

Ann. Funct. Anal. 4 (2013), no. 2, 171–182

ANNALS OF FUNCTIONAL ANALYSIS

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

POSITIVE TOEPLITZ OPERATORS ON THE BERGMAN SPACE

NAMITA DAS¹ AND MADHUSMITA SAHOO²*

Communicated by S. Barza

ABSTRACT. In this paper we find conditions on the existence of bounded linear operators A on the Bergman space $L_a^2(\mathbb{D})$ such that $A^*T_\phi A \geq S_\psi$ and $A^*T_\phi A \geq T_\phi$ where T_ϕ is a positive Toeplitz operator on $L_a^2(\mathbb{D})$ and S_ψ is a self-adjoint little Hankel operator on $L_a^2(\mathbb{D})$ with symbols $\phi, \psi \in L^\infty(\mathbb{D})$ respectively. Also we show that if T_ϕ is a non-negative Toeplitz operator then there exists a rank one operator R_1 on $L_a^2(\mathbb{D})$ such that $\widetilde{\phi}(z) \geq \alpha^2 \widetilde{R}_1(z)$ for some constant $\alpha \geq 0$ and for all $z \in \mathbb{D}$ where $\widetilde{\phi}$ is the Berezin transform of T_ϕ and $\widetilde{R}_1(z)$ is the Berezin transform of R_1 .

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and $dA(z) = \frac{1}{\pi}dxdy$ be the normalized area measure on \mathbb{D} . Let $L^2(\mathbb{D}, dA)$ be the space of complex-valued, absolutely integrable, measurable functions on \mathbb{D} with respect to the area measure dA and $L_a^2(\mathbb{D})$ be the Bergman space consisting of all analytic functions that are in $L^2(\mathbb{D}, dA)$. Here the norm $\|\cdot\|_2$ and the inner product are taken in the space $L^2(\mathbb{D}, dA)$. It is [4] not difficult to see that $L_a^2(\mathbb{D})$ is a closed subspace of $L^2(\mathbb{D}, dA)$. We denote the orthogonal projection from $L^2(\mathbb{D}, dA)$ into $L_a^2(\mathbb{D})$ by P. Let $L^{\infty}(\mathbb{D})$ be the space of complex-valued, essentially bounded, Lebesgue measurable functions on \mathbb{D} and $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D} . For $n \geq 0$, $n \in \mathbb{Z}$, let $e_n(z) = \sqrt{n+1}z^n$. The sequence $\{e_n\}_{n=0}^{\infty}$ forms an or-

$$\mathbb{D}$$
. For $n \geq 0, n \in \mathbb{Z}$, let $e_n(z) = \sqrt{n+1}z^n$. The sequence $\{e_n\}_{n=0}^{\infty}$ forms an orthonormal basis of $L_a^2(\mathbb{D})$. Let $K(z,\overline{w}) = \overline{K_z(w)} = \frac{1}{(1-z\overline{w})^2} = \sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$.

Date: Received: 12 December 2012; Accepted: 25 February 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B15; Secondary 47B35.

Key words and phrases. Bergman space, Positive operators, Berezin transform, Toeplitz operators, Little Hankel operators.

The function $K(z, \overline{w})$ defined on $\mathbb{D} \times \mathbb{D}$ is called the Bergman kernel of \mathbb{D} or the reproducing kernel of $L_a^2(\mathbb{D})$. Let $k_z(w) = \frac{K(w, \overline{z})}{K(z, \overline{z})} = \frac{1 - |z|^2}{(1 - \overline{z}w)^2} = \frac{K_z(w)}{\|K_z\|_2}$. These functions k_z are called the normalized reproducing kernels of $L_a^2(\mathbb{D})$ for each $z \in \mathbb{D}$. It is clear [10] that they are unit vectors in $L_a^2(\mathbb{D})$.

For $\phi \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator from $L_a^2(\mathbb{D})$ into itself by $T_{\phi}f = P(\phi f)$ and the Hankel operator H_{ϕ} from $L_a^2(\mathbb{D})$ into $(L_a^2(\mathbb{D}))^{\perp}$ is defined by $H_{\phi}f = (I - P)(\phi f)$. The little Hankel operator S_{ϕ} from $L_a^2(\mathbb{D})$ into itself is defined as $S_{\phi}f = P(J(\phi f))$ where $J: L^2(\mathbb{D}, dA) \longrightarrow L^2(\mathbb{D}, dA)$ is defined as $Jf(z) = f(\bar{z})$. These operators [10] are all bounded.

Let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators from the Hilbert space H into itself. Let $\mathcal{LC}(H)$ denote the ideal of compact operators in $\mathcal{L}(H)$. A bounded linear operator $A \in \mathcal{L}(H)$ is said to be positive if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. The notation $A \geq 0$ will mean that A is positive. We say $A \geq B$ when $\langle Ax, x \rangle \geq \langle Bx, x \rangle$ for all $x \in H$. For arbitrary selfadjoint operators $A, B \in \mathcal{L}(H)$ we write $A \leq B$ if and only if $B - A \geq 0$. An operator $A \in \mathcal{L}(H)$ is called hyponormal if $A^*A \geq AA^*$ and the operator $A \in \mathcal{L}(H)$ is called power bounded if $\|A^n\| \leq K$ for a fixed K > 0 and $n = 1, 2, \ldots$. Let T be a bounded linear operator on a Hilbert space H. We denote $\frac{T + T^*}{2}$ by Re(T) and $\frac{T - T^*}{2i}$ by Im(T). Define the Berezin transform for operators $T \in \mathcal{L}(L_a^2(\mathbb{D}))$ by the formula

$$\widetilde{T}(z) = \langle Tk_z, k_z \rangle, z \in \mathbb{D}.$$

The function \widetilde{T} is called the Berezin transform of T. If $T \in \mathcal{L}(L_a^2(\mathbb{D}))$ then $\widetilde{T} \in L^{\infty}(\mathbb{D})$ and $\|\widetilde{T}\|_{\infty} \leq \|T\|$ as $|\widetilde{T}(z)| = |\langle Tk_z, k_z \rangle| \leq \|T\|$ for all $z \in \mathbb{D}$. We shall write $\widetilde{T_{\phi}} = \widetilde{\phi}$ for $\phi \in L^{\infty}(\mathbb{D})$. That is, $\widetilde{\phi}(z) = \langle T_{\phi}k_z, k_z \rangle = \widetilde{T_{\phi}}(z)$ for all $z \in \mathbb{D}$.

In the set of bounded Hermitian operators from a Hilbert space H into itself, various types of ordering by means of the cones of non-negative, positive definite and positive invertible operators can be defined. In this paper we investigate whether it is possible to compare the Berezin transform of non-negative Toeplitz and little Hankel operators. In section 2, we prove a few preliminary lemmas. In section 3, we show that if T_{ϕ} is a positive Toeplitz operator on the Bergman space and S_{ψ} is a self-adjoint little Hankel operator then there exist bounded linear operators $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_{\phi}A \geq S_{\psi}$. Similarly, we show that there exists $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_{\phi}A \geq T_{\phi}$. Further, one can find a sequence $\{A_n\} \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A_n \xrightarrow{w} 0$ and $A_n^*T_{\phi}A_n \geq T_{\phi}$ for all n. In section 4, we prove that if T_{ϕ} is a non-negative Toeplitz operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ then there exists a rank one operator $R_1 \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $\widetilde{\phi}(z) \geq \beta \widetilde{R}_1(z)$ for all $z \in \mathbb{D}$ and for some constant $\beta \geq 0$.

2. Preliminary Lemmas

In this section we prove a few preliminary lemmas which will be used in proving the main results of the paper. For finite rank operators in $\mathcal{L}(L_a^2(\mathbb{D}))$ one can define a trace functional tr by

$$\operatorname{tr}(T) = \sum_{k=1}^{n} \langle f_k, g_k \rangle$$
 when $T = \sum_{k=1}^{n} f_k \otimes g_k$.

Lemma 2.1. Let $S, T \in \mathcal{L}(L_a^2(\mathbb{D}))$. If tr(ASA) = tr(ATA) for every rank one projection $A \in \mathcal{L}(L_a^2(\mathbb{D}))$, then S = T.

Proof. Let $A = f \otimes f$, where f is a unit vector. Then A is a rank one projection and every rank one projection takes this form. By the assumption, we have

$$\langle Sf, f \rangle = \operatorname{tr}(Sf \otimes f)$$

= $\operatorname{tr}(ASA) = \operatorname{tr}(ATA)$
= $\operatorname{tr}(Tf \otimes f)$
= $\langle Tf, f \rangle$.

Thus $\langle Sf, f \rangle = \langle Tf, f \rangle$ holds for every unit vector $f \in L_a^2(\mathbb{D})$. Therefore, $\langle Sk_z, k_z \rangle = \langle Tk_z, k_z \rangle$ for all $z \in \mathbb{D}$. Hence S = T.

Lemma 2.2. If T_{ϕ} is invertible and $\langle A^*T_{\phi}^{-1}Af, g \rangle \langle A^*T_{\phi}Af, g \rangle = \langle A^*Af, g \rangle^2$ for every $f, g \in L_a^2(\mathbb{D})$ and for some $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ whose range is dense in $L_a^2(\mathbb{D})$ then ϕ is a constant function.

Proof. Since $\overline{\text{Range}A} = L_a^2(\mathbb{D})$ we have $\langle T_\phi^{-1}f,g\rangle \langle T_\phi f,g\rangle = \langle f,g\rangle^2$ for all $f,g\in L_a^2(\mathbb{D})$. Now fix a nonzero $f\in L_a^2(\mathbb{D})$. Then, for every $g\in (\operatorname{Sp}\{f\})^\perp\subset L_a^2(\mathbb{D})$, we have $\langle T_\phi^{-1}f,g\rangle = 0$ or $\langle T_\phi f,g\rangle = 0$ since $\langle T_\phi^{-1}f,g\rangle \langle T_\phi f,g\rangle = \langle f,g\rangle^2 = 0$. Let $M_f = \left\{g\in (\operatorname{Sp}\{f\})^\perp: \langle T_\phi f,g\rangle = 0\right\}$ and $N_f = \left\{g\in (\operatorname{Sp}\{f\})^\perp: \langle T_\phi^{-1}f,g\rangle = 0\right\}$. Then $M_f\cup N_f=(\operatorname{Sp}\{f\})^\perp$. Because $(\operatorname{Sp}\{f\})^\perp$, M_f and N_f are all closed linear subspaces, we must have $M_f\subseteq N_f=(\operatorname{Sp}\{f\})^\perp$ or $N_f\subseteq M_f=(\operatorname{Sp}\{f\})^\perp$. If $N_f=(\operatorname{Sp}\{f\})^\perp$, then $T_\phi^{-1}f\in \operatorname{Sp}\{f\}$. So there exists a $\lambda_f\in \mathbb{C}$ such that $T_\phi^{-1}f=\lambda_f f\neq 0$, that is, $T_\phi f=\lambda_f f$ for some scalar λ_f . Since f is arbitrary, we see that for every $f\in L_a^2(\mathbb{D})$, there is a scalar λ_f such that $T_\phi f=\lambda_f f$. This implies that there exists a $\lambda\in\mathbb{C}$ such that $\phi\equiv\lambda$.

Corollary 2.3. Suppose that T_{ϕ} is invertible and $\langle S_{\psi^{+}}T_{\phi}^{-1}S_{\psi}f, g\rangle\langle S_{\psi^{+}}T_{\phi}S_{\psi}f, g\rangle = \langle S_{\psi^{+}}S_{\psi}f, g\rangle^{2}$ for every $f, g \in L_{a}^{2}(\mathbb{D})$ and $\ker S_{\psi} = \{0\}$. Then $\phi \equiv C$, a constant function.

Proof. We need only to observe that $\overline{\text{Range}S_{\psi}} = L_a^2(\mathbb{D})$ if and only if $\ker S_{\psi} = \{0\}$.

Lemma 2.4. Let A be a nonnegative operator in $\mathcal{L}(L_a^2(\mathbb{D}))$. Then $\ker A = \ker A^{1/2}$ and $\overline{RangeA} = \overline{RangeA^{1/2}}$. If RangeA is closed then $RangeA^{1/2}$ is closed and $RangeA = RangeA^{1/2}$ and $A = A^{1/2}B$, for some invertible $B \in \mathcal{L}(L_a^2(\mathbb{D}))$.

Proof. Since $\langle Af, f \rangle = \langle A^{1/2}f, A^{1/2}f \rangle$, $f \in L^2_a(\mathbb{D})$, it follows that $\ker A \subseteq \ker A^{1/2}$. Conversely, if $f \in \ker A^{1/2}$, we obtain $Af = A^{1/2}A^{1/2}f = 0$. Thus $\ker A = \ker A^{1/2}$. Also, observe that $\overline{\mathrm{Range}A} = (\ker A)^{\perp} = (\ker A^{1/2})^{\perp} = \overline{\mathrm{Range}A^{1/2}}$. The lemma follows from [7].

Lemma 2.5. Let $\psi \in C(\overline{\mathbb{D}})$, the space of continuous functions on $\overline{\mathbb{D}}$ and $\|\psi\|_{\infty} \leq 1$. Let T_{ϕ} be a positive Toeplitz operator on $L_a^2(\mathbb{D})$ such that $T_{\phi} \leq S_{\psi^+} T_{\phi} S_{\psi}$ where $\psi^+(z) = \overline{\psi(\overline{z})}$. Then $T_{\phi} = S_{\psi^+} T_{\phi} S_{\psi}$. Further $\overline{RangeT_{\phi}}$ reduces S_{ψ} and $S_{\psi}|_{\overline{(RangeT_{\phi})}}$ is unitary.

Proof. Let $T_{\phi}^{1/2}S_{\psi}=L$. The operator L is compact [10] as $\psi\in C(\overline{\mathbb{D}})$ and S_{ψ} is a contraction as $\|\psi\|_{\infty}\leq 1$. Further, $LL^*=T_{\phi}^{1/2}S_{\psi}S_{\psi^+}T_{\phi}^{1/2}\leq T_{\phi}$. This is so since $S_{\psi}^*=S_{\psi^+}$. Hence $0\leq S_{\psi^+}T_{\phi}S_{\psi}-T_{\phi}\leq S_{\psi^+}T_{\phi}S_{\psi}-T_{\phi}^{1/2}S_{\psi}S_{\psi^+}T_{\phi}^{1/2}=L^*L-LL^*$. Hence the operator L is hyponormal. Since L is compact, L is normal. The normality of L implies that $T_{\phi}=S_{\psi^+}T_{\phi}S_{\psi}=T_{\phi}^{1/2}S_{\psi}S_{\psi^+}T_{\phi}^{1/2}$, and hence it follows that S_{ψ^+} is an isometry on $\overline{\mathrm{Range}T_{\phi}}$ and T_{ϕ} commutes with S_{ψ} (and so also with S_{ψ^+}). Consequently, $S_{\psi^+}S_{\psi}T_{\phi}=S_{\psi^+}T_{\phi}S_{\psi}=T_{\phi}=T_{\phi}S_{\psi}S_{\psi^+}$. Hence $\overline{\mathrm{Range}T_{\phi}}$ reduces S_{ψ} and $S_{\psi}|_{\overline{\mathrm{(Range}T_{\phi})}}$ is unitary.

3. Non-negative Toeplitz operators

In this section we show that if T_{ϕ} is a positive Toeplitz operator in $\mathcal{L}(L_{a}^{2}(\mathbb{D}))$ and $\psi \in L^{\infty}(\mathbb{D})$ can be expressed as a linear combination of Bergman kernels and some of its derivative then there exist bounded linear operators $A \in \mathcal{L}(L_{a}^{2}(\mathbb{D}))$ such that $A^{*}T_{\phi}A \geq S_{\psi}^{*}S_{\psi}$. If in addition $\psi(z) = \overline{\psi(\overline{z})}$ then we can find $A \in \mathcal{L}(L_{a}^{2}(\mathbb{D}))$ such that $A^{*}T_{\phi}A \geq S_{\psi}$. Further, we find conditions for the existence of $A \in \mathcal{L}(L_{a}^{2}(\mathbb{D}))$ such that $A^{*}T_{\phi}A \geq T_{\phi}$. It is also possible to find sequences $\{A_{n}\}$ of operators in $\mathcal{L}(L_{a}^{2}(\mathbb{D}))$ such that $A_{n} \xrightarrow{w} 0$ and $A_{n}^{*}T_{\phi}A_{n} \geq T_{\phi}$ for all n.

Theorem 3.1. Let T_{ϕ} be a positive Toeplitz operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ with symbol $\phi \in L^{\infty}(\mathbb{D})$ and S_{ψ} be a little Hankel operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ where

$$\overline{\psi(z)} = \sum_{j=1}^{N} \sum_{\gamma=0}^{m_j - 1} c_{j\gamma} \frac{\partial^{\gamma}}{\partial \overline{b_j}^{\gamma}} K_{b_j}(z)$$

where $\mathbf{b} = \{b_j\}_{j=1}^N$ is a finite set of points in \mathbb{D} , $c_{j\gamma} \neq 0$ for all j, γ and m_j is the number of times b_j appears in \mathbf{b} . Then there exists an operator $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_{\phi}A \geq S_{\psi}^*S_{\psi}$ and $\|A^*T_{\phi}A\| \geq \|S_{\psi}^*S_{\psi}\|$. Further, in addition if $\psi(z) = \overline{\psi(\overline{z})}$ then it is also possible to find $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_{\phi}A \geq S_{\psi}$ and $(A^*T_{\phi}A)(z) \geq \widetilde{S_{\psi}}(z)$ where \widetilde{H} denotes the Berezin transform of $H \in \mathcal{L}(L_a^2(\mathbb{D}))$, and $\|A^*T_{\phi}A\| \geq \|S_{\psi}\|$. In case A is positive, then there exists an invertible $T \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^{1/2}T_{\phi}A^{1/2} \geq (T^*)^{-1}S_{\psi}T^{-1}$.

Proof. From [5] it follows that S_{ψ} is a finite rank operator on $L_a^2(\mathbb{D})$ and therefore $S_{\psi}^*S_{\psi}$ is a finite rank operator and Range $S_{\psi}^*S_{\psi}$ is closed in $L_a^2(\mathbb{D})$. Notice also that

$$\dim\left(\overline{\bigcup_{\lambda>0} E^{T_{\phi}}[\lambda,\infty)(L_a^2(\mathbb{D}))}\right) = \infty. \tag{3.1}$$

This is so as $E^{T_{\phi}}(0,\infty)(L_a^2(\mathbb{D})) = \overline{\text{Range}T_{\phi}}$ and from [9] it follows that $\overline{\text{Range}T_{\phi}}$ is infinite dimensional. Let $M = \{Y \in \mathcal{L}(L_a^2(\mathbb{D})) \mid Y^*T_{\phi}Y \geq S_{\psi}^*S_{\psi}\}$. We first

claim that 0 is in the WOT-closure of M. To show this suppose 0 is not in the WOT-closure of M. Then there is a WOT-neighborhood

$$V = \left\{ B \in \mathcal{L}(L_a^2(\mathbb{D})) : |\langle Bf_i, g_i \rangle| \le \epsilon, i = 1, \dots, n \right\}$$

of 0 (for some $\epsilon > 0$) which does not intersect M where $f_1, \ldots, f_n, g_1, \ldots, g_n \in$ $L_a^2(\mathbb{D})$. Let K be the linear span of g_1, g_2, \ldots, g_n . From (3.1), it follows that there exists $\lambda > 0$ such that $\dim E^{T_{\phi}}[\lambda, \infty)(L_a^2(\mathbb{D})) > n + \operatorname{rank}(S_{\psi}^*S_{\psi})$. It thus follows that dim $(E^{T_{\phi}}[\lambda,\infty)(L_a^2(\mathbb{D}))\cap K^{\perp}) \geq \operatorname{rank}(S_{\psi}^*S_{\psi})$. Since $S_{\psi}^*S_{\psi}$ is a self adjoint operator of finite rank, there exist real numbers $\{\theta_i\}_{i=1}^k$ and an orthonormal basis

 $\{\delta_i\}_{i=1}^k$ for Range $S_{\psi}^*S_{\psi}$ such that $S_{\psi}^*S_{\psi}f = \sum_{i=1}^k \theta_i \langle f, \delta_i \rangle \delta_i$ and $|\theta_i| > 0$ for all $i=1,\ldots,k$. Let $B\in\mathcal{L}(L_a^2(\mathbb{D}))$ be such that $B|_{(\mathrm{Range}S_\psi^*S_\psi)^\perp}=0$ and $B\delta_i=u_i$

where $\{u_i\}_{i=1}^k$ is an orthonormal set in $E^{T_{\phi}}[\lambda,\infty)(L_a^2(\mathbb{D})) \cap K^{\perp}$. Now, for each $g \in \text{Range}S_{\psi}^*S_{\psi}$, we have $\|Bg\| = \|g\|$ and $Bg \in E^{T_{\phi}}[\lambda,\infty)(L_a^2(\mathbb{D}))$. Thus $\langle B^*T_{\phi}Bg,g\rangle=\langle T_{\phi}Bg,Bg\rangle\geq \lambda\|Bg\|^2=\lambda\|g\|^2$. Let $f\in L^2_a(\mathbb{D})$. Then f = g + h, where $g \in \text{Range} S_{\psi}^* S_{\psi}$ and $h \in (\text{Range} S_{\psi}^* S_{\psi})^{\perp}$. Hence

$$\langle S_{\psi}^* S_{\psi} f, f \rangle = \sum_{i=1}^k \theta_i |\langle f, \delta_i \rangle|^2 \le \max_i |\theta_i| ||g||^2$$

and

$$\langle A^*T_{\phi}Af, f \rangle = \langle T_{\phi}Af, Af \rangle = \langle T_{\phi}Ag, Ag \rangle \ge \lambda \|g\|^2 \ge \frac{1}{t^2} \langle S_{\psi}^*S_{\psi}f, f \rangle,$$

where $\frac{1}{t^2} = \frac{\lambda}{\max |\theta_i|}$. Thus $t^2 B^* T_{\phi} B \geq S_{\psi}^* S_{\psi}$ and $t B \in M$. Further since

 $B(L_a^2(\mathbb{D})) \subset K^{\frac{1}{\perp}}$, we have $tB \in V$. Hence $V \cap M \neq \phi$. This is a contradiction. Thus there exists operator $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_\phi A \geq S_\psi^*S_\psi$ and therefore $||A^*T_{\phi}A|| \geq ||S_{\psi}^*S_{\psi}||$. In case $\psi(z) = \psi(\overline{z})$, the operator S_{ψ} is self-adjoint. Proceeding similarly as above, one can show that there exists $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A^*T_{\phi}A \geq S_{\psi}$ and therefore $(\widetilde{A}^*T_{\phi}A)(z) \geq \widetilde{S_{\psi}}(z)$ and $||A^*T_{\phi}A|| \geq ||S_{\psi}||$. If A is positive then by Lemma 2.4 there exists an invertible operator $T \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $A = A^{1/2}T$. Hence $A^*T_{\phi}A \geq S_{\psi}$ implies $A^{1/2}T_{\phi}A^{1/2} \geq (T^*)^{-1}S_{\psi}T^{-1}$.

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on \mathbb{D} , a simple calculation shows that

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) = \sum_{n=0}^{\infty} \frac{|a_n|^2}{n+1}.$$

Consequently, $f \in L_a^2(\mathbb{D})$ if and only if the last expression is finite. The scalar

product of
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, $f, g \in L_a^2(\mathbb{D})$, is given by

$$\langle f, g \rangle_{L_a^2(\mathbb{D})} = \sum_{n=0}^{\infty} \frac{a_n \overline{b_n}}{n+1}.$$

The truncation projections on $L_a^2(\mathbb{D})$ will be denoted by $P_n, 0 \leq n < \infty$, and it is defined by

$$P_n f = P_n(a_0, a_1, a_2, \cdots, a_n, a_{n+1}, \cdots) = (a_0, a_1, \cdots, a_n, 0, 0, \cdots).$$

These are, of course, orthogonal projections on $L_a^2(\mathbb{D})$ which converges strongly to the identity I on $L_a^2(\mathbb{D})$.

Theorem 3.2. Let T_{ϕ} be a non-negative nonzero Toeplitz operator on $L_a^2(\mathbb{D})$ with symbol $\phi \in L^{\infty}(\mathbb{D})$. Then

- (i): For each $\epsilon > 0$, there exists an operator $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $||P_nAP_n|| \leq \epsilon$ and $A^*T_{\phi}A \geq T_{\phi}$. If $tr(BA^*T_{\phi}AB) = tr(BT_{\phi}B)$ for every rank one projection operator $B \in \mathcal{L}(L_a^2(\mathbb{D}))$, then $A^*T_{\phi}A = T_{\phi}$.
- (ii): If $T_{\phi} \leq Re(A^*T_{\phi})$ for some $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ then $T_{\phi} \leq A^*T_{\phi}A$. That is, $\widetilde{\phi}(z) \leq \widetilde{A^*T_{\phi}A}(z)$ for all $z \in \mathbb{D}$. Furthermore if $T_{\phi} \leq Re(A^*T_{\phi})$ and $T_{\phi} = A^*T_{\phi}A$ for some $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ then $A^*T_{\phi} = T_{\phi}$.
- (iii): If $K = A^*T_{\phi}$ for some $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ and $T_{\phi} \leq Re(K)$ and A^* is power bounded then $K = T_{\phi}$.
- (iv): If for some $A \in \mathcal{L}(L_a^2(\mathbb{D})), ||A|| \leq 1, A^*T_{\phi}A \geq T_{\phi}$ then $T_{\phi}^{1/2}A$ is a hyponormal operator.
- (v): Let T_{ϕ} be invertible and E be a nonzero projection and $\lambda \in \mathbb{R}, \lambda > 0$ such that $ET_{\phi}E = \lambda E$ and $ET_{\phi}^{-1}E = \frac{1}{\lambda}E$. Then RangeE is a subspace of the eigenspace of T_{ϕ} corresponding to the eigenvalue λ .
- (vi): If T_{ϕ} is invertible and $\langle A^*T_{\phi}^{-1}Af, g\rangle\langle A^*T_{\phi}Af, g\rangle = \langle A^*Af, g\rangle^2$ for every $f, g \in L_a^2(\mathbb{D})$ and for some $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $\overline{RangeA} = L_a^2(\mathbb{D})$ then ϕ is a constant function.
- (vii): If $\psi \in C(\overline{\mathbb{D}})$, $\|\psi\|_{\infty} \leq 1$, $S_{\psi}^* T_{\phi} S_{\psi} \geq T_{\phi}$ then $T_{\phi} = S_{\psi}^* T_{\phi} S_{\psi}$ and $T_{\phi}^{1/2} S_{\psi}$ is a hyponormal operator.

Proof. We shall assume first that T_{ϕ} is one-one. For $\lambda > 0$, let E_{λ} be the spectral measure of the interval $[\lambda, \infty)$. Since T_{ϕ} is one-one and non-negative, hence $E_{\lambda} \longrightarrow I$, the identity operator, in the strong operator topology. Thus there exists $\lambda = \lambda(\epsilon) > 0$ such that the orthogonal projection $E_{\lambda} \in \mathcal{L}(L_a^2(\mathbb{D}))$ satisfies

$$T_{\phi}E_{\lambda} = E_{\lambda}T_{\phi}, \|(I - E_{\lambda})P_n\| \le \sqrt{\epsilon}$$

and dim(Range E_{λ}) ≥ 2 dim(Range P_n). Also the spectral measure E_{λ} satisfies

$$\langle T_{\phi}f, f \rangle \ge \lambda \|f\|^2$$
 (3.2)

for all $f \in \text{Range}E_{\lambda}$, From [9], it follows that $\text{Range}T_{\phi}$ is infinite dimensional. Thus there exists an unitary operator U on $\text{Range}E_{\lambda}$ such that

$$(\text{Range}UE_{\lambda}P_n) \perp (\text{Range}E_{\lambda}P_n).$$

Define $A \in \mathcal{L}(L_a^2(\mathbb{D}))$ as $Af = \alpha U E_{\lambda} f + (I - E_{\lambda}) f$, where $\alpha > 0$ is chosen in such a way that $A^*T_{\phi}A \geq T_{\phi}$. We shall now verify that such α exists. Since T_{ϕ} commutes with E_{λ} we have

$$\langle A^*T_{\phi}Af, f \rangle = \langle T_{\phi}Af, Af \rangle$$

$$= \langle \alpha T_{\phi}UE_{\lambda}f + T_{\phi}(I - E_{\lambda})f, \alpha UE_{\lambda}f + (I - E_{\lambda})f \rangle$$

$$= \alpha^2 \langle T_{\phi}UE_{\lambda}f, UE_{\lambda}f \rangle + \langle T_{\phi}(I - E_{\lambda})f, (I - E_{\lambda})f \rangle.$$

On the other hand,

$$\langle T_{\phi}f, f \rangle = \langle T_{\phi}E_{\lambda}f, f \rangle + \langle T_{\phi}(I - E_{\lambda})f, f \rangle$$

$$= \langle T_{\phi}E_{\lambda}f, E_{\lambda}f \rangle + \langle T_{\phi}E_{\lambda}f, (I - E_{\lambda})f \rangle$$

$$+ \langle T_{\phi}(I - E_{\lambda})f, E_{\lambda}f \rangle + \langle T_{\phi}(I - E_{\lambda})f, (I - E_{\lambda})f \rangle$$

$$= \langle T_{\phi}E_{\lambda}f, E_{\lambda}f \rangle + \langle T_{\phi}(I - E_{\lambda})f, (I - E_{\lambda})f \rangle.$$

Hence the only condition which has to be satisfied by α is

$$\alpha^2 \langle T_{\phi} U E_{\lambda} f, U E_{\lambda} f \rangle \ge \langle T_{\phi} E_{\lambda} f, E_{\lambda} f \rangle.$$

The condition is satisfied by sufficiently large α because of (3.2) and because Range T_{ϕ} is an infinite dimensional subspace of $L_a^2(\mathbb{D})$. To show that $||P_nAP_n|| \leq \epsilon$, observe that $||P_nAP_n|| = \sup\{|\langle P_nAP_nf, g\rangle| : f, g \in L_a^2(\mathbb{D}), ||f|| = ||g|| = 1\}$. Let ||f|| = ||g|| = 1. We have

$$\begin{aligned} |\langle P_n A P_n f, g \rangle| &= |\langle A P_n f, P_n g \rangle| \\ &= |\langle E_{\lambda} A P_n f, E_{\lambda} P_n g \rangle + \langle (I - E_{\lambda}) A P_n f, (I - E_{\lambda}) P_n g \rangle| \\ &= |\langle \alpha U E_{\lambda} P_n f, E_{\lambda} P_n g \rangle + \langle (I - E_{\lambda}) P_n f, (I - E_{\lambda}) P_n g \rangle| \\ &= |0 + \langle (I - E_{\lambda}) P_n f, (I - E_{\lambda}) P_n g \rangle| \\ &\leq \|(I - E_{\lambda}) P_n f\| \|(I - E_{\lambda}) P_n g\| \\ &\leq \|(I - E_{\lambda}) P_n\| \|(I - E_{\lambda}) P_n\| \leq \epsilon. \end{aligned}$$

To prove the general case, let $M = \ker T_{\phi}$. Decompose $L_a^2(\mathbb{D})$ into an orthogonal direct sum $L_a^2(\mathbb{D}) = (\ker T_{\phi})^{\perp} \oplus \ker T_{\phi} = M^{\perp} \oplus M$ and let Q be the orthogonal projection onto M^{\perp} . Let $T_{\phi}^{M^{\perp}} = T_{\phi}|_{M^{\perp}}$ be the restriction of T to M^{\perp} . Let $N = QP_nL_a^2(\mathbb{D})$ and let Q_1 be the orthogonal projection from M^{\perp} onto N. Applying the first of the proof to the operator $T_{\phi}^{M^{\perp}}$ and the projection Q_1 we find an operator $A_1 \in \mathcal{L}(M^{\perp})$ with $\|Q_1A_1Q_1\| \leq \frac{\epsilon}{\|P_n\|^2}$ and $A_1^*T_{\phi}^{M^{\perp}}A_1 \geq T_{\phi}^{M^{\perp}}$. Let $A = A_1 \oplus 0$, so $A_1 = QAQ$. Then $A^*T_{\phi}A \geq T_{\phi}$. It remains to show that

 $||P_nAP_n|| \leq \epsilon$. Since Q and Q_1 are self-adjoint we have

$$\begin{aligned} \|P_{n}AP_{n}\| &= \sup_{\|f\| = \|g\| = 1} |\langle P_{n}AP_{n}f, g \rangle| \\ &= \sup_{\|f\| = \|g\| = 1} |\langle AP_{n}f, P_{n}g \rangle| \\ &= \sup_{\|f\| = \|g\| = 1} |\langle QAQP_{n}f, P_{n}g \rangle| \\ &= \sup_{\|f\| = \|g\| = 1} |\langle AQP_{n}f, QP_{n}g \rangle| \\ &\leq \sup_{\|f\| \le \|P_{n}\|} |\langle A_{1}f, g \rangle| \\ &\leq \|P_{n}\|^{2} \sup_{\|f\| = \|g\| = 1 \atop f, g \in M^{\perp}} |\langle A_{1}Q_{1}f, Q_{1}g \rangle| \\ &\leq \|P_{n}\|^{2} \|Q_{1}AQ_{1}\| \leq \epsilon. \end{aligned}$$

If further $\operatorname{tr}(BA^*T_{\phi}AB) = \operatorname{tr}(BT_{\phi}B)$ for every rank one projection $B \in \mathcal{L}(L_a^2(\mathbb{D}))$ then from Lemma 2.1 it follows that $A^*T_{\phi}A = T_{\phi}$. This proves (i). We shall now prove (ii). By applying Schwarz inequality [1] to the positive semi-definite form $\langle f, g \rangle \longrightarrow \langle T_{\phi}f, g \rangle, f, g \in L_a^2(\mathbb{D})$ we obtain

$$\langle T_{\phi}f, f \rangle \leq \langle \operatorname{Re}(A^*T_{\phi})f, f \rangle$$

$$= \operatorname{Re}\langle A^*T_{\phi}f, f \rangle$$

$$\leq |\langle A^*T_{\phi}f, f \rangle|$$

$$\leq \langle T_{\phi}f, f \rangle^{\frac{1}{2}} \langle T_{\phi}Af, Af \rangle^{\frac{1}{2}}$$

for all $f \in L_a^2(\mathbb{D})$. Hence $\langle T_{\phi}f, f \rangle \leq \langle A^*T_{\phi}Af, f \rangle$ for all $f \in L_a^2(\mathbb{D})$. That is, $T_{\phi} \leq A^*T_{\phi}A$. In addition to $T_{\phi} \leq \operatorname{Re}(A^*T_{\phi})$, if $T_{\phi} = A^*T_{\phi}A$ is assumed, then we obtain $\langle T_{\phi}f, f \rangle = \operatorname{Re}\langle A^*T_{\phi}f, f \rangle = |\langle A^*T_{\phi}f, f \rangle| = \langle A^*T_{\phi}f, f \rangle$ for all $f \in L_a^2(\mathbb{D})$ and hence $T_{\phi} = A^*T_{\phi}$. Now we shall prove (iii). Since $A^*T_{\phi}A - T_{\phi} \geq 0$, it follows that $A^*(A^*T_{\phi}A - T_{\phi})A \geq 0$. That is, $A^{*^2}T_{\phi}A^2 \geq A^*T_{\phi}A$. Repeating the process n times, we have $A^{*^{n+1}}T_{\phi}A^{n+1} \geq A^{*^n}T_{\phi}A^n$. Thus, $\{A^{*^n}T_{\phi}A^n \mid n=1,2,\ldots\}$ is an increasing sequence of positive operators. This sequence is bounded, since A^* is power bounded. Therefore, it converges to a positive operator on $L_a^2(\mathbb{D})$, say B, in the strong operator topology. Notice that

$$A^*BA = A^* \left(\lim_{n \to \infty} A^{*n} T_{\phi} A^n \right) A$$
$$= \lim_{n \to \infty} A^{*n+1} T_{\phi} A^{n+1}$$
$$= B.$$

From the operator inequality $T_{\phi} \leq \frac{(A^*T_{\phi} + T_{\phi}A)}{2}$, we have

$$A^{*^n} T_{\phi} A^n \le \frac{\left[A^{*^n} (A^* T_{\phi} + T_{\phi} A) A^n\right]}{2}$$
$$= \frac{\left[A^* (A^{*^n} T_{\phi} A^n) + (A^{*^n} T_{\phi} A^n) A\right]}{2}.$$

By letting n tend to ∞ , we have $B \leq \frac{(A^*B+BA)}{2} = \text{Re}(A^*B)$. Thus $B = A^*B$. Since $T_{\phi} \leq B$, it follows that the range of T_{ϕ} is contained in the range of B, and hence [6], we have $T_{\phi} = A^*T_{\phi} = K$. To prove (iv) suppose $||A|| \leq 1$ and $A^*T_{\phi}A \geq T_{\phi}$. Now

$$\begin{split} (T_{\phi}^{1/2}A)^*(T_{\phi}^{1/2}A) - (T_{\phi}^{1/2}A)(T_{\phi}^{1/2}A)^* &= A^*T_{\phi}A - T_{\phi}^{1/2}AA^*T_{\phi}^{1/2} \\ &= A^*T_{\phi}A - T_{\phi}^{1/2}AA^*T_{\phi}^{1/2} \\ &\geq T_{\phi} - T_{\phi}^{1/2}AA^*T_{\phi}^{1/2} \\ &= T_{\phi}^{1/2}(I - AA^*)T_{\phi}^{1/2} \\ &\geq 0 \end{split}$$

and therefore $T_{\phi}^{1/2}A$ is a hyponormal operator. To prove (v), we can assume without loss of generality that $\lambda = 1$. Let h be any unit vector from the range of E. Multiplying the equations $ET_{\phi}E = E$ and $ET_{\phi}^{-1}E = E$ by $F_h = h \otimes h$ from the left and also from the right we obtain $(h \otimes h)T_{\phi}(h \otimes h) = h \otimes h$ and $(h \otimes h)T_{\phi}^{-1}(h \otimes h) = h \otimes h$. These imply $\langle T_{\phi}h, h \rangle = 1$ and $\langle T_{\phi}^{-1}h, h \rangle = 1$. Consider the Cauchy-Schwarz inequality for the new inner product

$$(f,g) = \langle T_{\phi}^{-1}f, g \rangle, f, g \in L_a^2(\mathbb{D}).$$

Insert $f = T_{\phi}h$ and g = h. As h is a unit vector, we see that there is equality in the corresponding inequality

$$\left|\left\langle T_{\phi}^{-1} T_{\phi} h, h \right\rangle\right|^{2} \leq \left\langle T_{\phi}^{-1} T_{\phi} h, T_{\phi} h \right\rangle \left\langle T_{\phi}^{-1} h, h \right\rangle.$$

This gives us that $T_{\phi}h$ is a nonzero scalar multiple of h. It is clear that this scalar is necessarily 1. So we have $T_{\phi}h = h$ for any unit vector h from the range of E. This proves our claim. The proof of (vi) follows from Lemma 2.2. To prove (vii), observe that $S_{\psi}^* = S_{\psi^+}$ where $\psi^+(z) = \overline{\psi(\overline{z})}$. From Lemma 2.5, it follows that $S_{\psi^+}T_{\phi}S_{\psi} = T_{\phi}$ and from (iv) we obtain $T_{\phi}^{1/2}S_{\psi}$ is a hyponormal operator. \square

Theorem 3.3. Let T_{ϕ} be a positive Toeplitz operator on the Bergman space $L_a^2(\mathbb{D})$ with symbol $\phi \in L^{\infty}(\mathbb{D})$. Then there exists a sequence $\{A_n\}$ of operators in $\mathcal{L}(L_a^2(\mathbb{D}))$ such that $A_n \longrightarrow 0$ in weak operator topology and $A_n^*T_{\phi}A_n \geq T_{\phi}$ for all n. Thus $\widehat{A_n^*T_{\phi}A_n}(z) \geq \widetilde{\phi}(z)$ for all $z \in \mathbb{D}$.

Proof. We take an index set I for the set of all pairs $n_{\epsilon} = (P_n, \epsilon)$ where P_n is the finite dimensional projection on $L_a^2(\mathbb{D}), \epsilon > 0$. Set $(P_m, \epsilon_1) \prec (P_r, \epsilon_2)$ if $m \leq r$ and $\epsilon_1 > \epsilon_2$. By Theorem 3.2, for each n_{ϵ} there exists $A_n \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $\|P_nAP_n\| \leq \epsilon$ and $A_n^*T_{\phi}A_n \geq T_{\phi}$. Let $U_{n_{\epsilon}} = \{A \in \mathcal{L}(L_a^2(\mathbb{D})) : \|P_nAP_n\| < \epsilon\}$. It

is not difficult to see that each $n_{\epsilon} \in I$ defines a WOT-neighbourhood $U_{n_{\epsilon}}$ of 0. It is also clear that in this way we obtain a basis of the weak operator topology neighbourhoods of 0. Furthermore notice that for each n_{ϵ} , we have $A_m \in U_{n_{\epsilon}}$ for all $m > n_{\epsilon}$. Hence $A_n \longrightarrow 0$ in the weak operator topology.

4. Berezin transform of positive Toeplitz operators

In this section we show that if T_{ϕ} is a non-negative Toeplitz operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ then there exists a rank one operator $R_1 \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $\widetilde{\phi}(z) \geq \alpha^2 \widetilde{R}_1(z)$ for all $z \in \mathbb{D}$ and for some constant $\alpha \geq 0$. Here $\widetilde{\phi}$ is the Berezin transform of T_{ϕ} and \widetilde{R}_1 is the Berezin transform of R_1 .

Let H and K be Hilbert spaces and let $T \in \mathcal{L}(H, K)$. A maximizing vector for T is a non-zero vector $x \in H$ such that ||Tx|| = ||T|| ||x||. Thus a maximizing vector for T is one at which T attains its norm. On a Banach space, even rank one operators need not have maximizing vectors [8]. The operator (Hx)(t) = tx(t), 0 < t < 1, is bounded on $L^2(0,1)$ but has no maximizing vector. However, compact operators on Hilbert spaces do have maximizing vectors [8].

Theorem 4.1. Let T_{ϕ} be a non-negative Toeplitz operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ with symbol $\phi \in L^{\infty}(\mathbb{D})$ and $\epsilon > 0$. Then there exists a non-negative operator $C \in \mathcal{L}(L_a^2(\mathbb{D}))$ such that $\|C - T_{\phi}\| < \epsilon$, $R_{\epsilon} = C - T_{\phi} = \epsilon(h \otimes h)$ for some $h \in L_a^2(\mathbb{D})$ and the operator C has a maximizing vector. Further, $\widetilde{\phi}(z) \geq \alpha^2 \widetilde{R}_1(z)$ for all $z \in \mathbb{D}$ and for some constant $\alpha \geq 0$.

Proof. Let T_{ϕ} be a non-negative Toeplitz operator in $\mathcal{L}(L_a^2(\mathbb{D}))$ and $\epsilon > 0$. Now

$$||T_{\phi}|| = \sup_{\substack{g \in L_a^2(\mathbb{D}) \\ ||g||=1}} \langle T_{\phi}g, g \rangle = \sup\{\langle T_{\phi}g, g \rangle : ||g|| = 1, g \in (\ker T_{\phi})^{\perp}\}.$$

Hence there exists a unit vector $h \in (\ker T_{\phi})^{\perp}$ such that $||T_{\phi}|| - \frac{\epsilon}{2} \leq \langle T_{\phi}h, h \rangle$. Define $R_{\epsilon}k = \epsilon \langle k, h \rangle h = \epsilon (h \otimes h)k$. Then R_{ϵ} is a non-negative operator of rank one and $||R_{\epsilon}|| = \epsilon$. Moreover,

$$||T_{\phi} + R_{\epsilon}|| = \sup_{\|f\|=1} \langle (T_{\phi} + R_{\epsilon})f, f \rangle$$

$$\geq \langle (T_{\phi} + R_{\epsilon})h, h \rangle$$

$$\geq ||T_{\phi}|| + \frac{\epsilon}{2}.$$

Now $T_{\phi} + R_{\epsilon}$ is non-negative, and so $||T_{\phi} + R_{\epsilon}||$ lies in the spectrum of $T_{\phi} + R_{\epsilon}$. Since R_{ϵ} is compact, Weyl's theorem implies essential spectrum of $T_{\phi} + R_{\epsilon}$ is equal to the essential spectrum of T_{ϕ} . But the spectrum of T_{ϕ} is bounded by $||T_{\phi}||$ and hence $||T_{\phi} + R_{\epsilon}||$ must lie in the discrete spectrum of $T_{\phi} + R_{\epsilon}$. In other words, there exists a unit vector $f \in L_a^2(\mathbb{D})$ such that $(T_{\phi} + R_{\epsilon})f = ||T_{\phi} + R_{\epsilon}||f$. Finally, we can assume without loss of generality that $f \in (\ker T_{\phi})^{\perp}$. This is so, since $L_a^2(\mathbb{D}) = \ker T_{\phi} \oplus (\ker T_{\phi})^{\perp}$ and if $f = f_1 + f_2, f_1 \in \ker T_{\phi}, f_2 \in (\ker T_{\phi})^{\perp}$ then

$$(T_{\phi} + R_{\epsilon})f_1 = \langle f_1, h \rangle h = 0.$$

Thus if we write $C = T_{\phi} + R_{\epsilon}$ then C is non-negative, $||C - T_{\phi}|| = ||R_{\epsilon}|| = \epsilon$ and ||Cf|| = ||C|| ||f||. That is, f is a maximizing vector of C. Now let $\epsilon = 1$. Then $R_1 = (h \otimes h), ||h|| = 1$. Let

 $E = \left\{ X \in \mathcal{L}(L_a^2(\mathbb{D})) : X \ge 0, \left| \langle Xf, g \rangle \right|^2 \le \langle T_{\phi}f, f \rangle \, \langle R_1g, g \rangle \, \text{for all} \, f, g \in L_a^2(\mathbb{D}) \right\}.$

Now suppose $X \in E$. Then for $f, g \in L_a^2(\mathbb{D})$,

$$\left\langle \begin{pmatrix} T_{\phi} & X \\ X & R_{1} \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \right\rangle = \left\langle T_{\phi}f, f \right\rangle + \left\langle Xg, f \right\rangle + \left\langle Xf, g \right\rangle + \left\langle R_{1}g, g \right\rangle$$

$$= \left\langle T_{\phi}f, f \right\rangle + \left\langle R_{1}g, g \right\rangle + 2\operatorname{Re}\left\langle Xf, g \right\rangle$$

$$\geq 2 \left\langle T_{\phi}f, f \right\rangle^{1/2} \left\langle R_{1}g, g \right\rangle^{1/2} + 2\operatorname{Re}\left\langle Xf, g \right\rangle$$

$$\geq 2 \left| \left\langle Xf, g \right\rangle \right| + 2\operatorname{Re}\left\langle Xf, g \right\rangle$$

$$\geq 2 \left| \left\langle Xf, g \right\rangle \right| - 2 \left| \left\langle Xf, g \right\rangle \right| = 0.$$

Conversely, if $X \geq 0$ and $\begin{pmatrix} T_{\phi} & X \\ X & R_1 \end{pmatrix}$ is a positive operator in $\mathcal{L}(L_a^2 \oplus L_a^2)$ then

$$\left| \left\langle \begin{pmatrix} T_{\phi} & X \\ X & R_{1} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ g \end{pmatrix} \right\rangle \right|^{2} \leq \left\langle \begin{pmatrix} T_{\phi} & X \\ X & R_{1} \end{pmatrix} \begin{pmatrix} f \\ 0 \end{pmatrix}, \begin{pmatrix} f \\ 0 \end{pmatrix} \right\rangle$$
$$\left\langle \begin{pmatrix} T_{\phi} & X \\ X & R_{1} \end{pmatrix} \begin{pmatrix} 0 \\ g \end{pmatrix}, \begin{pmatrix} 0 \\ g \end{pmatrix} \right\rangle$$

for all $f,g\in L^2_a(\mathbb{D}).$ A simplification of these inner products yields

$$|\langle Xf,g\rangle|^2 \leq \langle T_{\phi}f,f\rangle\langle R_1g,g\rangle$$
 for all $f,g\in L_a^2(\mathbb{D})$.

Hence $X \in E$. Thus

$$E = \left\{ X \in \mathcal{L}(L_a^2(\mathbb{D})) : X \ge 0 \text{ and } \begin{pmatrix} T_\phi & X \\ X & R_1 \end{pmatrix} \text{ is a positive operator in } \mathcal{L}(L_a^2 \oplus L_a^2) \right\}.$$

We shall now verify that $\max_{X \in E} X = \alpha R_1 = \alpha(h \otimes h)$ for some constant $\alpha \geq 0$. Suppose T_{ϕ} is a positive invertible operator in $\mathcal{L}(L_a^2(\mathbb{D}))$. Then from [2], [3] it follows that $\max_{X \in E} X = \frac{1}{\|T_{\phi}^{-\frac{1}{2}}h\|} h \otimes h = \frac{1}{\|T_{\phi}^{-\frac{1}{2}}h\|} R_1$, a scalar multiple of R_1 . If T_{ϕ}

is an arbitrary positive operator then it follows from [2] that $\max_{X \in E} X$ is again a scalar multiple of R_1 , and

$$\max_{X \in E} X = \max \left\{ rR_1 : r \geq 0, \left(\begin{array}{cc} T_\phi & rR_1 \\ rR_1 & R_1 \end{array} \right) \geq 0 \right\}.$$

The inequality $\left\langle \begin{pmatrix} T_{\phi} & rR_1 \\ rR_1 & R_1 \end{pmatrix} \begin{pmatrix} f \\ g \end{pmatrix}, \begin{pmatrix} f \\ g \end{pmatrix} \right\rangle \geq 0$ is equivalent to

$$\langle T_{\phi}f, f \rangle + r\langle R_1g, f \rangle + r\langle R_1f, g \rangle + \langle R_1g, g \rangle \ge 0 \text{ for all } f, g \in L_a^2(\mathbb{D}).$$

This can be rewritten as

$$\langle T_{\phi}f, f \rangle + ||R_1(g+rf)||^2 - r^2||R_1f||^2 \ge 0$$

which holds for all $f, g \in L^2_a(\mathbb{D})$ if and only if $\langle T_{\phi}f, f \rangle - r^2 ||R_1f||^2 \ge 0$ or equivalently, $r^2R_1 \le T_{\phi}$. Thus from [3], it follows that $\max_{X \in E} X = \max\{rR_1 : r \ge 1\}$

$$0, r^2 R_1 \le T_{\phi} = \sqrt{\lambda(T_{\phi}, R_1)} R_1$$
 where

$$\lambda(T_{\phi}, R_1) = \begin{cases} \|T_{\phi}^{-\frac{1}{2}}h\|^{-2}, & \text{if } h \in \text{Range}(T_{\phi}^{\frac{1}{2}}), \\ 0, & \text{otherwise.} \end{cases}$$

Thus $\max_{X \in E} X = \alpha R_1$, for some $\alpha \geq 0$. Hence $\begin{pmatrix} T_{\phi} & \alpha R_1 \\ \alpha R_1 & R_1 \end{pmatrix} \geq 0$. That is, $|\langle \alpha R_1 k_z, k_w \rangle|^2 \leq \langle T_{\phi} k_z, k_z \rangle \langle R_1 k_w, k_w \rangle$ for all $z, w \in \mathbb{D}$. Hence

$$|\alpha|^2 |\langle k_z, h \rangle \langle h, k_w \rangle|^2 \le \widetilde{\phi}(z) |\langle h, k_w \rangle|^2$$
 for all $z, w \in \mathbb{D}$.

If $h \neq 0$ then there exists $w \in \mathbb{D}$ such that $\langle h, k_w \rangle \neq 0$. Thus $\widetilde{\phi}(z) \geq |\alpha|^2 |\langle h, k_z \rangle|^2 = \alpha^2 \widetilde{R}_1(z)$ for all $z \in \mathbb{D}$.

References

- 1. N.I. Akhiezer and I.M. Glazman, *Theory of Linear Operators in Hilbert Space*, Monographs and studies in Mathematics, No.9, Pitman, 1981.
- T. Ando, Topics on Operator Inequalities, Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 1978.
- 3. P. Busch and S.P. Gudder, Effects as functions on projective Hilbert space, Lett. Math. Phys. 47 (1999), 329–337.
- J.B. Conway, A Course in Functional Analysis, 2nd Edition, Springer-Verlag, New York, 1990.
- 5. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. **31** (1999), 75–80.
- R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- P.A. Fillmore and J.P. Williams, On operator ranges, Advances in Mathematics, 7 (1971), 254–281.
- 8. B.V. Limaye, *Functional Analysis*, second Edition, New Age International Ltd, Publishers, New Delhi, 1996.
- D. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717–1723.
- K. Zhu, Operator theory in function spaces, Monographs and textbooks in pure and applied Mathematics, 139, Dekker, New York, 1990.
- ¹ P.G.Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India.

E-mail address: namitadas440@yahoo.co.in

² School of Applied Sciences (Mathematics), KIIT University, Campus-3(Kathajori Campus), Bhubaneswar-751024, Odisha, India.

E-mail address: smita_782006@yahoo.co.in