2)n
(β + 1)nn!(α + β + 1)

.

We want to check, whether the conditions in Theorem 2.2 are satisfied. As

α + β + 2 > β + 1 > 0 and α + 2 > 1,

we obtain

H(n) =
(α + β + 2)n

(β + 1)n
· (α + 2)n

(1)n

n→∞→ ∞,

which is condition (1)’. To verify condition (2)’, observe that for n ≥ 1

h(n)

H(n)
− h(n+ 1)

H(n+ 1)
=

(α + 1)(2n+ α + β + 1)

(n+ α + β + 1)(n+ α + 1)
− (α + 1)(2n+ α + β + 3)

(n+ α + β + 2)(n+ α + 2)
.

First note, that 1 = h(0)
H(0)

> h(1)
H(1)

by definition. Thus, we have to check whether

(2n+ α + β + 1)(n+ α + β + 2)(n+ α + 2)

≥ (2n+ α + β + 3)(n+ α + β + 1)(n+ α + 1) (2.6)
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holds for all n ≥ 1.

(2.6) ⇔ (2n+ α + β + 1)

×((n+ α + β + 1)(n+ α + 1) + n+ α + β + 1 + n+ α + 2)

≥ ((2n+ α + β + 1) + 2)(n+ α + β + 1)(n+ α + 1)

⇔ (2n+ α + β + 1)(2n+ 2α + β + 3)

≥ (2n+ 2α + 2β + 2)(n+ α + 1)

⇔ ((n+ β) + (n+ α + 1))((2n+ 2α + β + 2) + 1)

≥ ((2n+ 2α + β + 2) + β)(n+ α + 1)

⇔ (n+ β)(2n+ 2α + β + 2) + (n+ β) + (n+ α + 1) ≥ β(n+ α + 1)

⇔ n(2n+ 2α + β + 2) + β(n+ α + β + 1)

+(n+ β) + (n+ α + 1) ≥ 0

⇔ n(2n+ 2α + β + 3) + (β + 1)(n+ α + β + 1) ≥ 0,

which is satisfied, since for n ≥ 1 and α, β > −1 both summands are positive.
Therefore, the weights of the normalised Jacobi polynomials define a hyponormal
Cesàro operator.

Example 2.4 (Haar weights of polynomials connected with homogeneous trees).
Let a ≥ 2 and (P a

n )n∈N0 be defined by (2.5), where a0 = 1 and an = a−1
a
, cn = 1

a
,

n ≥ 1. We obtain h(0) = 1 and, by using h(n+ 1) = an
cn+1

h(n),

h(n) = a(a− 1)n−1 for n ≥ 1,

see [11]. For a = 2 these are the weights for the Tschebysheff polynomials of first
kind, which are in the class of the Jacobi polynomials. Now let a 6= 2 and observe
that

H(n) = 1 + a
n−1∑
k=0

(a− 1)k = 1 + a
(a− 1)n − 1

(a− 1)− 1
=
h(n+ 1)− 2

a− 2
, n ∈ N0.

Thus, a necessary condition for the hyponormality of the corresponding Cesáro
operator is

lim
n→∞

H(n) =∞⇔ a− 1 > 1⇔ a > 2.

We show that in this case condition (2)’ is satisfied either. By definition, we have

h(0)

H(0)
= 1 >

h(n)

H(n)
= 1− H(n− 1)

H(n)
for all n ≥ 1.
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Furthermore, for n ≥ 1, we obtain

h(n)

H(n)
− h(n+ 1)

H(n+ 1)
=

1

H(n)H(n+ 1)
(h(n)H(n+ 1)− h(n+ 1)H(n))

=
h(n)

H(n)H(n+ 1)
(H(n+ 1)− (a− 1)H(n))

=
h(n)

H(n)H(n+ 1)

(
h(n+ 2)− 2

a− 2
− (a− 1)

h(n+ 1)− 2

a− 2

)
=

h(n)

H(n)H(n+ 1)

(
h(n+ 1)(a− 1)− 2− (a− 1)h(n+ 1) + 2(a− 1)

a− 2

)
=

2h(n)

H(n)H(n+ 1)
.

Therefore, for all n ∈ N0,

h(n)

H(n)
− h(n+ 1)

H(n+ 1)
≥ 0.

As the conditions of Theorem 2.1 and Theorem 2.2, respectively, are not always
satisfied, there must be some h for which Ch is not hyponormal. The following
example exhibits some weights for which the weaker condition for paranormality
is not satisfied either.

Example 2.5. Let h(0) = h(1) = 1, h(2) = 8 and h(n) = 0, 99 ·102n−3 for n ≥ 3.
Then, we have H(0) = 1, H(1) = 2 and H(n) = 102n−3 for n ≥ 2. Using (1.1)
and (1.2), we obtain

∥∥C2
ha
∥∥2
2,h

=
∞∑
n=0

h(n)

∣∣∣∣∣ 1

H(n)

n∑
k=0

1

H(k)

k∑
m=0

h(m)a(m)

∣∣∣∣∣
2

and

‖Cha‖22,h =
∞∑
n=0

h(n)

∣∣∣∣∣ 1

H(n)

n∑
k=0

h(k)a(k)

∣∣∣∣∣
2

.

Let us consider the sequence e = h(3)−
1
2 e3 = (0, 0, 0, h(3)−

1
2 , 0, · · · ), with ‖e‖2,h =

1. Then,

∥∥C2
he
∥∥2
2,h

= h(3)
∞∑
n=3

h(n)

H(n)2

(
n∑
k=3

1

H(k)

)2

<

(
h(3)

∞∑
n=3

h(n)

H(n)2

)(
∞∑
k=3

1

H(k)

)2

and

‖Che‖22,h = h(3)
∞∑
n=3

h(n)

H(n)2
.
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Substituting h(3) = 990,
∑∞

n=3
h(n)
H(n)2

= 10−3 and
∑∞

n=3
1

H(n)
= 1

990
yields∥∥C2

he
∥∥
2,h

< (990 · 10−3)
1
2 · 990−1 and ‖Che‖22,h = 990 · 10−3,

which implies ‖C2
he‖2,h < ‖Che‖

2
2,h and contradicts paranormality.

On the one hand, the weights of Example 2.5 do not satisfy any weak normality
condition. But on the other hand, the Cesáro operator is subnormal in the un-
weighted case, see [10] and [4]. Here, the question arises, whether quasinormality
can be satisfied. The next theorem answers this question in the negative and also
implies, that subnormality is the strongest property (in terms of the generalised
concept of normality) Ch can have.

Theorem 2.6. The weighted Cesáro operator Ch in `2(h) is not quasinormal
independently of the choice of weights.

Proof. By definition, Ch is quasinormal if and only if (C∗hCh − ChC
∗
h)Ch = 0.

Let us define T and γn as in the proof of Theorem 2.1. Considering the matrix
representations for the operators yields

TCh(i, j) = (h(0)γi, · · · , h(i)γi, h(i+ 1)γi+1, · · · )

×(0, · · · , 0︸ ︷︷ ︸
j times

,
h(j)

H(j)
,

h(j)

H(j + 1)
,

h(j)

H(j + 2)
, · · · )T

=
∞∑
k=j

h(k)γmax(i,k)
h(j)

H(k)

= h(j)


γi

i−1∑
k=j

h(k)

H(k)
+
∞∑
k=i

h(k)

H(k)
γk for i > j,

∞∑
k=j

h(k)

H(k)
γk for i ≤ j,

for all i, j ∈ N0. Assume that Ch is quasinormal for some sequence h. Then, by

definition,
∑∞

k=n
h(k)
H(k)

γk = 0 for all n ∈ N0. Hence,

γn =
H(n)

h(n)

(
∞∑
k=n

h(k)

H(k)
γk −

∞∑
k=n+1

h(k)

H(k)
γk

)
= 0 for all n ∈ N0, (2.7)

which is the condition for normality, i.e. T = 0. The definition of γn and (2.7)
imply

1

H(n)
=
∞∑
k=n

h(k)

H(k)2
=

h(n)

H(n)2
+

∞∑
k=n+1

h(k)

H(k)2
=

h(n)

H(n)2
− 1

H(n+ 1)
,

or, equivalently,

1

H(n+ 1)
=

1

H(n)

(
h(n)

H(n)
− 1

)
for all n ∈ N0.
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Then, in particular for n = 0, we have

0 6= 1

H(1)
=

1

H(0)

(
h(0)

H(0)
− 1

)
= 0,

which is a contradiction. Thus, there exists no sequence h of weights for which
Ch is quasinormal or normal. �
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