
Ann. Funct. Anal. 4 (2013), no. 2, 87–96
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

OPTIMAL BUNDLES IN NORMED SPACES

H. H. CUENYA, F. E. LEVIS∗ AND C. N. RODRIGUEZ

Communicated by J. Soria

Abstract. In this paper, we prove existence of optimal bundles for a count-
able set of data in a broad class of normed spaces, which extend previous
known results for a finite data set in a Hilbert space. In addition, we study the
behavior of deviations and diameters for an increasing sequence of data sets.

1. Introduction

In [1] it was introduced the following:
Given a Hilbert space F , a finite subset Y ⊂ F and a closed subspace V

of F , let E(Y, V ) be the total distance of the data set Y to the subspace V ,
i.e. E(Y, V ) =

∑
f∈Y d

2(f, V ), where d is the Euclidean metric. If Πn(F ) =

{V subspace of F : dim V ≤ n} and

EF (Y ) = inf
V ∈Πn(F )

E(Y, V ),

a subspace V0 ⊂ F is called optimal if E(Y, V0) = EF (Y ).
In [1] the authors gave a constructive proof of existence of optimal subspaces

and applications to problem of finding a model space that describes a given class
of signals or images.

In [2, 3] the authors introduced and solved a new problem for F = Rd and
F = L2(Rd): To prove the existence of l subspaces in Πn(F ) minimizing∑

f∈Y

min
1≤j≤k

d2(f, Vj), Vj ∈ Πn(F ).
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A solution to the last problem is called an optimal bundle. The problem of finding
an optimal bundle appears in several situations of practical interest, for examples
the reader can see [3, 8].

Our main objective in this paper is to establish existence results of optimal
bundle in normed spaces, as general as possible, for a data set not necessarily
finite. A natural extension to the above problems is consider a countable data
set Y and a norm defined on the set of real number sequences.

Let m ∈ N ∪ {∞} and let {uk}mk=1 be the canonical basis in Rm, where R∞
means RN. Let (F, ‖ ‖) be a normed space. For n, l ∈ N we consider the set

Bl,n(F ) := {V = (V1, · · · , Vl) : Vi ∈ Πn(F ), 1 ≤ i ≤ l}.

If V ∈ Bl,n(F ), it will be called a bundle.
Let Y = {fk}mk=1 ⊂ F and let ρ : Rm → [0,∞] be a monotone norm, i.e., ρ

is a norm such that if |xk| ≤ |yk| for all k, ρ

(
m∑
k=1

xkuk

)
≤ ρ

(
m∑
k=1

ykuk

)
. For

∅ 6= Y1 ⊂ Y and V = (V1, · · · , Vl) ∈ Bl,n(F ), we define the deviation of the set Y1

from the bundle V as

E(Y1,V) = ρ

(∑
fk∈Y1

min
1≤j≤l

d(fk, Vj)uk

)
, (1.1)

where d(f, U) = inf
u∈U
‖f − u‖ is the distance of f to the set U . Note that

E(Y1,V) = ρ

(∑
fk∈Y1

d
(
fk,∪lj=1Vj

)
uk

)
.

The diameter of the set Y1 is defined by

EF (Y1) = inf
V∈Bl,n(F )

E(Y1,V).

A bundle V0 ∈ Bl,n(F ) is called an optimal bundle for Y1 if

E(Y1,V0) = EF (Y1) <∞.

If l = 1, an optimal bundle is known as optimal subspace (see [5]).
Given Z ⊂ F , we denote spanZ the linear space generated by the elements of

Z. Throughout this paper we write X = spanY .
The concepts of diameter and optimal subspace were introduced by Kolmogorov

in [9], when ρ is the supremum norm. With this norm, Garkavi in [6] proved
existence of optimal subspaces for a compact data set. Other work about these
concepts can be seen in [12]. Recently, in [5] it was proved existence of optimal
subspace in reflexive Banach spaces when ρ is a monotone norm and Y a finite
set. Also the authors studied properties of deviations and diameters.

If ρ is not the supreme norm, it is unknown to us results of existence for an
infinite set of data, even in a Hilbert space. In Section 2 we prove existence of
optimal bundles for a countable set of data in a broad class of normed spaces.
Also, we give an algorithm to construct optimal bundles when the data set is
finite. In Section 3 we study the behavior of deviations and diameters for an
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increasing sequence of data sets. Finally, we give some properties of deviations
and diameters in Section 4.

2. Existence of optimal bundles

Observe that if l ≥ m, then V0 = (span{f1}, · · · , span{fm}, {0}, · · · , {0}) ∈
Bl,n(F ) is an optimal bundle for Y . If X has dimension at most n, then V0 =
(X, · · · , X) ∈ Bl,n(F ) is an optimal bundle for Y . So, from now on we assume
n < dimX and 1 ≤ l < m.

We will need the following lemma which was proved in ([11] p. 273).

Lemma 2.1. Let G be a Banach space of dimension n and let G∗ be its conjugate
space. Then there exist n linearly independent elements e1, · · · , en ∈ G and n
functionals g1, · · · , gn ∈ G∗ such that ‖ek‖ = ‖gk‖ = 1, gi(ek) = 1 if i = k, and
gi(ek) = 0 if i 6= k, 1 ≤ i, k ≤ n.

Consequently, for every e =
n∑
i=1

αiei ∈ G we have then |αi| ≤ ‖e‖, 1 ≤ i ≤ n.

For a linear space W with norm ‖ · ‖, we consider the following sets

Λ(W ) =

{
(wk)

m
k=1 ∈ Wm : ρ

(
m∑
k=1

‖wk‖uk

)
<∞

}
,

and

Λ0(W ) =

{
(wk)

m
k=1 ∈ Λ(W ) : lim

N→∞
ρ

(
∞∑

k=N+1

‖wk‖uk

)
= 0

}
.

If m <∞, we observe that Λ0(W ) = Λ(W ).
The following example shows that some condition about the data set must be

required to assure existence of optimal bundles.

Example 2.2. Let F = R2 be with the Euclidean norm, m =∞, n = l = 1, and

ρ (
∑m

k=1 xkuk) = (
∑m

k=1 x
2
k)

1
2 . We consider fk =

(
1√
k
, 1
)

. It is easy to see that

Y = {fk}∞k=1 /∈ Λ0(F ). Suppose that for some V ∈ B1,1(F ), E(Y, V ) < ∞. If
V = span{(v1, v2)}, v2

1 + v2
2 = 1, we have

E(Y, V )2 =
∞∑
k=1

(
1 +

1

k
−
(
v1√
k

+ v2

)2
)
.

Then |v2| = 1 and v1 = 0. So E(Y, V )2 =
∑∞

k=1
1
k

= ∞, a contradiction.
Therefore there is not an optimal bundle for Y .

Next, we establish the main result of this section.

Theorem 2.3. Let G be a Banach space and let G∗ be its conjugate space. If
Z = {hk}mk=1 ∈ Λ0(G∗), then there exists V0 ∈ Bl,n(G∗) such that V0 is an
optimal bundle for Z.
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Proof. We only consider m = ∞. The case m < ∞ follows with the obvious
modifications. If hk = 0 for all k, V0 = (0, · · · , 0) is the optimal bundle. Assume
hk 6= 0 for some k. Let {Vs}s∈N ⊂ Bl,n(G∗) be such that

E(Y,Vs) ≤ EG∗(Y ) +
1

s
. (2.1)

We write Vs = (Vs1, · · · , Vsl). Given two bundles V = (V1, · · · , Vl) and U =
(U1, · · · , Ul) with Vj ⊂ Uj we have E(Y,U) ≤ E(Y,V). So, w.l.o.g. we can
assume dimVsj = n, 1 ≤ j ≤ l. By Lemma 2.1, for each s ∈ N and 1 ≤ j ≤ l,
there exists a basis

{
eisj
}n
i=1

of Vsj such that ‖eisj‖ = 1, and |ci| ≤ ‖g‖ for

g =
n∑
i=1

cieisj.

Let gksj =
n∑
i=1

ckisje
i
sj ∈ Vsj be such that d(hk, Vsj) = ‖hk − gksj‖. It is easy to see

that ‖gksj‖ ≤ 2‖hk‖. So,

|ckisj| ≤ ‖gksj‖ ≤ 2‖hk‖ =: βk,

for all s, k ∈ N, 1 ≤ i ≤ n and 1 ≤ j ≤ l.
Let BG∗ be the closed unit ball of G∗ and let P be the product topological space

P =
nl∏
i=1

BG∗ ×
∞∏
k=1

nl∏
i=1

[−βk, βk],

where BG∗ has the weak-star topology and [−βk, βk] ⊂ R has its natural topol-
ogy. By Banach Alaoglu’s Theorem BG∗ is weakly-star compact, so Tychonoff’s
Theorem implies that P is compact. Hence, the sequence {ps}s∈N ⊂ P given by

ps = (e1
s1, .., e

n
s1, .., e

1
sl, .., e

n
sl, c

11
s1, .., c

1n
s1 , .., c

11
sl , .., c

1n
sl , c

21
s1, .., c

2n
s1 , .., c

21
sl , .., c

2n
sl , ..)

has one limit point, say

p = (e1
01, .., e

n
01, .., e

1
0l, .., e

n
0l, c

11
01, .., c

1n
01 , .., c

11
0l , .., c

1n
0l , c

21
01, .., c

2n
01 , .., c

21
0l , .., c

2n
0l , ..).

Since Z ∈ Λ0(G∗) and hk 6= 0 for some k, for ε > 0 there exists N ∈ N such that

ρ

(
∞∑

k=N+1

‖hk‖uk

)
< ε and min

hk 6=0,1≤k≤N
‖hk‖ =: M > 0. (2.2)

By the definition of the norm in G∗, for each 1 ≤ k ≤ N , 1 ≤ j ≤ l, there is
xkj ∈ G such that

‖xkj‖ ≤ 1 and

∥∥∥∥∥hk −
n∑
i=1

cki0je
i
0j

∥∥∥∥∥−Mε ≤

∣∣∣∣∣hk(xkj)−
n∑
i=1

cki0je
i
0j(xkj)

∣∣∣∣∣ .
We consider the neighborhood U of p defined by

U =
{

(w1
1, .., w

n
1 , .., w

l
l, .., w

n
l , a

11
1 , .., a

1n
1 , .., a

11
l , .., a

1n
l , a

21
1 , .., a

2n
1 , .., a

21
l , .., a

2n
l , ..)

∈ P :
∣∣wij(xuv)− ei0j(xuv)∣∣ < ε and

∣∣akij − cki0j

∣∣ < Mε, 1 ≤ j, v ≤ l,

1 ≤ i ≤ n, 1 ≤ u, k ≤ N} .
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Since p is a limit point of {ps}s∈N, there exists r ∈ N, r ≥ 1
ε

such that∣∣eirj(xuv)− ei0j(xuv)∣∣ < ε and
∣∣ckirj − cki0j

∣∣ < Mε,

for all 1 ≤ j, v ≤ l, 1 ≤ i ≤ n and 1 ≤ u, k ≤ N . Consequently, if 1 ≤ k ≤ N ,
hk 6= 0, and 1 ≤ j ≤ l, we have∥∥∥∥∥hk −

n∑
i=1

cki0je
i
0j

∥∥∥∥∥−Mε ≤

∣∣∣∣∣hk(xkj)−
n∑
i=1

cki0je
i
0j(xkj)

∣∣∣∣∣
≤
∣∣hk(xkj)− gkrj(xkj)∣∣+

∣∣∣∣∣
n∑
i=1

cki0je
i
0j(xkj)−

n∑
i=1

ckirje
i
rj(xkj)

∣∣∣∣∣
≤ ‖hk − gkrj‖+

n∑
i=1

∣∣cki0je
i
0j(xkj)− ckirjeirj(xkj)

∣∣
≤ d(hk, Vrj) +

n∑
i=1

∣∣cki0j − ckirj
∣∣ ∣∣ei0j(xkj)∣∣

+
n∑
i=1

∣∣ckirj∣∣ ∣∣ei0j(xkj)− eirj(xkj)∣∣
≤ d(hk, Vrj) + nMε+ n2‖hk‖ε ≤ d(hk, Vrj) + 3nε‖hk‖.

From definition of gk0,j, if hk = 0 then cki0j = 0 for all j, i. So∥∥∥∥∥hk −
n∑
i=1

cki0je
i
0j

∥∥∥∥∥ ≤ d(hk, Vrj) + (3n+ 1)ε‖hk‖, 1 ≤ k ≤ N, 1 ≤ j ≤ l.

Let Vj = span{e1
0j, · · · , en0j}, 1 ≤ j ≤ l, and V0 = (V1, · · · , Vl) ∈ Bl,n(G∗). Then

min
1≤j≤l

d(hk, Vj) ≤ min
1≤j≤l

d(hk, Vrj) + (3n+ 1)ε‖hk‖, 1 ≤ k ≤ N.

Finally from (2.1) and (2.2) we have,

E(Y,V0) = ρ

(
N∑
k=1

min
1≤j≤l

d(hk, Vj)uk +
∞∑

k=N+1

min
1≤j≤l

d(hk, Vj)uk

)

≤ ρ

(
N∑
k=1

min
1≤j≤l

d(hk, Vj)uk

)
+ ρ

(
∞∑

k=N+1

min
1≤j≤l

d(hk, Vj)uk

)

≤ ρ

(
N∑
k=1

min
1≤j≤l

d(hk, Vrj)uk

)
+ (3n+ 1)ερ

(
N∑
k=1

‖hk‖uk

)
+ ρ

(
∞∑

k=N+1

‖hk‖uk

)

≤ E(Y,Vr) + ε

(
1 + (3n+ 1)ρ

(
∞∑
k=1

‖hk‖uk

))

≤ EG∗(Y ) + ε

(
2 + (3n+ 1)ρ

(
∞∑
k=1

‖hk‖uk

))
.

As ε > 0 is arbitrary, the proof is complete. �
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Corollary 2.4. Let F be a Banach space which is isometrically isomorphic to
some conjugate space. If Y = {fk}mk=1 ∈ Λ0(F ), then there exists V0 ∈ Bl,n(F )
such that V0 is an optimal bundle for Y . In particular, if F is a reflexive space,
the assertion remains.

Example 2.5. The classical Lebesgue spaces Lp(Ω), 1 < p ≤ ∞, where Ω is an
open set in Rd, satisfy the hypothesis of Corollary 2.4.

The following simple property is an immediate consequence of the definition.

Lemma 2.6. Let G and H be normed spaces, G ⊂ H, and Y = {fk}mk=1 ∈ Λ0(G).
Then

EH(Y ) ≤ EG(Y ).

Let F ∗∗ be the second conjugate space of F and let JF : F → F ∗∗ be the
canonical mapping. We write f = JF (f), f ∈ F .

As another consequence of Theorem 2.3, we also obtain the following result.

Theorem 2.7. Let F be a Banach space. Assume that there exists a linear
projector p : F ∗∗ → F with unit norm. If Y = {fk}mk=1 ∈ Λ0(F ), then there is
V0 ∈ Bl,n(F ) such that V0 is an optimal bundle for Y .

Proof. By Theorem 2.3, there exists an optimal bundle W0 = (W1, · · · ,Wl) ∈
Bl,n(F ∗∗) for JF (Y ). Set V0 = (p(W1), · · · , p(Wl)) ∈ Bl,n(F ), and let gkj be a

best approximation to fk from Wj, for all k, j. Since p
(
fk
)

= fk and ‖p‖ = 1,
then

d(fk, p(Wj)) ≤ ‖fk − p(gkj)‖ = ‖p
(
fk − gkj

)
‖ ≤

∥∥fk − gkj∥∥ = d
(
fk,Wj

)
. (2.3)

By (2.3) we have

E(Y,V0) ≤ E(JF (Y ),W0) = EF ∗∗(JF (Y )).

Since JF is an isometry, from Lemma 2.6 we get EF ∗∗(JF (Y )) ≤ EF (Y ). Thus,
E(Y,V0) ≤ EF (Y ) and the theorem is proved. �

Example 2.8. The space L1([0, 1]), satisfies the hypothesis of Theorem 2.7 (see
[10]).

Remark 2.9. (a) In a conjugate space, the Krein Milman Theorem implies that
the unit ball has extreme points. On the other hand, it is well known that the
unit ball of L1([0, 1]) has not extreme points, so L1([0, 1]) is not isometrically
isomorphic to any conjugate space and Corollary 2.4 cannot be applied in
this space.

(b) Theorem 2.7 implies Corollary 2.4. In fact, if F is isometrically isomorphic to
some conjugate space, there exists a linear operator with unit norm projecting
F ∗∗ onto F (see [4], p. 55).

(c) It is interesting to note that if F is a Banach space not containing a subspace
isometrically isomorphic to l1, then F is isometrically isomorphic to some
conjugate space if only if there exists a linear projector p : F ∗∗ → F with unit
norm (see [7], p. 221).

Next, we give another theorem on the existence of optimal bundles.
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Theorem 2.10. Let F be a Banach space and let Y = {fk}mk=1 ∈ Λ0(F ). If X is
isometrically isomorphic to some conjugate space, and there exists a lineal metric
selection PX : F → X, with unit norm, then there is V0 ∈ Bl,n(F ) such that V0

is an optimal bundle for Y .

Proof. By Corollary 2.4, there is a linear optimal bundle V0 = (V1, · · · , Vl) ∈
Bl,n(X) for Y . Let W = (W1, · · · ,Wl) ∈ Bl,n(F ) and W′ = (PX(W1), · · · , PX(Wl)).
Since PX is a lineal metric selection, we have PX(fk) = fk and W′ ∈ Bl,n(X). We
choose gkj ∈ Wj such that d(fk,Wj) = ‖fk − gkj‖. Then PX(gkj) ∈ PX(Wj) and

d(fk, PX(Wj)) ≤ ‖fk − PX(gkj)‖ = ‖PX(fk − gkj)‖ ≤ ‖fk − gkj‖
= d(fk,Wj).

(2.4)

So, E(Y,V0) ≤ E(Y,W′) ≤ E(Y,W). �

Remark 2.11. In ([5], p. 196) the authors show an example such that Theorem
2.10 can be applied, but Corollary 2.4 cannot.

Next, we give an algorithm to construct optimal bundles using optimal sub-
spaces when Y is a finite set. It extends a similar algorithm proved in ([2],
Theorem 2.2) for a Hilbert space.

Theorem 2.12. Let F be a normed space, Y = {fk}mk=1 ⊂ F , m <∞, and let ρ
be the p-norm in Rm, 1 ≤ p ≤ ∞. Assume that there is an optimal subspace for
Y1, for all Y1 ⊂ Y , Y1 6= ∅. Then there exists V0 ∈ Bl,n(F ) such that V0 is an
optimal bundle for Y .

Proof. Suppose 1 ≤ p < ∞. We denote by πl the set of all l-tuples P =
(Y1, · · · , Yl) of subsets of Y such that

Y =
l⋃

i=1

Yi and Yi ∩ Yj = ∅ for i 6= j.

Note that we allow some of the elements of P ∈ πl to be the empty set.
For P = (Y1, · · · , Yl) ∈ πl, and Ys 6= ∅, we choose Ws(P ) ∈ B1,n(F ) an optimal
subspace for Ys. Since the cardinal of πl is finite, there exists P ∗ = (Y ∗1 , · · · , Y ∗l ) ∈
πl such that

l∑
s=1

ρp

∑
fk∈Y ∗s

d(fk,Ws(P
∗))uk

 ≤ l∑
s=1

ρp

(∑
fk∈Ys

d(fk,Ws(P ))uk

)
, (2.5)

for all P = (Y1, · · · , Yl) ∈ πl. Since ρ is a p-norm, it follows that

l∑
s=1

ρp

∑
fk∈Y ∗s

d(fk,Ws(P
∗))uk

 = ρp

 l∑
s=1

∑
fk∈Y ∗s

d(fk,Ws(P
∗))uk

 . (2.6)

It should be noted that {Ws(P
∗) : 1 ≤ s ≤ l, Y ∗s 6= ∅} =: {W ∗

1 , · · · ,W ∗
d } with

d ≤ l, W ∗
i 6= W ∗

j . Let V0 = (W ∗
1 , · · · ,W ∗

d , {0}, · · · , {0}) ∈ Bl,n(F ). Now, (2.5)
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and (2.6) imply,

Ep(Y,V0) ≤ ρp
 l∑
s=1

∑
fk∈Y ∗s

d(fk,Ws(P
∗))uk

 ≤ l∑
s=1

ρp

∑
fk∈Ys

d(fk,Ws(P ))uk

 ,

(2.7)

for all P = (Y1, · · · , Yl) ∈ πl.
On the other hand, given V = (V1, · · · , Vl) ∈ Bl,n(F ) we can find a l-tuple
P ′ = (Y ′1 , · · · , Y ′l ) ∈ πl such that

Y ′s =

{
fk ∈ Y ′ : d(fk, Vs) = min

1≤j≤l
d(fk, Vj)

}
.

Since Ws(P
′) is an optimal subspace for Y ′s , we have

l∑
s=1

ρp

∑
fk∈Y ′s

d(fk,Ws(P
′))uk

 ≤ l∑
s=1

ρp

∑
fk∈Y ′s

d(fk, Vs)uk

 = Ep(Y,V).

In consequence, from (2.7) with P = P ′ we obtain E(Y,V0) ≤ E(Y,V), V ∈
Bl,n(F ).
The case p =∞ follows with the obvious modifications. �

Now, we give an example where only Theorem 2.12 can be applied because the
normed space is not Banach space. Let (Sf (R), ‖ · ‖2) be the space of sequences
of real number with finite support. Let ρ be the Euclidian norm in R3, n = 2,
and let Y = {fk}3

k=1 be such that fi(j) = δij, δij the Kronecker Delta function.
A straightforward computation shows that for all Y1 ⊂ Y , Y1 6= ∅, there exists an
optimal subspace.

3. Convergence of deviations and diameters for an increasing
sequence of data

The following theorem immediately follows from the monotony property of the
norm.

Proposition 3.1. Let Y = {fk}mk=1 ⊂ F , V ∈ Bl,n(F ) and YN = {fk}Nk=1,
1 ≤ N < m. Then

(a) E(YN ,V) ≤ E(YN+1,V);
(b) E(YN ,V) ≤ E(Y,V);
(c) EF (YN) ≤ EF (YN+1);
(d) EF (YN) ≤ EF (Y ).

Theorem 3.2. Let Y = {fk}∞k=1 ∈ Λ0(F ) and YN = {fk}Nk=1, N ∈ N. Then

(a) lim
N→∞

EF (YN) = EF (Y );

(b) If VN is an optimal bundle for YN then lim
N→∞

E(Y,VN) = EF (Y ).

Proof. (a) According to Proposition 3.1 (c)-(d), we have EF (YN) ↑ α, as N →∞,
with α ≤ EF (Y ) <∞. Let ε = EF (Y )−α > 0. By hypothesis there exists M ∈ N
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such that

ρ

(
∞∑

k=M+1

‖fk‖uk

)
<
ε

2
.

Let V = (V1, · · · , Vl) ∈ Bl,n(F ) be such that E(YM ,V) < EF (YM)+ ε
2
. Therefore,

EF (Y ) ≤ E(Y,V) = ρ

(
M∑
k=1

min
1≤j≤l

d(fk, Vj)uk +
∞∑

k=M+1

min
1≤j≤l

d(fk, Vj)uk

)

≤ ρ

(
M∑
k=1

min
1≤j≤l

d(fk, Vj)uk

)
+ ρ

(
∞∑

k=M+1

min
1≤j≤l

d(fk, Vj)uk

)

≤ E(YM ,V) + ρ

(
∞∑

k=M+1

‖fk‖uk

)
< EF (YM) + ε ≤ α + ε = EF (Y ),

(3.1)

a contradiction. So, lim
N→∞

EF (YN) = EF (Y ).

(b) From (3.1) and Proposition 3.1 (d) we have

EF (Y ) ≤ E(Y,VN) ≤ E(YN ,VN) + ρ

(
∞∑

k=N+1

min
1≤j≤l

d(fk, Vj)uk

)

≤ EF (YN) + ρ

(
∞∑

k=N+1

‖fk‖uk

)
≤ EF (Y ) + ρ

(
∞∑

k=N+1

‖fk‖uk

)
,

for all N ∈ N. Taking the limit as N →∞, we get lim
N→∞

E(Y,VN) = EF (Y ). �

4. Properties of deviations and diameters

The properties established in the next theorem immediately follow.

Proposition 4.1. Let Y = {fk}mk=1, Z = {hk}mk=1 ∈ Λ(F ) and let V = (V1, · · · , Vl),
W = (W1, · · · ,Wl) ∈ Bl,n(F ). Then the following statements hold.

(a) |E(Y,V)− E(Z,V)| ≤ ρ

(
m∑
k=1

‖fk − hk‖uk
)

;

(b) If Wj ⊂ Vj, 1 ≤ j ≤ l, then E(Y,V) ≤ E(Y,W);

(c) |EF (Y )− EF (Z)| ≤ ρ

(
m∑
k=1

‖fk − hk‖uk
)

;

(d) |E(Y,V) − E(Y,W)| ≤ ρ

(
m∑
k=1

(d(fk, T )− d(fk, U))uk

)
, where T =

l⋃
j=1

Vj

and U =
l⋃

j=1

Wj.

We recall that the metric projection on a set D ⊂ F , when it is well defined,
is given by PD(f) = {g ∈ D : ‖g − f‖ = d(f,D)}.



96 H.H. CUENYA, F.E. LEVIS, C.N. RODRIGUEZ

Next, our propose is to study the continuity of the function E(Y, .). So, we
consider a notion of distance between two bundles V = (V1, · · · , Vl) and W =
(W1, · · · ,Wl), which was introduced in [5],

d∗(V,W) = sup

{
‖g − h‖
‖f‖

: f 6= 0, g ∈ PT (f), h ∈ PU(f)

}
,

where PT and PU are the metric projections on the sets T =
l⋃

j=1

Vj and U =
l⋃

j=1

Wj,

respectively.
The following theorem is a direct consequence of Proposition 4.1, (d).

Theorem 4.2. Assume the same hypothesis of Proposition 4.1. Then

|E(Y,V)− E(Y,W)| ≤ ρ

(
m∑
k=1

‖fk‖uk

)
d∗(V,W).
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