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Abstract. We study an Ishikawa type algorithm for two multi-valued quasi-
nonexpansive maps on a special class of nonlinear spaces namely hyperbolic
metric spaces; in particular, strong and 4−convergence theorems for the pro-
posed algorithms are established in a uniformly convex hyperbolic space which
improve and extend the corresponding known results in uniformly convex Ba-
nach spaces. Our new results are also valid in geodesic spaces.

1. Introduction and preliminaries

A nonempty subset D of a metric space X is called proximinal if for each
x ∈ X, there exists an element y ∈ D such that d(x, y) = d(x,D), where
d(x,D) = inf{d(x, z) : z ∈ D}. Let CB(D), K(D) and P (D) denote the fam-
ily of nonempty, closed and bounded subsets; nonempty, compact subsets and
nonempty, proximinal and bounded subsets of D, respectively. Hausdorff metric
on CB(D) is defined by:

H(A,B) = max

{
sup
xεA

d(x,B), sup
yεB

d(y, A)

}
for all A,B ∈ CB(D).
Let T : D → CB(D ) be a multi-valued map. An element p ∈ D is a fixed point
of T if p ∈ Tp. The set of all fixed points of T is denoted by F (T ).We say that
T is:
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(i) nonexpansive if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ D
(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tp) ≤ d(x, p) for all x ∈ D and
all p ∈ F (T )
(iii) Lipschitzian if there exists a constant L > 0 such that H(Tx, Ty) ≤ L
d(x, y) for all x, y ∈ D
(iv) Lipschitzian quasi-nonexpansive if both (ii) and (iii) hold.

If F (T ) 6= ∅, then the class of multi-valued quasi-nonexpansive maps properly
contains the class of multi-valued nonexpansive maps.

In 1968, Markin [15] established convergence results for multi-valued nonex-
pansive maps in a Hilbert space. Later, some classical fixed point theorems for
single-valued maps were extended to multi-valued maps; for example, Banach
Contraction Principle was extended for multi-valued contractive maps in com-
plete metric spaces by Nadler [16]. Shimizu and Takahashi [20] established exis-
tence of fixed points of multi-valued nonexpansive maps in certain convex metric
spaces. The study of multi-valued maps is a rapidly growing area of research (see,
for instance [1, 18, 19, 22]).

The algorithms with error term for single-valued maps in Banach spaces have
been studied by many authors, see, e.g., [8, 21] and references therein.

Recently, Cholamjiak and Suntai [4] proposed and analyzed algorithms with
bounded error term for multi-valued maps in Banach spaces as follows:

Let T1 and T2 be two quasi-nonexpansive multi-valued maps from D into
CB(D) where D is a convex subset of a Banach space. Then for x1 ∈ D, generate
{xn} as

yn = α
′
nz

′
n + β

′
nxn +

(
1− α′

n − β
′
n

)
un, n ≥ 1

xn+1 = αnzn + βnxn + (1− αn − βn)vn, n ≥ 1
(1.1)

where z
′
n ∈ T1xn, zn ∈ T2yn, 0 ≤ αn, βn, αn+βn, α

′
n, β

′
n, α

′
n+β

′
n ≤ 1 and {un}, {vn}

are bounded sequences in D.
Let T1, T2 be two multi-valued maps from D into P (D) and PTix = {y ∈ Tix :

d (x, y) = d(x, Tix)}, i = 1, 2. Then for x1 ∈ D, generate {xn} as

yn = α
′
nz

′
n + β

′
nxn +

(
1− α′

n − β
′
n

)
un, n ≥ 1

xn+1 = αnzn + βnxn + (1− αn − βn)vn, n ≥ 1
(1.2)

where z
′
n ∈ PT1xn and zn ∈ PT2y2, 0 ≤ αn, βn, αn + βn, α

′
n, β

′
n, α

′
n + β

′
n ≤ 1 and

{un}, {vn} are bounded sequences in D.
Inspired and motivated by the work of Cholamjiak and Suntai [4], we translate

algorithms (1.1- 1.2) in the general setup of W−hyperbolic spaces and approxi-
mate a common fixed point of two multi-valued quasi-nonexpansive maps.

Kohlenbach [11] introduced a general setup known as W−hyperbolic spaces
which contains as a special case Banach spaces as well as CAT (0) spaces.

A W−hyperbolic space (X, d,W ) is a metric space (X, d) together with a map
W : X2 × [0, 1]→ X satisfying

(i) d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y)
(ii) d(W (x, y, α),W (x, y, β)) = |α− β| d(x, y)
(iii) W (x, y, α) = W (y, x, 1− α)
(iv)d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w)
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for all x, y, z, w ∈ X and α, β ∈ [0, 1]. The triplet (X, d,W ) satisfying only (i) is
the convex metric space due to Takahashi [23]. A subset K of a W−hyperbolic
space X is convex if W (x, y, α) ∈ K for all x, y ∈ K and α ∈ [0, 1].
The class of W−hyperbolic spaces contains normed spaces and their convex sub-
sets as subclasses and CAT (0) spaces form a very special subclass of the class of
W−hyperbolic spaces with unique geodesic paths.

A W−hyperbolic space X is uniformly convex [20] if for all u, x, y ∈ X, r > 0
and ε ∈ (0, 2], there exists a δ ∈ (0, 1] such that d

(
W
(
x, y, 1

2

)
, u
)
≤ (1 − δ)r,

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A map η : (0,∞) × (0, 2] → (0, 1] which provides such a δ = η(r, ε) for given

r > 0 and ε ∈ (0, 2], is called a modulus of uniform convexity of X . We call η
monotone if it decreases with r (for a fixed ε).

It has been shown in [13] that CAT (0) spaces are uniformly convexW−hyperbolic

spaces with modulus of uniform convexity η(r, ε) = ε2

8
. Thus, uniformly convex

W−hyperbolic spaces are a natural generalization of both uniformly convex Ba-
nach spaces and CAT (0) spaces. For details about CAT (0) spaces, see [2] and
[9].

Now we transform (1.1) and (1.2) in a W−hyperbolic space.
Let T1 and T2 be two quasi-nonexpansive multi-valued maps from D into

CB(D) where D is a convex subset of a hyperbolic space. Then for x1 ∈ D,
generate {xn} as

yn = W
(
z
′
n,W

(
xn, un,

β
′
n

1−α′
n

)
, α

′
n

)
, n ≥ 1,

xn+1 = W
(
zn,W

(
yn, vn,

βn
1−αn

)
, αn

)
, n ≥ 1,

(1.3)

where z
′
n ∈ T1xn, zn ∈ T2yn, 0 ≤ αn, βn, αn + βn, α

′
n, β

′
n, α

′
n + β

′
n ≤ 1, {un} and

{vn} are bounded in D.
Let T1 and T2 be two multi-valued maps from D into P (D) and PTix = {y ∈

Tix : d (x, y) = d(x, Tix)}, i = 1, 2. Then for x1 ∈ D, generate {xn} as

yn = W
(
z
′
n,W

(
xn, un,

β
′
n

1−α′
n

)
, α

′
n

)
, n ≥ 1,

xn+1 = W
(
zn,W

(
yn, vn,

βn
1−αn

)
, αn

)
, n ≥ 1,

(1.4)

where z
′
n ∈ PT1xn and zn ∈ PT2y2, 0 ≤ αn, βn, αn +βn, α

′
n, β

′
n, α

′
n +β

′
n ≤ 1, {un}

and {vn} are bounded in D.
It is worth mentioning that the algorithms (1.3-1.4) coincide with the algo-

rithms (1.1-1.2) when W (x, y, α) = αx+(1−α)y and X is a Banach space. More-
over, they provide algorithms in a CAT (0) space if W (x, y, α) = αx⊕ (1− α)y.

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define a
continuous functional

r(x, {xn}) = lim sup
n→∞

d(x, xn).

Then
(i) rK({xn}) = inf{r(x, {xn}) : x ∈ K} is called the asymptotic radius of {xn}
with respect to K ⊂ X,
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(ii) for any y ∈ K, the set AK({xn}) = {x ∈ K : r(x, {xn} ≤ r(y, {xn})} is called
the asymptotic center of {xn} with respect to K ⊂ X.

If the asymptotic radius and the asymptotic center is taken with respect to X,
then these are simply denoted by r({xn}) and A({xn}), respectively. In general,
A({xn}) may be empty or may contain infinitely many points. Through as-
ymptotic center technique of Edelstein [5] in Banach fixed point theory, one can
conclude that bounded sequences in general W−hyperbolic and normed spaces
do not have unique asymptotic center with respect to closed convex subsets. How-
ever, it is remarkable that a complete uniformly convex W−hyperbolic space with
monotone modulus of uniform convexity enjoys this property [13].

In 2008, Kirk and Panyanak [10] proposed a new type of convergence in geodesic
spaces, namely 4−convergence, which was originally introduced by Lim [14].
They showed that 4−convergence coincides with weak convergence in Banach
spaces satisfying the Opial condition and both concepts share many common
properties. For a general iteration scheme in CAT (0) spaces, we refer the reader
to [6].

A sequence {xn} in X is said to 4−converge to x ∈ X if x is the unique
asymptotic center for every subsequence {un} of {xn}. In this case, we write x as
4−limit of {xn}, i.e., 4− limn xn = x.

For two multi-valued maps T1 and T2, we set F = F (T1) ∩ F (T2) 6= ∅.

Lemma 1.1. [3]If {an} and {bn} are sequences of non-negative real numbers sat-
isfying an+1 ≤ an + bn, n ≥ 1 and

∑∞
n=1 bn <∞, then limn→∞ an exists.

Lemma 1.2. [7]Let (X, d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [b, c]
for some b, c ∈ (0, 1). If {xn} and {yn} are sequences in X with

lim sup
n−→∞

d(xn, x) ≤ r, lim sup
n−→∞

d(yn, x) ≤ r, lim
n−→∞

d(W (xn, yn, αn), x) = r

for some r ≥ 0, then limn→∞ d(xn, yn) = 0.

Lemma 1.3. [7]Let K be a nonempty, closed convex subset of a uniformly con-
vex hyperbolic space and {xn} a bounded sequence in K such that A({xn}) =
{y}. If {ym} is another sequence in K such that limm→∞ r(ym, {xn}) = ρ, then
limm→∞ ym = y.

2. Main results

The following lemma collects some inequalities which are needed in the sequel.

Lemma 2.1. Let D be a nonempty, closed and convex subset of a W−hyperbolic
space X. Let T1 and T2 be two multi-valued quasi-nonexpansive maps from D into
CB(D) such that T1p = {p} = T2p for all p ∈ F 6= ∅.Then for the algorithm {xn}
defined by (1.3) with 0 < l ≤ αn, α

′
n ≤ k < 1, p ∈ F , we have
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(i) d(yn, p) ≤ d(xn, p) +
(
1− α′

n − β
′
n

)
h for some h > 0

(ii) d(xn+1, p) ≤ d(xn, p)+
{

(αn + βn)
(
1− α′

n − β
′
n

)
+ (1− αn − βn)

}
h for some

h > 0

(iii) d
(
W
(
yn, vn,

βn
1−αn

)
, p
)
≤ d(yn, p) +

(
1−αn−βn

1−k

)
d (yn, vn)

(iv) d(yn, zn) ≤
(
1−αn−βn

1−k

)
d(yn, vn) + d

(
zn,W

(
yn, vn,

βn
1−αn

))
(v) d

(
W
(
xn, un,

β
′
n

1−α′
n

)
, p
)
≤ d(xn, p) +

(
1−α′

n−β
′
n

1−k

)
d (un, xn)

(vi) d(z
′
n, xn) ≤ d

(
z
′
n,W

(
xn, un,

β
′
n

1−α′
n

))
+
(

1−α′
n−β

′
n

1−k

)
d(un, xn).

Proof. (i) Set max{supn∈N d(un, p), supn∈N d(vn, p)} < h for some h > 0 because
{un} and {vn} are bounded sequences.

We observe that

d(yn, p) = d

(
W

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

)
, α

′

n

)
, p

)
≤ α

′

nd
(
z
′

n, p
)

+
(

1− α′

n

)
d

(
W

(
xn, un,

β
′
n

1− α′
n

)
, p

)
≤ α

′

nd
(
z
′

n, p
)

+ β
′

nd(xn, p) +
(

1− α′

n − β
′

n

)
d(un, p)

≤ α
′

nd
(
z
′

n, T1p
)

+ β
′

nd(xn, p) +
(

1− α′

n − β
′

n

)
h

≤ α
′

nH (T1xn, T1p) + β
′

nd(xn, p) +
(

1− α′

n − β
′

n

)
h

≤ α
′

nd(xn, p) + β
′

nd(xn, p) +
(

1− α′

n − β
′

n

)
h

= (α
′

n + β
′

n)d(xn, p) +
(

1− α′

n − β
′

n

)
h

≤ d(xn, p) +
(

1− α′

n − β
′

n

)
h.

(ii) Utilizing (i), we have

d(xn+1, p) = d

(
W

(
zn,W

(
yn, vn,

βn
1− αn

)
, αn

)
, p

)
≤ αnd(zn, p) + (1− αn)d

(
W

(
yn, vn,

βn
1− αn

)
, p

)
≤ αnd(zn, p) + βnd(yn, p) + (1− αn − βn)d(vn, p)

≤ αnH(T2yn, T2p) + βnd(yn, p) + (1− αn − βn)h

≤ (αn + βn)d(yn, p) + (1− αn − βn)h

≤ (αn + βn)
{
d(xn, p) +

(
1− α′

n − β
′

n

)
h
}

+ (1− αn − βn)h

≤ d(xn, p) +
{

(αn + βn)
(

1− α′

n − β
′

n

)
+ (1− αn − βn)

}
h.
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(iii) Since

d
(
W

(
yn, vn,

βn
1− αn

)
, p

)
≤ βn

1− αn
d(yn, p) +

(
1− βn

1− αn

)
d(vn, p)

≤ βn
1− αn

d(yn, p) +

(
1− βn

1− αn

)
{d(vn, yn) + d(yn, p)}

≤ d(yn, p) +

(
1− αn − βn

1− αn

)
d (vn, yn)

and 0 < l ≤ αn ≤ k < 1, therefore we have

d

(
W

(
yn, vn,

βn
1− αn

)
, p

)
≤ d (yn, p) +

(
1− αn − βn

1− k

)
d (vn, yn) .

(iv) From

d(yn, xn+1) = d

(
yn,W

(
zn,W

(
yn, vn,

βn
1− αn

)
, αn

))
≤ αnd(yn, zn) + (1− αn)d

(
yn,W

(
yn, vn,

βn
1− αn

))
≤ αnd(yn, zn) + (1− αn − βn)d(yn, vn)

and

d(zn, xn+1) = d

(
zn,W

(
zn,W

(
yn, vn,

βn
1− αn

)
, αn

))
≤ (1− αn)d

(
zn,W

(
yn, vn,

βn
1− αn

))
,

we have

d(yn, zn) ≤ d(yn, xn+1) + d(xn+1, zn)

≤ αnd(yn, zn) + (1− αn − βn)d(yn, vn)

+ (1− αn)d

(
zn,W

(
yn, vn,

βn
1− αn

))
.

Rearranging the terms in the above inequality and using 0 < l ≤ αn ≤ k < 1, we
get

d (yn, zn) ≤
(

1− αn − βn
1− k

)
d (yn, vn) + d

(
zn,W

(
yn, vn,

βn
1− αn

))
.
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(v) Since

d

(
W

(
xn, un,

β
′
n

1− α′
n

)
, p

)
≤ β

′
n

1− α′
n

d(xn, p) +

(
1− β

′
n

1− α′
n

)
d(un, p)

≤
(

1− β
′
n

1− α′
n

)
{d(un, xn) + d(xn, p)}

+
β

′
n

1− α′
n

d(xn, p)

≤ d(xn, p) +

(
1− α′

n − β
′
n

1− k

)
d(un, xn).

and 0 < l ≤ α
′
n ≤ k < 1, therefore we have

d

(
W

(
xn, un,

β
′
n

1− α′
n

)
, p

)
≤ d(xn, p) +

(
1− α′

n − β
′
n

1− k

)
d(un, xn).

(vi) From

d
(
z
′

n, yn

)
= d

(
z
′

n,W

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

)
, α

′

n

))
≤
(

1− α′

n

)
d

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

))
and

d(yn, xn) ≤ d

(
W

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

)
, α

′

n

)
, xn

)
≤ α

′

nd
(
xn, z

′

n

)
+
(

1− α′

n − β
′

n

)
d (xn, un) ,

we obtain

d(z
′

n, xn) ≤ d
(
z
′

n, yn

)
+ d(yn, xn)

≤
(

1− α′

n

)
d

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

))
+ α

′

nd
(
xn, z

′

n

)
+
(

1− α′

n − β
′

n

)
d (xn, un) .

Rearranging the terms in the above inequality and using 0 < l ≤ α
′
n ≤ k < 1, we

get d(z
′
n, xn) ≤ d

(
z
′
n,W

(
xn, un,

β
′
n

1−α′
n

))
+
(

1−α′
n−β

′
n

1−k

)
d (xn, un) . �

Lemma 2.2. Let D be a nonempty, closed and convex subset of a uniformly
convex W−hyperbolic space X. Let T1 and T2 be two multi-valued Lipschitzian
quasi-nonexpansive maps from D into CB(D) such that T1p = {p} = T2p for all
p ∈ F 6= ∅. Then for the algorithm {xn} defined by (1.3) with 0 < l ≤ αn, α

′
n ≤

k < 1,
∑∞

n=1(1− αn − βn) <∞ and
∑∞

n=1

(
1− α′

n − β
′
n

)
<∞, we have

lim
n→∞

d(xn, T1xn) = 0 = lim
n→∞

d(xn, T2xn).
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Proof. Since
∑∞

n=1(1 − αn − βn) < ∞ and
∑∞

n=1(1 − α
′
n − β

′
n) < ∞, therefore

Lemma 2.1 (ii) and Lemma 1.1 give that limn→∞ d(xn, p) exists. Assume that
limn→∞ d(xn, p) = c ≥ 0. Then it follows from Lemma 2.1 (i) that
lim supn→∞ d(yn, p) ≤ c. As {xn}, {yn}, {un} and {vn} are bounded sequences,
so max{supn∈N d(vn, yn), supn∈N d(un, xn)} <∞. Also observe that

lim
n→∞

d

(
W

(
zn,W

(
yn, vn,

βn
1− αn

)
, αn

)
, p

)
= lim

n→∞
d(xn+1, p) = c.

Moreover, the inequality d(zn, p) ≤ H(T2yn, T2p) ≤ d(yn, p) and Lemma 2.1 (iii)

imply that lim supn→∞ d(zn, p) ≤ c and lim supn→∞ d
(
W
(
yn, vn,

βn
1−αn

)
, p
)
≤

c, respectively. By Lemma 1.2, we have

lim
n→∞

d

(
W

(
yn, vn,

βn
1− αn

)
, zn

)
= 0. (2.1)

Taking lim sup on both sides in Lemma 2.1 (iv) and using (2.1), we have

lim
n→∞

d(yn, zn) = 0. (2.2)

Further,

d(xn+1, p) = d

(
W

(
zn,W

(
yn, vn,

βn
1− αn

)
, αn

)
, p

)
≤ αnd(zn, p) + βnd(yn, p) + (1− αn − βn)d(vn, p)

≤ αnd(zn, yn) + (αn + βn)d(yn, p) + (1− αn − βn)h

implies that c ≤ lim infn→∞ d(yn, p). This, in conjunction with
lim supn→∞ d(yn, p) ≤ c, implies that

lim
n→∞

d

(
W

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

)
, α

′

n

)
, p

)
= lim

n→∞
d(yn, p) = c.

Also, the inequality d
(
z
′
n, p
)
≤ H(T1xn, T1p) ≤ d(xn, p) and Lemma 2.1 (v)

imply that lim supn→∞ d
(
z
′
n, p
)
≤ c and lim supn→∞ d

(
W
(
xn, un,

β
′
n

1−α′
n

)
, p
)
≤ c,

respectively. Again by Lemma 1.2, we have

lim
n→∞

d

(
z
′

n,W

(
xn, un,

β
′
n

1− α′
n

))
= 0. (2.3)

Taking lim sup on both sides in Lemma 2.1 (vi) and using (2.3), we get

lim
n→∞

d(z
′

n, xn) = 0. (2.4)

As z
′
n ∈ T1xn, so d(xn, T1xn) ≤ d(z

′
n, xn) which implies, on letting n→∞,

lim
n→∞

d(xn, T1xn) = 0.

As {xn} and{un} are bounded, so is
{
d
(
un, z

′
n

)}
. Let K = supn∈Nd

(
un, z

′
n

)
.
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Then it follows from an inequality in the proof of Lemma 2.1 (vi) and (2.4)
that

d
(
yn, z

′

n

)
≤ β

′

nd
(
z
′

n, xn

)
+
(

1− α′

n − β
′

n

)
d
(
un, z

′

n

)
≤ β

′

nd
(
z
′

n, xn

)
+
(

1− α′

n − β
′

n

)
K → 0 as n→∞.

(2.5)

It follows from (2.4) and (2.5) that

d (yn, xn) ≤ d
(
yn, z

′

n

)
+ d

(
z
′

n, xn

)
→ 0 as n→∞. (2.6)

Using (2.2), (2.6) and the fact that zn ∈ T2yn, we get

d(xn, T2xn) ≤ d(xn, yn) + d(yn, zn) + d(zn, T2xn)

≤ d(xn, yn) + d(yn, zn) +H (T2yn, T2xn)

≤ d(xn, yn) + d(yn, zn) + Ld (yn, xn)→ 0 as n→∞.

That is, limn→∞ d(xn, T1xn) = 0 = limn→∞ d(xn, T2xn). �

Our next result deals with 4−convergence of the algorithm (1.3).

Theorem 2.3. Let D be a nonempty, closed and convex subset of a complete
uniformly convex W−hyperbolic space X with monotone modulus of uniform con-
vexity η and let T1 and T2 be two multi-valued Lipschitzian quasi-nonexpansive
maps from D into CB(D) with T1p = {p} = T2p for all p ∈ F 6= ∅.Then the
algorithm {xn} in (1.3) with 0 < l ≤ αn, α

′
n ≤ k < 1,

∑∞
n=1(1 − αn − βn) < ∞

and
∑∞

n=1

(
1− α′

n − β
′
n

)
<∞, 4− converges to a point in F.

Proof. As {d(xn, p)} converges, therefore {xn} is bounded. Hence {xn} has
a unique asymptotic centre, that is, A({xn}) = {x}. Let {un} be any sub-
sequence of {xn} such that A({un}) = {u}. Then by Lemma 2.2, we have
limn→∞ d(un, T1un) = 0 = limn→∞ d(un, T2un). Denote ww(xn) = ∪A({un}),
where union is taken over all subsequences {un} of {xn}. Let u ∈ ww(xn). Now
we show that u ∈ T1u. For this, we consider a sequence znk

∈ T1u such that

d(znk
, un) ≤ d(znk

, T1un) + d(T1un, un)

≤ H(T1u, T1un) + d(T1un, un)

≤ d(u, un) + d(T1un, un).

Therefore, we have

r(znk
, {un}) = lim sup

n→∞
d(znk

, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This implies that |r(znk
, {un})− r(u, {un})| → 0 as k → ∞. It follows from

Lemma 1.3 that limk→∞ znk
= u. Since T1u is closed, therefore u ∈ T1u. That is,

u ∈ F (T1). Similarly, we can show that u ∈ F (T2). Hence u ∈ F. Next, we show
that every subsequence {un} of {xn} has the the same center. That is, ww(xn)
is singleton.We have already assumed that A({xn}) = {x} and A({un}) = {u}.
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As u ∈ F, so limn→∞ d(xn, u) exists by applying Lemma 1.1 to (ii) in Lemma 2.1.
Suppose x 6= u. Then by the uniqueness of asymptotic centre, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction. This proves that {xn}, 4− converges to a point in F. �

Remark 2.4. Theorem 2.3 extends Theorem 4.6 in [12] to the case of two multi-
valued quasi-nonexpansive maps in a uniformly convex W−hyperbolic space. More-
over, the algorithm (1.3) is independent of compactness of the domain of maps.

Recall that a multi-valued map T : D → CB(D) is hemi-compact if any
bounded sequence {xn} in D satisfying d(xn, Txn)→ 0 as n→∞, has a conver-
gent subsequence.

A multi-valued map T : D → CB(D) is said to satisfy condition ( I) if there
is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for
t ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F )) for all x ∈ D.
Two multi-valued maps T1, T2 : D → CB(D) are said to satisfy condition( II) if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0
for r ∈ (0,∞)
such that either d(x, T1x) ≥ f(d(x, F )) or d(x, T2x) ≥ f(d(x, F )) holds for all
x ∈ D.

The following result gives a necessary and sufficient condition for strong con-
vergence of the algorithm (1.3) in a complete W−hyperbolic space.

Theorem 2.5. Let D be a nonempty, closed and convex subset of a complete
uniformly convex W−hyperbolic space X and let T1, T2 be two multi-valued Lip-
schitzian quasi-nonexpansive maps from D into CB(D) with F 6= ∅. Then the
algorithm {xn} in (1.3) with

∑∞
n=1(1−αn−βn) <∞ and

∑∞
n=1

(
1− α′

n − β
′
n

)
<

∞, converges strongly to a point in F if and only if lim infn→∞ d(xn, F ) = 0.

Proof. If {xn} converges to p ∈ F, then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F ) ≤
d(xn, p), we have lim infn→∞ d(xn, F ) = 0.
Conversely, suppose lim infn→∞ d(xn, F ) = 0. Since lim infn→∞ d(xn, F ) = 0 and
limn→∞ d(xn, F ) exists through Lemma 2.1 (ii), therefore limn→∞ d(xn, F ) = 0.
Next, we show that {xn} is a Cauchy sequence. Let ε > 0. Since limn→∞ d(xn, F ) =
0 and

∑∞
n=1 hn < ∞ where hn =

{
(αn + βn)

(
1− α′

n − β
′
n

)
+ (1− αn − βn)

}
h

for some h > 0 as in Lemma 2.1 (ii), therefore there exists n0 ≥ 1 such that
for all n ≥ n0, we have that d(xn, F ) < ε

5
and

∑∞
j=n0

hj <
ε
4
. In particular,

d(xn0 , F ) < ε
5
. That is, inf {d(xn0 , p) : p ∈ F} < ε

5
.There must exist p∗ ∈ F such

that d(xn0 , p
∗) < ε

4
.
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Note that, for any n > m ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ d(xn+m−1, p
∗) + hn+m−1 + d(xn−1, p

∗) + hn−1

≤ 2d(xn0 , p
∗) +

n+m−1∑
j=n0

hj +
n−1∑
j=n0

hj

≤ 2

(
d(xn0 , p

∗) +
n+m−1∑
j=n0

hj

)

≤ 2

(
d(xn0 , p

∗) +
∞∑

j=n0

hj

)
≤ 2

(ε
4

+
ε

4

)
= ε.

This proves that {xn} is a Cauchy sequence in X and so limn→∞ xn = q (say). We
claim that q ∈ F. Indeed, let ε > 0, then there exists an integer n1 ≥ 1 such that
d(xn, q) <

ε
4

for all n ≥ n1. Also limn→∞ d(xn, F ) = 0 implies that there exists an
integer n2 ≥ 1 such that d(xn, F ) < ε

5
for all n ≥ n2. Choose n3 = max(n1, n2).

Hence there exists q0 ∈ F such that d(xn3 , q0) <
ε
4
. Therefore, we have

d(T1q, q) ≤ d(T1q, q0) + d(q, q0) ≤ 2d (q, q0) ≤ 2 (d(xn3 , q) + d(xn3 , q0))

< 2
(ε

4
+
ε

4

)
= ε.

Therefore, we have d(T1q, q) = 0. Similarly, we can show that d(T2q, q) = 0. Hence
q ∈ F. �

As an application of Theorem 2.5, the following strong convergence result can
be easily proved by using Lemma 2.2.

Theorem 2.6. Let D be a nonempty, closed and convex subset of a complete uni-
formly convex W−hyperbolic space X. Let T1, T2 be two multi-valued Lipschitzian
quasi-nonexpansive maps from D into CB(D) with F 6= ∅ and either of the two
maps is hemi-compact or satisfies Condition (II). Then the algorithm {xn} in
(1.3) with 0 < l ≤ αn, α

′
n ≤ k < 1,

∑∞
n=1(1− αn − βn) <∞ and∑∞

n=1

(
1− α′

n − β
′
n

)
<∞, strongly converges to a point in F.

Remark 2.7. (i) The algorithm (1.3) generalizes algorithm (2.1) of [4] and ex-
tends algorithm (1.2) of [17] for multi-valued maps in W−hyperbolic spaces (ii)
Theorem 2.5 extends ([1], Theorem 4) to the case of two multi-valued quasi-
nonexpansive maps for the algorithm (1.3) which is different from the algorithm
defined by Abbas et al .[1] (iii) Theorem 2.5 generalizes ([4], Theorem 2.5) from
Banach spaces to W−hyperbolic spaces (iv) Our results also hold in CAT (0)
spaces and generalizes the corresponding results in [12, 18].
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We can also obtain approximation results for the algorithm (1.4). As the
calculations in these results are similar to those in the above results, so we omit
their proofs.

Theorem 2.8. Let D be a nonempty, closed and convex subset of a complete uni-
formly convex W−hyperbolic space X with monotone modulus of uniform convex-
ity η and let T1 and T2 be two multi-valued maps from D into P (D) with F 6= ∅
such that PT1 and PT2 are nonexpansive. Then the algorithm {xn} in (1.4) with
0 < l ≤ αn, α

′
n ≤ k < 1,

∑∞
n=1(1−αn−βn) <∞ and

∑∞
n=1

(
1− α′

n − β
′
n

)
<∞,

4− converges to a point in F.

Theorem 2.9. Let D be a nonempty, closed and convex subset of a complete
uniformly convex W−hyperbolic space X and let T1 and T2 be two multi-valued
maps from D into P (D) with F 6= ∅ such that PT1 and PT2 are nonexpansive. Then
the algorithm {xn} in (1.4) with 0 < l ≤ αn, α

′
n ≤ k < 1,

∑∞
n=1(1−αn−βn) <∞

and
∑∞

n=1

∑∞
n=1

(
1− α′

n − β
′
n

)
< ∞, converges strongly to a point in F if and

only if lim infn→∞ d(xn, F ) = 0.

Theorem 2.10. Let D be a nonempty, closed and convex subset of a complete
uniformly convex W−hyperbolic space X. Let T1 and T2 be two multi-valued
maps from D into P (D) with F 6= ∅ such that PT1 and PT2 are nonexpan-
sive. If one of the maps is hemi-compact or satisfies Condition (II), then the
algorithm {xn} in (1.4) with 0 < l ≤ αn, α

′
n ≤ k < 1,

∑∞
n=1(1 − αn − βn) < ∞

and
∑∞

n=1

(
1− α′

n − β
′
n

)
<∞, strongly converges to a point in F.

Remark 2.11. The essentials of hypotheses in our results are natural in view of the
following observations: X = [0, 1] × [0, 1] under the Euclidean distance. Define
maps S, T : X → CB(X) by S(x, y) =

{
1
4

(2x+ 1, 2y + 1)
}

and T (x, y) ={
1
6

(4x+ 1, 4y + 1)
}

and the parameters as αn = α
′
n = 1

2
and βn = β

′
n = n2+2n−1

2(n+1)2
.

Now the computations:S
(
1
2
, 1
2

)
=
{(

1
2
, 1
2

)}
= T

(
1
2
, 1
2

)
and

∑∞
n=1 (1− αn − βn) =∑∞

n=1

(
1− 1

2
− n2+2n−1

2(n+1)2

)
=
∑∞

n=1

(
1
2
− (n+1)2−2

2(n+1)2

)
=
∑∞

n=1
1

(n+1)2
< ∞ guarantee

the conclusions.

Acknowledgement. The second author (the first author) is grateful to King
Fahd University of Petroleum & Minerals for supporting project IN101037 (this
research).

References

1. M. Abbas, S.H. Khan, A.R. Khan and R.P. Agarwal, Common fixed points of two multi-
valued nonexpansive mappings by one-step iterative scheme, Appl. Math. Let. 24 (2011),
97–102.

2. M. Bridson and A. Haefliger, Metric spaces of Non-Positive Curvature, Springer-Verlag,
Berlin, Heidelberg, 1999.

3. S.S. Chang, Y.J. Cho and H. Zhou, Demiclosed principal and weak convergence problems
for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), 1245–1260.



ISHIKAWA TYPE ALGORITHM OF TWO MULTI-VALUED MAPS 109

4. W. Cholamjiak and S. Suantai, Approximation of common fixed points of two quasi-
nonexpansive multi-valued maps in Banach spaces, Comput. Math. Appl. 61 (2011), 941–
949.

5. M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull.
Amer. Math. Soc. 78 (1972), 206–208.

6. A.R. Khan, M.A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration
scheme in CAT(0) spaces, Nonlinear Anal. 74 (2011), 783–791.

7. A.R. Khan, H. Fukhar-ud-din and M.A.A. Khan, An implicit algorithm for two finite fam-
ilies of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 2012:54,
12 pp.

8. S.H. Khan and H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors
for two nonexpansive mappings, Nonlinear Anal. 61 (2005), 1295–1301.

9. W.A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analy-
sis (Malaga/Seville, 2002/2003), 195–225, Colecc. Abierta, 64, Univ. Sevilla Secr. Publ.,
Seville, 2003.

10. W. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal.
68 (2008), 3689–3696.

11. U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans.
Amer. Math. Soc. 357 (2005), 89–128.

12. W. Laowang and B. Panyanak, Strong and 4− Convergence theorems for multivalued
mappings in CAT (0) spaces, J. Inequal. Appl. 2009, Art. ID 730132, 16 pp.

13. L. Leustean, Nonexpansive iterations in uniformly convex W -hyperbolic spaces, Nonlinear
analysis and optimization I. Nonlinear analysis, 193–210, Contemp. Math., 513, Amer.
Math. Soc., Providence, RI, 2010.

14. T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–
182.

15. J.T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74
(1968), 639–640.

16. S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
17. K. Nammanee and S. Suantai, Approximating common fixed points of nonexpansive map-

pings in a Banach space, Thai J. Math. 2 (2008), 391–400.
18. B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach

spaces, Comput. Math. Appl. 54 (2007), 872–877.
19. K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued map-

ping with a fixed point, Czechoslovak Math. J. 55 (2005), 817–826.
20. T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex

metric spaces, Topol. Methods Nonlinear Anal. 8 (1996), 197–203.
21. Z.H. Sun, Y.Q. Ni and C. He, An implicit iteration process for nonexpansive mappings with

errors in Banach spaces, Nonlinear Funct. Anal. Appl. 9 (2004), 619–624.
22. Y. Song and H. Wang, Erratum to “Mann and Ishikawa iterative processes for multivalued

mappings in Banach spaces”, Comput. Math. Appl. 55 (2008), 2999–3002.
23. W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem.

Rep. 22 (1970), 142–149.

1Department of Mathematics and Statistics, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia.

E-mail address: hfdin@kfupm.edu.sa; hfdin@yahoo.com

E-mail address: arahim@kfupm.edu.sa

2Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur
63100, Pakistan

E-mail address: mubaid@188yahoo.com


	1. Introduction and preliminaries
	2. Main results
	References

