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ABSTRACT. Let X be a complex Banach space and let £(X) be the Banach
algebra of all bounded linear operators on X. We characterize surjective linear
maps ¢ : L(X) = L(X) compressing or depressing any one of the range, the
hyper-range, the analytic core and the kernel.

1. INTRODUCTION

There has been an interest in preserver problems that leave certain linear sub-
spaces, invariant; see for instance [5, 6, 7, 12, 15]. In [15], the author characterized
surjective additive maps ¢ : L(X) — L(X) preserving the range or the kernel
of operators. In [(], we obtained the descriptions of surjective additive maps
that preserve the hyper-range, the analytic core, or the hyper-kernel of opera-
tors. Also, in [5], we determined the forms of all additive maps ¢ : £L(X) — L(X)
preserving the local spectral subspace X7 ({A}), i.e., Xy ({A}) = Xp({A}) for
all T'e L(X) and X € C.

In this note, we treat surjective linear maps ¢ : L(X) — L(X) that compress
or depress certain subspaces of Banach space X. Namely, we determine the forms
of maps ¢ which compress A(.) i.e., A(¢(T)) C A(T) for all T € L(X) or depress
A(.) ie, A(T) € A(¢(T)) for all T € L(X) where A(.) denotes any one of
R(.),R>*(.),K(.) and N(.).
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2. NOTATIONS AND PRELIMINARIES

Let X be a complex Banach space and let £(X) be the algebra of all bounded
operators on X. For T' € L(X), we write N(7) for its kernel and R(T) for its
range. The spectrum of 7" is denoted by o (7). The surjectivity spectrum o,(7)is
defined by o4(T) := {A € C : T — X is not surjective }. We say that a map
¢: L(X) — L(X) is unital if ¢(I) = I, where I stands for the unit of £(X).

Let x be a nonzero vector in X and f be a nonzero functional in the topological
dual X* of X. We denote, as usual, by z ® f the rank one operator given by
(x®f)z = f(z)x for z € X. Note that 2® f is a projection if and only if f(x) = 1,
and it is nilpotent if and only if f(z) = 0. The adjoint of such operator is given
by (z® f)* = f ® Jx, where J is the natural embedding of X to X**. We denote
by span {z} the subspace spanned by z. We write F;(X) for the set of all rank
one operators on X.

Recall that the hyper-range and the analytic core of an operator 7' € L(X) are
given, respectively, by R*(T) := () R(T") and K(7T') := {z € X : there exist a >

neN
0 and a sequence (z,,) € X satisfying : ©g = z,Tx,11 =z, and || z, [|[< a™ || z ||
, forall n > 1}. Recall that R*°(T") and K(T') are the subspaces of X and
K(T) € R*°(T) C R(T); see for example [1, 11, 11]. Note that

K(T) = X & R¥(T) = X & R(T) = X
and
Kz® f) = R*(x @ f) = R(z ® f) = span {a}
where x € X and f € X* such that f(z) # 0.
We start with the following lemma, see [1].

Lemma 2.1. Let X and Y be complex Banach spaces. Let ¢ : L(X) — L(Y)
be a surjective linear map. Suppose that ¢ satisfy o, (P(T)) C o5, (T) for all
T € L(X) then either ¢(F) = 0 for all finite rank operator F' € L(X) or ¢ is
injective. In the latter case, either

(1) there exists an invertible operator A € L(X,Y) such that ¢(T) = ATA™! for
alT € L(X) or

(2)there exists an invertible operator A € L(X*,Y) such that ¢(T) = AT*A™!
for all T € L(X). In the last case X and Y are reflezive.

We need the following lemma about perturbations by rank one operators, so
as to state the next lemma.

Lemma 2.2. ([16]) Let T € L(X) be an invertible operator, let  be a nonzero
vector in X, f be a nonzero functional in X*. Then T' — x ® f is not invertible
if and only if f(T'z) =1.
Lemma 2.3. Let A,B € L(X) be two invertible operators. If one of the two
following assertions:

(i) RGA+ F) CR(B+ F) for all F € Fi(X) or

(i) N(A+ F) CN(B+ F) for all F € Fi(X)
holds true then A = B.
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Proof. Let A, B € L(X) be two invertible operators. Let z € X and f € X* such
that f(z) =
Suppose that (i) holds true. Let F = —Bx ® f. We have
R(A-Bx® f) C R(B—Bx®f)

— R(I- Ba®(B)'f)

— N(B)) ¢ X.
Then A— Bx® f is not surjective and so A— Bx® f is not invertible. By Lemma
2.2, we get that

A Bz) =1 = f(x).
This implies that A~'Bx = x and then A = B.
Now suppose that (ii) is yield and let ' = —Ax ® f. We have
span{z} = NI —2z® f)
= NA(I -z®f))
= NA-Ar® f)
C NB-Axz® f).
Then B — Az ® f is not injective and so B — Ax ® f is not invertible. Lemma
2.2, gives that
f(B™'Az) = 1 = f(2).
Consequently, B~'Axz = x and then A = B.

3. MAIN RESULTS

Theorem 3.1. Let ¢ : L(X) — L(X) be a surjective linear map such that
S := ¢(1) is invertible. Then the following assertions are equivalent:

(i) R(¢(T)) C R(T) for all T € L(X);

R(¢
(i) R(T) C R(@(T)) for all T € L(X);
(i) ¢(T) =TS for all T € L(X).

Proof. (i)==(iii). Let ¥(T) = ¢(T)S~! for all T € L(X), so we have
R((T)) CR(T) forall T € L(X).

Assume that there exists F' a rank-one idempotent of £(X) such that ¢(F) =
We write F' =2 ® f where z € X, f € X* such that f(x) =
We have

X =R(I) =R(&(1)) = R ~ F)) CR(I = F) = N({)

a contradiction.
Then ¢ does not annihilate all rank-one idempotents of £(X).
On the other hand, Let F =z ® f where z € X, f € X*. If f(x) = 1, we have

{0} # R(¢(F)) € R(F) = span {z}.
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Then R(¢(F')) = span{z} and ¢(F) = x ® gy where g; is a nonzero functional
in X*. We have

R(I—2®g) = R(I— (s ) = RW(I -2 ) C R —2® f) = N().
Then z — gp(z)x € N(f) for all z € X and so gs(z) = f(z) for all z € X. It
follows that ¢(F) = F. Thus, if f( ) = A # 0, we have

Yo f)=MN(5 x®f)—AAx®f—a:®f

Now, let 0 # y € X and 0 # g € X* such that g(y) = 0. Let x € X such that
g(x) = 1. We have

byeg) =d((r+y)@g) —vEeg) =(r+y)@g-—r0g=ySyg.
Therefore 1 (F) = F for all F € F(X).
Let T'€ L(X) and A ¢ o(T)Uo(y(T)). We have
R((T) — A+ F) = R((T — A+ F)) C R(T — A+ F) for all F € F(X).
Lemma 2.3 (i) gives that ¢(T) = T. As desired.

(il)==(iii). Consider (T) = ¢(T)S~! for all T € L(X), so we have

R(T) c R@(T)) forall T € L(X).
1 is injective. Indeed, let T € L£(X) such that ¢(T) = 0, then R(T) C R((T)) =
{0} and so T = 0. Therefore 1 is bijective. Let ™! the inverse of ¢ then we
have

R(y1(T)) C R(T) for all T € L(X).
Since ¥ ~'(I) = I then, by Theorem 3.1 (i), it follows that ¢»='(T) = T for all
T € L(X). Consequently, ¢p(T) =TS for all T € L(X).

(ili)==-(i) and (iii)==>(ii) are obvious.
0J

Remark 3.2. (1) It turns out, from the hypothesis R(7") C R(¢(T)) for all T' €
L(X), that S is surjective.
(2) Note that (iii)==-(i) is valid without considering any condition on S.

Theorem 3.3. Let ¢ : L(X) — L(X) be a surjective linear map such that
S := ¢(I) is invertible. Then the following assertions are equivalent:

(i) Re(T) C R™(op(T)) for all T € L(X);

(it) R=((T)) € R™(T) for all T € L(X);

(iii) there ezists a nonzero scalar p € C such that ¢(T) = pT for all T € L(X).
Proof. (i)=(iii). Consider ¥(T) = ¢(T)S~! for all T € L(X). The surjective

linear map ¢ is unital and maps surjective operators to surjective operators then
Osu(V(T)) C 05u(T) for all T € L(X).

We obtain by Lemma 2.1, that:
(F) = 0 for all finite rank operator F' € L(X); or
1) takes one of two following forms:
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(1) there exists an invertible operator A € £(X) such that ¢(T) = ATA™! for
all T € L(X); or
(2) there exists an invertible operator A € £(X*, X) such that ¢(T) = AT*A™!
for all T € L(X). In this case X is reflexive.

Suppose that 1 annihilates all finite rank operators. Let x € X and f € X*
such that f(z) = 1, then we have

span{z} = R¥(z® f) C R*(¢(z® f))
C Rz @ f)) =RW(z® [))
= {0}.
A contradiction.

Suppose that ) takes the form (2). Let x € X and f € X* such that = and
Af are linearly independent and f(x) # 0. We have

span{z} = R*(z® f) C R¥(¢(z ® f))
C R(o(z® f)) =R(¥(z @ [))
= R(Af® (A™1*J,) = span {Af}.
Then span {2} = span {Af}. Consequently Af and z are linearly dependent,
a contradiction.
Now, assume that 1) takes the form (1). Let x € X and f € X* such that
f(z) # 0. We have
span{z} = R¥(z® f) CR¥(¢(z® [))
C R¢(z® [f)) =R(¥(z® [))
= R(Az ® (AY)*f) = span {Az}.

Therefore x and Ax are linearly dependent for all x € X and so A = ¢I for
some nonzero scalar ¢ € C. Consequently (7T) = T for all T € L(X), thus
o(T)=TS for all T € L(X).

Let y € X and g € X* be such that g(y) = 1. We have
RI-y®g) =R —y®g) C R —y®yg) C ReI —y®g)) =
R -y®g)=RI-y®yg).

Hence, it follows that R™®(¢(I —y®g)) = R(é(I —y®g)). In particular we have

R(I-y®¢)S) =R(((I —~y®9)S)*) =R(I —y®g)S(I —y®g)).
Let uw € X be such that (I —y®¢)Sy=(I —y®g)S(I —y® g)u.
Applying S~ we obtain
y—g(Sy)S~ly = (571 =Sy ®g)(Su — g(u)Sy)
= u—g(w)y — g(Su—g(u)Sy)S~"y

) =
)S

Applying g we obtain:
9(y) — 9(Sy)g(S™"y) = g(u) — g(u)g(y) — g(Su — g(u)Sy)g(S~"y).

Therefore

(9(Sy) — g(Su—g(u)Sy))g(S'y) =1
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which implies that g(S~'y) # 0. Consequently, y and S~'y are linearly depen-
dent. Hence S = ul for some nonzero scalar y € C. Finally ¢(T) = uT for all
T e L(X).

(ii)=>(iii). Consider also here ¥(T) = ¢(T)S* for all T € L(X). It is easy to
see that if ¢(T) is surjective then T is surjective. The surjective linear map 1 is
unital and then satisfy

Osu(T) C o5 (W(T)) for all T € L(X).

We derive from [%, Corollary 8] that:

1 takes one of two following forms:

(1) there exists an invertible operator A € £(X) such that ¢(T) = ATA™! for
all T € L(X); or

(2) there exists an invertible operator A € £(X*, X) such that ¢(T) = AT*A™!
for all T € L£(X). In this case X is reflexive.

Asin (i)=-(iii) of the proof of this Theorem, we show that the form (2) of ¢ can
not be occur and we check, in the case where 1 takes the form (1), that A = ¢'I
for some nonzero scalar ¢ € C . We proceed similarly to the last step of (i)=(iii),
but here we consider the operator (I —y ® ¢g)S~! instead of (I —y ® g) and then
we obtain that S = pl for some nonzero scalar p € C.

(ili)==-(i) and (iii)==-(ii) are obvious.
0J

Theorem 3.4. Let ¢ : L(X) — L(X) be a surjective linear map such that
S := ¢(I) is invertible. Then the following assertions are equivalent:

(i) K(T) C K(¢(T)) for all T € L(X);
(i) K(¢(T)) C K(T) for all T € L(X),
(iii) there exists a nonzero scalar 1 € C such that ¢(T) = pT" for all T € L(X).

Proof. We proceed as in the proof of Theorem 3.3. Using the following properties,
K(T) c R*(T) for all T € L(X)
and
K(T)=R>(T) it T € L(X) is a projection or of rank one.
OJ

Theorem 3.5. Let ¢ : L(X) — L(X) be a surjective linear map such that
S := ¢(I) is invertible. Then the following assertions are equivalent:

(i) N(T)) C N(o(T)) for all T € L(X);

N(T
(i) N(&(T)) C N(T) for all T € L(X);
(iii) ¢(T) = ST for all T € E( ).

Proof. (i)==(iii). Let ¥(T) = S™¢(T) for all T € L(X), so we have
N(T) C N(y(T)) forall T € L(X).
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Let x € X and f € X* such that f(z) = 1, then we have

N(f) =N(z® f) C N(z ® f))
and
span{z} =Nl —2z® f) C N —¢(z ® f)).
Since X = span{z} @& N(f), let z € X such that z = az + y for some scalar « in
C and y in N(f), so f(2) = af(z) + f(y) = a. We have

W@ flz = ap(z@ flz+ ¢ fy
= az+0 ( see the two inclusions above)
= fla)z
= (z®/f)=
Then (x ® f) =z ® f. It follows, easily, that Y(z @ f) =2 ® f for all z € X
and f € X* such that f(z) # 0.

Now, in the case where f(z) = 0, there exist two non-nilpotent operators Fj
and Fy such that x ® f = F; + F5 and then

Yo f) = I+ F)=9(F) +¢(F)
= I+ FhE=x®f
Thus ¢(F) = F for all F € Fi(X).
Let T'€ L(X) and A ¢ o(T) U o ((T)). We have
N(T — A+ F) C N@(T — A+ F)) = N((T) — A+ F) for all F € Fy(X).
Lemma 2.3 (ii) gives that ¢(T") =T

(il)==(iii). Consider again )(T) = S™'¢(T) for all T € L(X), so we have
N((T)) € N(T) for all T € L(X).

1 is injective. Indeed, let T" € L£(X) such that ¢(T) = 0, then X = N(¢(T)) C
N(T) and so T = 0. Therefore 9 is bijective. Let 1)~! the inverse of 1) then we
have

N(T) € N(yp~(T)) for all T € L(X).
Since ¢~}(I) = I then, by Theorem 3.5 (i), we get that ¢v=Y(T) = T for all
T € L(X). Consequently, ¢(T) = ST for all T € L(X) .

(iii)==(i) and (iii)==-(ii) are obvious. O

Some authors interested in some problems of maps that preserve certain func-
tions of operator products; see for example, [2, 7, 9, 10, 13]. The following corol-
lary concerns linear maps compressing or depressing A(.) of operator products.

Corollary 3.6. Let ¢ : L(X) — L(X) be a surjective linear map such that
S := ¢(I) is invertible. Then the following assertions are equivalent:

(i) R(AB) C R(¢(A)p(B)) for all A, B € L(X);
(ii) R(¢p(A)o(B)) C R(AB) for all A, B € L(X);
(iii) N(AB) C N(¢(A)p(B)) for all A, B € L(X);
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—e

(iv) N(¢(A)p(B)) C N(AB) for all A,B € L(X);

v) R¥(AB) C R>®(p(A)p(B)) for all A, B € L(X);

(vi) R®(¢(A)p(B)) C R¥(AB) for all A, B € L(X)

(vi 1; B) C K(¢(A)¢(B)) for all A, B € L(X);
x)

—~

- <

K(A
(vill) K(¢(A)¢(B)) C R(AB) for all A, B € L(X);
(ix) there exists a nonzero scalar p € C such that ¢(T) = pT for all T € L(X).

Proof. (1)==(ix). Suppose that R(AB) C R(¢(A)¢(B)) for all A, B € L(X). For
B = I, we have

R(A) C R(¢(A)S) = R(¢(A)) for all A € L(X).

Then Theorem 3.1 (i) gives that ¢(A) = AS for all A € £(X). We have so
R(AB) C R(¢(A)p(B)) = R(ASBS) = R(ASB) for all A,B € L£(X). Taking
A=1Tand B=2x® f where z € X and f € X* such that f(x) = 1, we get that

span{z} = R(z ® f) C R(Sz ® f) = span {Sz}.

This implies that = and Sz are linearly dependent and then S = ul for some
nonzero scalar u € C.

(il)==(ix) is similar to (i)=(ix).

(ili)==(ix). Suppose that N(AB) C N(¢(A)p(B)) for all A, B € L(X). For
A =1, we have

N(B) € N(Sé(B)) = N(¢(B)) for all B € L£(X).

Then Theorem 3.5 (i) gives that ¢(B) = SB for all B € £(X). We have so
N(AB) C N(¢(A)p(B)) = N(SASB) = N(ASB) for all A,B € L(X). Taking
B=Tand A=1]—-2® f where x € X and f € X* such that f(z) = 1, we get
that

span{z} = NI —2® f) C N(I —z® f)S) = N(S({ — S™'z ® S*f)) =
N(I - S7'z® S*f) =span {S~'z}.

This implies that x and S~z are linearly dependent and then S = ul for some
nonzero scalar p € C.

(iv)==(ix) is similar to (iii)=(ix).
(v)==(ix). Suppose that R>*(AB) C R>®(¢(A)¢p(B)) for all A, B € L(X). For
B =1, we have
R>®(A) C R™(¢(A)S) for all A € L(X).

Let ®(A) = ¢(A)S for all A € L(X). We have so R®(A) C R>*(P(A)) for all
A € L(X) and ®(I) = S? is invertible, then by Theorem 3.3 (i), there exists a
nonzero scalar p € C such that ®(A) = pA for all A € L(X). Therefore
R>¥(AB) C R™®(¢p(A)p(B)) = R>®(uAS 'uBS™') =R*(AS'BS™)
c R(AS™'BS™') =R(AS'B)
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for all A, B € £(X). In particular for A =1 and B = x ® f where z € X and
f € X* such that f(z) # 0, we have

span {r} = R™(r ® f) C R*(S™'2 ® f) = span {S~'z}.
This completes the proof of (v)=(ix).

(vi)==(ix). We proceed as in (v)==(ix) and we obtain that R>(AS~!BS™1) C
R>*(AB) forall A, B € L(X). Then R®(AB) C R*(ASBS) forall A, B € L(X)
and S = ul for some nonzero scalar p € C.

(vil)==(ix) is similar to (v)=(ix).

(vill)==(ix) is similar to (vi)=(ix).

Recall that the hyper-kernel of an operator T' € £(X) is given by

= J N

neN

Remark 3.7. Let ¢ : L(X) — L(X) be a surjective additive map. Suppose that
¢ satisfy one of the following assertions :
(i) R(T) =R(o(T)) for all T € L(X)
(i) R®(p(T)) = R°(T) for all T € L(X)
(iii) K(o¢(T)) = K(T) for all T € L(X)
(iv) ( ) = N(o(T )) for all T € L(X)
(v) N=(o(T)) = N°°(T) for all T € L(X).

then ¢(/) is invertible. see [0, 15].

We finish this note with the following question:

Question 3.8. Let ¢ : £L(X) — L(X) be a surjective linear map such that
S := ¢(I) is invertible. Does we have the equivalences between the following
assertions :

(i) N°°(T) Cc N*°(o(T)) for all T € L(X);

(i) N°(o(T)) C N(T) for all T € L(X);

(iii) there exists a nonzero scalar p € C such that ¢(T") = pT for all T € L(X).
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