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Abstract. In this paper we present refinements and improvement of the Young
inequality in the context of linear bounded operators.

1. Introduction

The most familiar form of the Young inequality, which is frequently used to prove
the well-known Hölder inequality for Lp functions, is the following:

aνb1−ν ≤ νa+ (1− ν)b, (1.1)

with a, b ≥ 0 and ν ∈ [0, 1], or equivalently

ab ≤ ap

p
+
bq

q
, (1.2)

where p, q > 1 are such that 1
p

+ 1
q

= 1. A fundamental inequality between positive

real numbers is the arithmetic-geometric mean inequality
√
ab ≤ a+ b

2
, (1.3)

which is of interest herein. It is a particular case of (1.1) when ν = 1/2. The Heinz
mean is defined as

Hν(a, b) =
aνb1−ν + a1−νbν

2
.

The function Hν is symmetric about the point ν = 1
2
. Note that H0(a, b) = H1(a, b) =

a+b
2

, H1/2(a, b) =
√
ab and

H1/2(a, b) ≤ Hν(a, b) ≤ H0(a, b) (1.4)
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for 0 ≤ ν ≤ 1, i.e., the Heinz means interpolates between the geometric mean and the
arithmetic mean. Recently, Kittaneh and Manasrah [14] obtained a refinement of (1.1)

aνb1−ν + r0(
√
a−
√
b)2 ≤ νa+ (1− ν)b (1.5)

where r0 = min{ν, 1− ν}.
Along this work H denotes a (complex, separable) Hilbert space with inner product

〈·, ·〉. Let (B(H ), ‖ · ‖) be the C∗-algebra of all bounded linear operators acting on
(H , 〈·, ·〉). In the case when dim H = n, we identify B(H ) with the full matrix
algebra Mn of all n× n matrices with entries in the complex field C.

A selfadjoint operator A ∈ B(H ) is called positive if 〈Ax, x〉 ≥ 0 for every x ∈ H
and the cone of positive operators is denoted by B(H )+. A unitarily invariant norm
|||·||| is defined on a norm ideal J|||·||| of B(H ) associated with it and has the property
|||UXV ||| = |||X|||, where U, V ∈ B(H ) are unitaries and X ∈ J|||.|||. Whenever we
write |||X|||, we mean that X ∈ J|||·|||

Now, we will explain historical background of the operator inequalities related to the
previous classical inequalities. Heinz [6] proved that for operators A,B,X such that
A,B ∈ B(H )+ and ν ∈ [0, 1]

||AνXB1−ν + A1−νXBν || ≤ ||AX +XB||. (1.6)

The proof is based on the complex analysis and is somewhat complicated. McIntosh
[15] showed that the Heinz inequality is a consequence of the following inequality

2 ‖AXB‖ ≤ ‖A∗AX +XBB∗‖ ,
where A,B,X ∈ B(H ). In the literature, the above inequality is called the arithmetic–
geometric mean inequality in the context of bounded linear operators.

Bhatia and Davis [2] obtained the following double inequality

2|||A1/2XB1/2||| ≤ |||AνXB1−ν + A1−νXBν ||| ≤ |||AX +XB|||,
for matrices, which of course remains valid for Hilbert space operators A,B ≥ 0 and
X by a standard approximation argument. Indeed, it has been proved that F (ν) =
|||AνXB1−ν + A1−νXBν ||| is a convex function of ν on [0, 1] with symmetry about
ν = 1/2, which attains its minimum at ν = 1/2 and its maximum at ν = 0 and ν = 1.

On the other hand, T. Ando ([1]) showed that the Young inequality fails to hold for
the operator norm, however he obtained that the following slightly weaker inequality
holds

|||A1/pXB1/q||| ≤ 1

p
|||AX|||+ 1

q
|||XB||| . (1.7)

For a detailed study of these and associated norm inequalities along with their history
of origin, refinements and applications, one may refer to [2, 11, 7, 8, 9, 3].

One of the purposes of the present article is to obtain a new refinement of (1.7) and
new proofs of results previously obtained by Kittaneh and Manasrah [14].

2. Refinement of the Young inequality

An important result related to the improvement of the inequality between arithmetic
and geometric means was obtained Kittaneh and Manasrah in [14] :

aνb1−ν + r0(
√
a−
√
b)2 ≤ νa+ (1− ν)b, (2.1)
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with r0 = min{ν, 1− ν}. The inequality (2.1) was previously obtained by Kober [10].
However, Minculete [16] gave a refinement for inequality (2.1), which improves the

Young inequality.

Proposition 2.1. For any a, b > 0 and any ν ∈ (0, 1),

r0(
√
a−
√
b)2 + A(ν) log2

(a
b

)
≤ νa+ (1− ν)b− aνb1−ν (2.2)

where r0 = min{ν, 1− ν} and A(ν) = [ν(1−ν)
2
− r0

4
] min{a, b, ab, 1}.

Now, we try to obtain a new refinement of (1.7). To achieve this, we need the
following well-known result.

Lemma 2.2. If A,B ∈ B(H )+ and X ∈ B(H ), then

|||AνXB1−ν ||| ≤ |||AX|||ν |||XB|||1−ν (2.3)

for every unitarily norm |||.||| and every ν ∈ [0, 1].

The proof of this lemma can be found in [12, Theorem 2]. In addition, Kittaneh
showed that (2.3) is equivalent to the following generalization of the classical Heinz
inequality

|||AνXBν ||| ≤ |||AXB|||ν |||X|||1−ν .
On the other hand, Kosaki [11] gave a new proof of (2.3) using the well-known Poisson
integral formula. Also, Yamazaki [19] used the previous inequality to characterize the
chaotic order relation and to study Aluthge transformations.

In view of inequalities (2.2) and (2.3), we can improve the following inequality.

Theorem 2.3. Let A,B,X be operators such that A,B ∈ B(H )+ and ν ∈ (0, 1) and
||| · ||| be a unitarily invariant norm. Then

|||AνXB1−ν ||| + r0(
√
|||AX||| −

√
|||XB|||)2 + A(ν) log2

(
|||AX|||
|||XB|||

)
≤ ν|||AX|||+ (1− ν)|||XB|||, (2.4)

where A(ν) = [ν(1−ν)
2
− r0

4
] min{|||AX|||, |||XB|||, |||AX||| |||XB|||, 1} and r0 = min{ν, 1−

ν} and

We continue this section with the following technical lemma.

Lemma 2.4. Let a, b ≥ 0 and ν ∈ [0, 1]. Then

(2aνb1−ν + (aν − b1−ν)2)2 = a4ν + b4(1−ν) + 2a2νb2(1−ν) = (a2ν + b2(1−ν))2. (2.5)

Taking ν = 1/2 in the double inequality (2.5), we obtain

√
ab+

1

2
(
√
a−
√
b)2 =

1

2

√
a2 + b2 + 2ab =

1

2
(a+ b),

which is a refinement of the scalar arithmetic-geometric mean inequality. Furthermore,
we remark that the previous equality characterize the case when the arithmetic and
geometric mean coincide. The first inequality that we can obtain immediately using
the previous relationship is the following:
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Proposition 2.5. Let A,B,X be operators such that A,B ∈ B(H )+. Then

2|||AνXB1−ν |||+
(
|||AX|||ν − |||XB|||1−ν

)2 ≤ |||AX|||2ν + |||XB|||2(1−ν) (2.6)

for every ν ∈ [0, 1] and every unitarily invariant norm ||| · |||.

Proof. It follows from inequality (2.3) that(
|||AX|||ν − |||XB|||1−ν

)2
= |||AX|||2ν + |||XB|||2(1−ν) − 2|||AX|||ν |||XB|||1−ν

≤ |||AX|||2ν + |||XB|||2(1−ν) − 2|||AνXB1−ν |||.

�

Now, we are ready to state our operator version of inequality (2.5)

Theorem 2.6. Let A,B,X be operators such that A,B ∈ B(H )+. Then for every
ν ∈ [0, 1] and every unitarily invariant norm ||| · |||,

2|||AνXB1−ν ||| + 2r0
(
|||AX|||ν − |||XB|||1−ν

)2
≤ 2|||AνXB1−ν |||+

(
|||AX|||ν − |||XB|||1−ν

)2
≤

√
|||AX|||4ν + |||XB|||4(1−ν) + 2|||AνXB1−ν |||2

≤ |||AX|||2ν + |||XB||2(1−ν), (2.7)

where r0 = min{ν, 1− ν}.

Proof. Let β = (|||AX|||ν − |||XB|||1−ν)2 and α = (2|||AνXB1−ν |||+ β)
2
. It follows

from (2.3) that

α ≤ α + 4β
(
|||AX|||ν |||XB|||1−ν − |||AνXB1−ν |||

)
≤ 4|||AνXB1−ν |||2 + β[β + 4|||AX|||ν |||XB|||1−ν ]
= 4|||AνXB1−ν |||2 + β[ |||AX|||2ν + |||XB|||2(1−ν) + 2|||AX|||ν |||XB|||1−ν ]
= 4|||AνXB1−ν |||2 + β[ |||AX|||ν + |||XB|||(1−ν)]2

= 4|||AνXB1−ν |||2 + [ |||AX|||2ν − |||XB|||2(1−ν)]2

= 4|||AνXB1−ν |||2 + |||AX|||4ν + |||XB|||4(1−ν) − 2|||AX|||2ν |||XB|||2(1−ν)

≤ 4|||AνXB1−ν |||2 + |||AX|||4ν + |||XB|||4(1−ν) − 2|||AνXB1−ν |||2

≤ |||AX|||4ν + |||XB|||4(1−ν) + 2|||AνXB1−ν |||2

≤ |||AX|||4ν + |||XB|||4(1−ν) + 2|||AX|||2ν |||XB|||2(1−ν)

=
(
|||AX|||2ν + |||XB|||2(1−ν)

)2
�

If we consider ν = 1/2 in Theorem 2.6, we get the following result, which is a
refinement of (1.7).



148 C. CONDE

Corollary 2.7. Let A,B,X be operators such that A,B ∈ B(H )+. Then for every
unitarily invariant norm ||| · |||,

2|||A1/2XB1/2||| +
(√
|||AX||| −

√
|||XB|||

)2
≤

√
|||AX|||2 + |||XB|||2 + 2|||A1/2XB1/2|||2

≤ |||AX|||+ |||XB|| (2.8)

In particular, for the Hilbert-Schmidt norm ‖ · ‖2 it holds that

2||A1/2XB1/2||2 +
(√
||AX||2 −

√
||XB||2

)2
≤ ||AX +XB||2
≤ ||AX||2 + ||XB||2 (2.9)

Proof. We only note that the following equality holds:

||AX +XB||22 = ||AX||22 + ||XB||22 + 2||A1/2XB1/2||22. (2.10)

�

We remark that inequality (2.9) has been obtained in [14, Theorem 3.3] by using a
different technique and it is a refinement of the arithmetic-geometric mean inequality
for the Hilbert-Schmidt norm.

3. Refinements of the Heinz inequality

Applying the triangle inequality and Theorem 2.3 we reach the following result.

Corollary 3.1. Let A,B,X be operators such that A,B ∈ B(H )+ and ν ∈ (0, 1).
Then

|||AνXB1−ν + A1−νXBν |||+2r0(
√
|||AX||| −

√
|||XB|||)2 + 2A(ν) log2

(
|||AX|||
|||XB|||

)
≤ |||AX|||+ |||XB||| (3.1)

where A(ν) = [ν(1−ν)
2
− r0

4
] min{|||AX|||, |||XB|||, |||AX||||||XB|||, 1} and r0 = min{ν, 1−

ν} and

It is shown in [13, Corollary 3], utilizing the convexity of F (ν) = |||AνXB1−ν +
A1−νXBν ||| for ν ∈ [0, 1] and a basic property of convex functions, that

|||AνXB1−ν + A1−νXBν ||| ≤ 4r0|||A1/2XB1/2|||+ (1− 2r0)|||AX +XB|||, (3.2)

where A,B ∈ B(H )+ and r0 = min{ν, 1− ν}.

Remark 3.2. A natural generalization (or refinement) of (3.2) would be

|||AνXB1−ν + A1−νXBν ||| ≤ |||4r0A1/2XB1/2 + (1− 2r0)(AX +XB)|||

which in fact is not true, in general. The following counterexample justifies this:
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Take X =

 52.39 38.71 12.36
32.86 35.38 64.82
91.79 99.45 66.10

 , A =

 92.315 87.791 71.090
87.791 120.130 83.340
71.090 83.340 103.610

,

B =

 118.482 23.249 112.676
23.249 10.343 38.224
112.676 38.224 156.551

 and ν = 0.4680.

Then tr|AνXB1−ν +A1−νXBν | = 78135.5, while tr|4r0A1/2XB1/2 + (1− 2r0)(AX +
XB)| = 78125.4.

However, we [4] obtained another result, which is a possible generalization of (3.2)
for matrices.

Theorem 3.3. Let A,B,X ∈Mn and A,B positive definite matrices. Then for ν ∈ [0, 1]
and for every unitarily invariant norm ||| · |||, it holds that

|||AνXB1−ν + A1−νXBν ||| ≤ |||4r1A1/2XB1/2 + (1− 2r1)(AX +XB)||| , (3.3)

where r1(ν) = min{ν, |1
2
− ν|, 1− ν}.

Now, we present new proofs and some refinements of various Young type inequalities
obtained by Kittaneh and Manasrah [14]. The key tools of this approach are inequalities
(2.9) and (3.2).

Corollary 3.4. [14, Theorem 3.4 and 3.8] Let A,B,X be operators such that A,B ∈
B(H )+. Then

||| AνXB1−ν + A1−νXBν |||+ 2r0

(√
|||AX||| −

√
|||XB|||

)2
≤ 2r0

√
|||AX|||2 + |||XB|||2 + 2|||A1/2XB1/2|||2 + (1− 2r0)|||AX +XB|||

≤ |||AX|||+ |||XB||| (3.4)

In particular, for the Hilbert-Schmidt norm ‖ · ‖2,

||AνXB1−ν + A1−νXBν ||2 + 2r0

(√
||AX||2 −

√
||XB||2

)2
≤ ||AX +XB||2

≤ ||AX||2 + ||XB||2 (3.5)

holds.

Proof. Let F (ν) = |||AνXB1−ν + A1−νXBν |||. Theorem 2.6 yields that

F (ν) +2r0

(√
|||AX||| −

√
|||XB|||

)2
≤ 2r0

(
2|||A1/2XB1/2|||+

(√
|||AX||| −

√
|||XB|||

)2)
+ (1− 2r0)|||AX +XB|||

≤ 2r0

√
|||AX|||2 + |||XB|||2 + 2|||A1/2XB1/2|||2 + (1− 2r0)|||AX +XB|||

≤ |||AX|||+ |||XB||| . (3.6)

�

Mimicking the previous proof we obtain the following inequality for matrices. We
remark that both inequalities are refinements of Theorem 3.4 and Theorem 3.8 of [14].
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Proposition 3.5. Let A,B,X ∈Mn and A,B be positive definite matrices. Then for
ν ∈ [0, 1] and for every unitarily invariant norm ||| · |||,

||| AνXB1−ν + A1−νXBν |||+ 2r1

(√
|||AX||| −

√
|||XB|||

)2
≤ 2r1

√
|||AX|||2 + |||XB|||2 + 2|||A1/2XB1/2|||2 + (1− 2r1)|||AX +XB|||

≤ |||AX|||+ |||XB||| (3.7)

where r1(ν) = min{ν, |1
2
− ν|, 1− ν}. In particular,

||AνXB1−ν + A1−νXBν ||2 + 2r1

(√
||AX||2 −

√
||XB||2

)2
≤ ||AX +XB||2

≤ ||AX||2 + ||XB||2 . (3.8)

Theorem 3.6. [14, Theorem 3.5] Let A,B,X be operators such that A,B ∈ B(H )+
and ν ∈ [0, 1] and ||| · ||| be a unitarily invariant norm. Then

||AνXB1−ν + A1−νXBν ||22 + 2r0||AX −XB||22 ≤ ||AX +XB||22 . (3.9)

Proof. Since (B2(H ), ‖.‖2) is a Hilbert space, by the parallelogram law (see also [17]),
we have

‖AX +XB‖22 + ‖AX −XB‖22 = 2(‖AX‖22 + ‖XB‖22) . (3.10)

Combining this equality with (2.10) and (3.2), we get

|| AνXB1−ν + A1−νXBν ||22 + 2r0||AX −XB||22
≤ 2r0(2||A1/2XB1/2||22 + ‖AX‖22 + ||XB||22) + (1− 2r0)‖AX +XB‖22
= ‖AX +XB‖22 . (3.11)

�

Now, we obtain a refinement of (3.2). To do this we need the following basic property
of convex functions.

Lemma 3.7. ([5], [18, Theorem 1.3.1]) Let f be a real function defined on an interval I
and a ∈ I. Then f is convex (respectively, strictly convex) if and only if the associated

functions sa are nondecreasing (respectively, increasing), where sa(x) = f(x)−f(a)
x−a .

As a consequence of this statement, it follows that

sx(x1) =
f(x1)− f(x)

x1 − x
≤ f(x2)− f(x)

x2 − x
= sx(x2),

or equivalently,

f(x) ≤ f(x2)− f(x1)

x2 − x1
x− x1f(x2)− x2f(x1)

x2 − x1
. (3.12)

for a ≤ x1 ≤ x ≤ x2 ≤ b and f convex.
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Theorem 3.8. Let A,B,X be operators such that A,B ∈ B(H )+ and ν ∈ [0, 1] and
||| · ||| be a unitarily invariant norm. Then

F (ν) ≤


(1− 4r0)F (0) + 4r0F

(
1

4

)
if ν ∈ [0, 1

4
] ∪ [3

4
, 1]

(4r0 − 1)F

(
1

2

)
+ 2(1− 2r0)F

(
1

4

)
if ν ∈ [1

4
, 3
4
]

(3.13)

where F (ν) = |||AνXB1−ν + A1−νXBν ||| and r0 = min{ν, 1− ν}.

Proof. It is an immediate consequence from the convexity of F and Lemma 3.7. �

Remark 3.9. If ν ∈ [0, 1
4
] ∪ [3

4
, 1], we have

2r0F

(
1

2

)
+ (1− 2r0)F (0)−

[
(1− 4r0)F (0) + 4r0F

(
1

4

)]
= 2r0

[
F

(
1

2

)
+ F (0)− 2F

(
1

4

)]
.

Analogously, if ν ∈ [1
4
, 3
4
], then

2r0F

(
1

2

)
+ (1− 2r0)F (0)−

[
(4r0 − 1)F

(
1

2

)
+ 2(1− 2r0)F

(
1

4

)]
= (1− 2r0)

[
F

(
1

2

)
+ F (0)− 2F

(
1

4

)]
.

Using Lemma 3.7 for the function F , we infer that s1/4(1/2) ≥ s1/4(0) and this is
equivalent to the inequality[

F

(
1

2

)
+ F (0)− 2F

(
1

4

)]
≥ 0.

So, inequality (3.13) is a refinement of (3.2).
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