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Abstract. The paper is devoted to 2-local derivations on the algebra LS(M)
of all locally measurable operators affiliated with a type I∞ von Neumann
algebra M . We prove that every 2-local derivations on any ∗-subalgebra A in
LS(M), such that M ⊆ A, is a derivation.

1. Introduction

Given an algebra A, a linear operator D : A → A is called a derivation, if
D(xy) = D(x)y + xD(y) for all x, y ∈ A (the Leibniz rule). Each element a ∈ A
implements a derivation Da onA defined as Da(x) = [a, x] = ax−xa, x ∈ A. Such
derivations Da are said to be inner derivations. If the element a, implementing
the derivation Da, belongs to a larger algebra B containing A, then Da is called
a spatial derivation on A.

There exist various types of linear operators which are close to derivations
[8, 9, 14]. In particular R. Kadison [8] has introduced and investigated so-called
local derivations on von Neumann algebras and some polynomial algebras.

A linear operator ∆ on an algebra A is called a local derivation if given any
x ∈ A there exists a derivation D (depending on x) such that ∆(x) = D(x). The
main problems concerning this notion are to find conditions under which local
derivations become derivations and to present examples of algebras with local
derivations that are not derivations [8]. In particular Kadison [8] has proved that
each continuous local derivation from a von Neumann algebra M into a dual
M -bimodule is a derivation.
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In 1997, P. Semrl [14] introduced the concept of 2-local derivations and au-
tomorphisms. A map ∆ : A → A (not linear in general) is called a 2-local
derivation if for every x, y ∈ A, there exists a derivation Dx,y : A → A such that
∆(x) = Dx,y(x) and ∆(y) = Dx,y(y). Local and 2-local derivations have been stud-
ied on different operator algebras by many authors [2, 3, 4, 5, 7, 8, 9, 10, 11, 14].

In [14], P. Semrl described 2-local derivations on the algebra B(H) of all
bounded linear operators on the infinite-dimensional separable Hilbert space H.
A similar description for the finite-dimensional case appeared later in [9]. In
the paper [11] 2-local derivations have been described on matrix algebras over
finite-dimensional division rings. J. H. Zhang and H. X. Li [17] described 2-local
derivations on symmetric digraph algebras and constructed a 2-local derivation
on the algebra of all upper triangular complex 2 × 2-matrices which is not a
derivation. In [3] first two authors considered 2-local derivations on the algebra
B(H) of all linear bounded operators on an arbitrary (no separability is assumed)
Hilbert space H and proved that every 2-local derivation on B(H) is a derivation.

The present paper is devoted to study 2-local derivations on ∗-subalgebras of
the algebra LS(M) of all locally measurable operators with respect to type I∞ von
Neumann algebra M. We prove that every 2-local derivations on any ∗-subalgebra
A in LS(M), such that M ⊆ A, is a derivation.

2. Algebra of locally measurable operators

Let B(H) be the ∗-algebra of all bounded linear operators on a Hilbert space
H, and let 1 be the identity operator on H. Consider a von Neumann algebra
M ⊂ B(H). Denote by P (M) = {p ∈ M : p = p2 = p∗} the lattice of all
projections in M and by Pfin(M) the set of all finite projections in P (M).

A linear subspace D in H is said to be affiliated with M (denoted as DηM), if
u(D) ⊂ D for every unitary u from the commutant

M ′ = {y ∈ B(H) : xy = yx, ∀x ∈M}

of the von Neumann algebra M.
A linear operator x : D(x) → H, where the domain D(x) of x is a linear

subspace of H, is said to be affiliated with M (denoted as xηM) if D(x)ηM and
u(x(ξ)) = x(u(ξ)) for all ξ ∈ D(x) and for every unitary u ∈M ′.

A linear subspace D in H is said to be strongly dense in H with respect to the
von Neumann algebra M, if

• DηM ;
• there exists a sequence of projections {pn}∞n=1 in P (M) such that pn ↑ 1,
pn(H) ⊂ D and p⊥n = 1− pn is finite in M for all n ∈ N, where N is the
set of all natural numbers.

A closed linear operator x acting in the Hilbert space H is said to be measurable
with respect to the von Neumann algebra M, if xηM and D(x) is strongly dense
in H.

Denote by S(M) the set of all linear operators on H, measurable with respect to
the von Neumann algebra M. If x ∈ S(M), λ ∈ C, where C is the field of complex
numbers, then λx ∈ S(M) and the operator x∗, adjoint to x, is also measurable
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with respect to M (see [13]). Moreover, if x, y ∈ S(M), then the operators
x + y and xy are defined on dense subspaces and admit closures that are called,
correspondingly, the strong sum and the strong product of the operators x and
y, and are denoted by x

.
+ y and x ∗ y. It was shown in [13] that x

.
+ y and

x∗y belong to S(M) and these algebraic operations make S(M) a ∗-algebra with
the identity 1 over the field C. It is clear that, M is a ∗-subalgebra of S(M). In
what follows, the strong sum and the strong product of operators x and y will be
denoted in the same way as the usual operations, by x+ y and xy.

A closed linear operator x in H is said to be locally measurable with respect
to the von Neumann algebra M, if xηM and there exists a sequence {zn}∞n=1 of
central projections in M such that zn ↑ 1 and znx ∈ S(M) for all n ∈ N (see
[16]).

Denote by LS(M) the set of all linear operators that are locally measurable
with respect to M. It was proved in [16] that LS(M) is a ∗-algebra over the field
C with the identity 1 under the strong addition and the strong multiplication.
In such a case, S(M) is a ∗-subalgebra in LS(M). In the case where M is a finite
von Neumann algebra or a factor, the algebras S(M) and LS(M) coincide. This
is not true in the general case. In [12] the class of von Neumann algebras M has
been described for which the algebras LS(M) and S(M) coincide.

We say that a measure µ on a measure space (Ω,Σ, µ) has the direct sum
property if there is a family {Ωi}i∈J ⊂ Σ, 0 < µ(Ωi) < ∞, i ∈ J, such that for
any A ∈ Σ, µ(A) < ∞, there exist a countable subset J0 ⊂ J and a set B with
zero measure such that A =

⋃
i∈J0

(A ∩ Ωi) ∪B.

It is well-known (see e.g. [13]) that for each commutative von Neumann algebra
M there exists a measure space (Ω,Σ, µ) with µ having the direct sum property
such that M is ∗-isomorphic to the algebra L∞(Ω,Σ, µ) of all (equivalence classes
of) complex essentially bounded measurable functions on (Ω,Σ, µ) and in this case
LS(M) = S(M) ∼= L0(Ω,Σ, µ), where L0(Ω,Σ, µ) is the algebra of all (equivalence
classes of) complex measurable functions on (Ω,Σ, µ).

Further we consider the algebra S(Z(M)) of operators which are measurable
with respect to the center Z(M) of the von Neumann algebra M. Since Z(M)
is an abelian von Neumann algebra, it is ∗-isomorphic to L∞(Ω,Σ, µ) for an
appropriate measure space (Ω,Σ, µ). Therefore the algebra S(Z(M)) coincides
with Z(LS(M)) and can be identified with the algebra L0(Ω,Σ, µ).

Let M be a von Neumann algebra. Given an element x ∈ LS(M), the smallest
projection p in M with xp = x is called the right support of x and denoted by
r(x). The left support l(x) is the smallest projection p in M with px = x. For a
∗-subalgebra A ⊂ LS(M) denote

F(A) = {x ∈ A : l(x) ∈ Pfin(M)}.

From the definition of the algebra F(A) we have that the following properties
are equivalent:

(1) x ∈ F(A);
(2) ∃ p ∈ Pfin(M) such that px = x;
(3) ∃ p ∈ Pfin(M) such that xp = x;



2-LOCAL DERIVATIONS ON ALGEBRAS 113

(4) ∃ p ∈ Pfin(M) such that pxp = x.

Note that F(A) is an ∗-ideal in A. Moreover the algebra F(A) is semi-prime,
i.e. if a ∈ F(A) and aF(A)a = {0} then a = 0. Indeed, let a ∈ F(A) and
aF(A)a = {0}, i.e. axa = 0 for all x ∈ F(A). In particular for x = a∗ we have
aa∗a = 0 and hence a∗aa∗a = 0, i.e. |a|4 = 0. Therefore a = 0.

Recall the definition of the faithful normal semifinite extended center valued
trace on the algebra M (see [15]).

Let M be an arbitrary von Neumann algebra with the center
Z(M) ≡ L∞(Ω,Σ, µ) and let M+ be the set of all positive elements of M. By L+

we denote the set of all measurable functions f : (Ω,Σ, µ)→ [0,∞] (modulo func-
tions equal to zero µ-almost everywhere). Then there exists a map Φ : M+ → L+

with the following properties:

(1) Φ(x+ y) = Φ(x) + Φ(y) for x, y ∈M+;
(2) Φ(ax) = aΦ(x) for a ∈ Z(M)+, x ∈M+;
(3) Φ(xx∗) = Φ(x∗x);
(4) Φ(x∗x) = 0 ⇒ x = 0;

(5) Φ

(
sup
i∈J

xi

)
= sup

i∈J
Φ(xi) for any bounded increasing net {xi} in M+.

This map Φ : M+ → L+, is called the extended center valued trace on M.
The set {x ∈ M : Φ(x∗x) ∈ Z(M)} is an ideal of M. If this ideal is σ-weakly

dense in M, then Φ is said to be semifinite.
It is well-known (see e.g. [15]) that a von Neumann algebra M is semifinite if

and only if M admits a faithful, semifinite, normal extended center valued trace.
Let us remark that a projection p ∈M is finite if and only if Φ(p) ∈ S(Z(M)).

Hence for any x ∈ F(LS(M)) ∩M+ we have that Φ(x) ∈ S(Z(M)).
Note that the algebra LS(M) has the following remarkable property: given any

family {zi}i∈I of mutually orthogonal central projections in M with
∨
i∈I
zi = 1 and

a family of elements {xi}i∈I in LS(M) there exists a unique element x ∈ LS(M)
such that zix = zixi for all i ∈ I. This element is denoted by x =

∑
i∈I
zixi (see

[12]). Conversely if M is a type I von Neumann algebra then for an arbitrary
element x ∈ LS(M) there exists a sequence {zn} of mutually orthogonal central
projections with

∨
n∈N

zn = 1 such that znx ∈ M for all n ∈ N (see [1]). For

0 ≤ x ∈ F(LS(M)) set

Φ(x) =
∑
n∈N

znΦ(znx). (2.1)

Since the trace Φ is Z(M)-homogeneous, the equality (2.1) gives a well-defined
map from F(LS(M))+ into S(Z(M)).

Since each element of F(LS(M)) is a finite linear combination of positive ele-
ments from F(LS(M)) we can naturally extend Φ to a S(Z(M))-valued trace on
F(LS(M)).

Now let µ be an arbitrary faithful normal semifinite trace on Z(M). Put τ =
µ ◦ Φ. Then by [15, Lemma 2.16] we have that

τ(xy) = τ(yx)
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for all x ∈M, y ∈ F(LS(M)) ∩M. Therefore

Φ(xy) = Φ(yx)

for all x ∈ LS(M), y ∈ F(LS(M)). Since the trace Φ maps the set F(LS(M))
into S(Z(M)) and F(LS(M)) is an ideal in LS(M) we have

Φ(axy) = Φ((ax)y) = Φ((ya)x) = Φ(xya),

i.e.
Φ(axy) = Φ(xya) (2.2)

for all a, x ∈ LS(M), y ∈ F(LS(M)).

3. Main results

Let D be a derivation on LS(M). Then D maps the ideal F(LS(M)) into itself.
Indeed, for any x ∈ F(LS(M)) there exists a finite projection p ∈ M such that
x = xp. Then

D(x) = D(xp) = D(x)p+ xD(p),

and therefore D(x) ∈ F(LS(M)). Hence any 2-local derivation on LS(M) also
maps F(LS(M)) into itself.

Lemma 3.1. Let M be an arbitrary semifinite von Neumann algebra and let
b ∈ LS(M) be an arbitrary element. If Φ(xb) = 0 for all x ∈ F(LS(M)) then
b = 0.

Proof. Let b ∈ LS(M). For any finite projection e ∈ LS(M) we have eb∗ ∈
F(LS(M)) and therefore by the assumption of the lemma it follows that Φ(eb∗b) =
0. Thus

0 = Φ(eb∗b) = Φ(e2b∗b) = Φ(eb∗be) = Φ((be)∗(be)),

i.e.
Φ((be)∗(be)) = 0.

Since the trace Φ is faithful, we obtain (be)∗(be) = 0, i.e. be = 0.
Now take a family of finite projections {eα}α∈J in M such that eα ↑ 1. Then

0 = beαb
∗ ↑ bb∗,

i.e. bb∗ = 0. Thus b = 0. The proof is complete. �

Lemma 3.2. Let M be an arbitrary von Neumann algebra of type I∞ and let
∆ : LS(M)→ LS(M) be a 2-local derivation. Then

(1) ∆ is S(Z(M))-homogenous, i.e. ∆(cx) = c∆(x) for all c ∈ S(Z(M)),
x ∈ LS(M);

(2) ∆(x2) = ∆(x)x+ x∆(x) for all x ∈ LS(M).

Proof. (1) For each x ∈ LS(M), and for c ∈ S(Z(M)) there exists a derivation
Dx,cx such that ∆(x) = Dx,cx(x) and ∆(cx) = Dx,cx(cx). Since M is a type
I∞ then by [1, Theorem 2.7] every derivation on LS(M) is inner, in particular,
S(Z(M))-linear. Therefore

∆(cx) = Dx,cx(cx) = cDx,cx(x) = c∆(x).

Hence, ∆ is S(Z(M))-homogenous.
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(2) For each x ∈ LS(M), there exists a derivation Dx,x2 such that ∆(x) =
Dx,x2(x) and ∆(x2) = Dx,x2(x

2). Then

∆(x2) = Dx,x2(x
2) = Dx,x2(x)x+ xDx,x2(x) = ∆(x)x+ x∆(x)

for all x ∈ LS(M). The proof is complete. �

Lemma 3.3. Let M be an arbitrary von Neumann algebra of type I∞. If ∆ :
LS(M)→ LS(M) is a 2-local derivation such that ∆|F(LS(M)) ≡ 0, then ∆ ≡ 0.

Proof. Let ∆ : LS(M)→ LS(M) be a 2-local derivation such that ∆|F(LS(M)) ≡
0. For arbitrary x ∈ LS(M) and y ∈ F(LS(M)) there exists a derivation Dx,y

on LS(M) such that ∆(x) = Dx,y(x) and ∆(y) = Dx,y(y). By [1, Theorem 2.7]
there exists element a ∈ LS(M) such that

[a, xy] = Dx,y(xy) = Dx,y(x)y + xDx,y(y) = ∆(x)y + x∆(y),

i.e.

[a, xy] = ∆(x)y + x∆(y).

Since y ∈ F(LS(M)) we have ∆(y) = 0, and therefore [a, xy] = ∆(x)y. By the
equality (2.2) we obtain that

0 = Φ(axy − xya) = Φ ([a, xy]) = Φ (∆(x)y) ,

i.e. Φ(∆(x)y) = 0 for all y ∈ F(LS(M)). By Lemma 3.1 we have that ∆(x) = 0.
The proof is complete. �

Lemma 3.4. Let M be an arbitrary von Neumann algebra of type I∞ and let
∆ : LS(M)→ LS(M) be a 2-local derivation. Then the restriction ∆|F(LS(M)) of
the operator ∆ on F(LS(M)) is additive.

Proof. Let ∆ : LS(M) → LS(M) be a 2-local derivation. For each x, y ∈
F(LS(M)) there exists a derivation Dx,y on LS(M) such that ∆(x) = Dx,y(x)
and ∆(y) = Dx,y(y). By [1, Theorem 2.7] there exists an element a ∈ LS(M)
such that

[a, xy] = Dx,y(xy) = Dx,y(x)y + xDx,y(y) = ∆(x)y + x∆(y),

i.e.

[a, xy] = ∆(x)y + x∆(y).

Similarly as in Lemma 3.3 we have

0 = Φ(axy − xya) = Φ([a, xy]) = Φ (∆(x)y + x∆(y)) ,

i.e. Φ(∆(x)y) = −Φ(x∆(y)). For arbitrary u, v, w ∈ F(LS(M)), set x = u + v,
y = w. Then from above we obtain

Φ(∆(u+ v)w) = −Φ((u+ v)∆(w)) =

= −Φ(u∆(w))− Φ(v∆(w)) = Φ(∆(u)w) + Φ(∆(v)w) = Φ((∆(u) + ∆(v))w),

and so

Φ((∆(u+ v)−∆(u)−∆(v))w) = 0
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for all u, v, w ∈ F(LS(M)). Denote b = ∆(u+ v)−∆(u)−∆(v) and put w = b∗.
Then Φ(bb∗) = 0. Since the trace Φ is faithful it follows that bb∗ = 0, i.e. b = 0.
Therefore

∆(u+ v) = ∆(u) + ∆(v),

i.e. ∆ is an additive map on F(LS(M)). The proof is complete. �

The following theorem is the main result of this paper.

Theorem 3.5. Let M be an arbitrary von Neumann algebra of type I∞ and let
A be a ∗-subalgebra of LS(M) such that M ⊆ A. Then every 2-local derivation
∆ : A → A is a derivation.

Proof. First we consider the case A = LS(M). By Lemma 3.4 the restriction
∆|F(LS(M)) of the operator ∆ on F(LS(M)) is additive. Further by Lemma 3.2
∆ is a homogeneous, and therefore ∆|F(LS(M)) is a linear. Again by Lemma 3.4
we have ∆(x2) = ∆(x)x+ x∆(x) for all x ∈ LS(M). So the map ∆|F(LS(M)) is a
linear Jordan derivation on F(LS(M)) in the sense of [6]. In [6, Theorem 1] it is
proved that any Jordan derivation on a semi-prime algebra is a derivation. Since
F(LS(M)) is semiprime, therefore the linear operator ∆|F(LS(M)) is a derivation
on F(LS(M)).

Since by Lemma 3.2 ∆ is S(Z(M))-homogeneous then by [4, Corollary 3] the
derivation ∆|F(LS(M)) : F(LS(M))→ F(LS(M)) is spatial, i.e.

∆(x) = ax− xa, x ∈ F(LS(M)) (3.1)

for an appropriate a ∈ LS(M).
Let us show that ∆(x) = ax−xa for all x ∈ LS(M). Consider the 2-local deriva-

tion ∆0 = ∆−Da. Then from the equality (3.1) we obtain that ∆0|F(LS(M)) ≡ 0.
Now by Lemma 3.3 it follows that ∆0 ≡ 0. This means that ∆ = Da.

Now let A be an arbitrary ∗-subalgebra of LS(M) such that M ⊆ A. Since
M is a type I von Neumann algebra for any element x ∈ LS(M) there exists a
sequence {zn} of mutually orthogonal central projections with

∨
n∈N

zn = 1 such

that znx ∈M for all n ∈ N. Set

∆̃(x) =
∑
n∈N

zn∆(znx). (3.2)

Since the map ∆ is Z(M)-homogeneous, the equality (3.2) gives a well-defined 2-
local derivation on LS(M). From above we have that ∆̃ is a derivation. Therefore
∆ is a derivation. The proof is complete. �

Corollary 3.6. Let M be an arbitrary von Neumann algebra of type I∞. Then
every 2-local derivation ∆ : LS(M)→ LS(M) is a derivation.
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