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Abstract. In this paper several new inequalities of Grüss’ type for Riemann–
Stieltjes integral with monotonic nondecreasing integrators under various as-
sumptions for integrands are proved. Applications for functions of selfadjoint
operators on complex Hilbert spaces are provided as well.

1. Introduction

The Čebyšev functional defined by

T (f, g) =
1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt (1.1)

has interesting applications in the approximation of the integral of a product as
pointed out in the references below.

The problem of bounding the Čebyšev functional has a long history, starting
with Grüss [21] inequality in 1935, where he had proved that for two integrable
functions f, g such that φ ≤ f(x) ≤ Φ and γ ≤ f(x) ≤ Γ for any x ∈ [a, b], the
inequality

|C (f, g)| ≤ 1

4
(Φ− φ) (Γ− γ) (1.2)

holds, and the constant 1
4

is the best possible.
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After that many authors have studied the functional (1.1) and therefore, several
bounds under various assumptions for the functions involved have been obtained.
For some new results and generalizations the reader may refer to [1]–[20], [23]
and the references therein.

One of the recent generalization of (1.1) was considered by Dragomir in [9].
Namely, he has introduced the following Čebyšev functional for the Riemann–
Stieltjes integral

T (f, g; u) :=
1

u (b)− u (a)

∫ b

a

f (t) g (t) du (t) (1.3)

− 1

u (b)− u (a)

∫ b

a

f (t) du (t) · 1

u (b)− u (a)

∫ b

a

g (t) du (t)

under the assumptions that f, g are continuous on [a, b] and u is of bounded
variation on [a, b] with u(b) 6= u(a).

By simple computations with the Riemann–Stieltjes integral, Dragomir [9] es-
tablished the identity:

T (f, g; u) =
1

u (b)− u (a)

∫ b

a

[
f (t)− f (a) + f (b)

2

]
(1.4)

·
[
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

]
du (t),

to obtain several sharp bounds of the Čebyšev functional for the Riemann–
Stieltjes integral (1.3).

In this paper, some new Grüss’ type inequalities for the Riemann–Stieltjes
integral with monotonic nondecreasing integrators are proved. Applications for
functions of selfadjoint operators on complex Hilbert spaces via the spectral rep-
resentation theorem are provided as well.

2. The Results

We may start with the following result:

Theorem 2.1. Let f : [a, b] → C be a p–Hf–Hölder continuous function on [a, b],
where p ∈ (0, 1] and Hf > 0 are given. Let g, u : [a, b] → R be such that g is
Riemann–Stieltjes integrable with respect to a monotonic non-decreasing function
u on [a, b] and there exists the real numbers γ, Γ such that γ ≤ g(x) ≤ Γ for all
x ∈ [a, b], then

|T (f, g; u)| ≤ 1

2p+1
Hf (Γ− γ) (b− a)p . (2.1)
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Proof. Taking the modulus in (1.4) and utilizing the triangle inequality, we get

|T (f, g; u)| ≤ 1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ (2.2)

×
∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

≤ 1

u (b)− u (a)
sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t).

Now, using the same approach considered in [11], we define

I (g) :=
1

u (b)− u (a)

∫ b

a

(
g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

)2

du (t).

Then, we have

I (g) =
1

u (b)− u (a)

∫ b

a

[
g2 (t)− 2g (t)

1

u (b)− u (a)

∫ b

a

g (s) du (s)

+

(
1

u (b)− u (a)

∫ b

a

g (s) du (s)

)2
]

du (t)

=
1

u (b)− u (a)

∫ b

a

g2 (t) du (t)−
(

1

u (b)− u (a)

∫ b

a

g (s) du (s)

)2

and

I (g) =

(
Γ− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

) (
1

u (b)− u (a)

∫ b

a

g (s) du (s)− γ

)
− 1

u (b)− u (a)

∫ b

a

(Γ− g (s)) (g (s)− γ) du (s).

As γ ≤ g(t) ≤ Γ, for all t ∈ [a, b], then∫ b

a

(Γ− g (s)) (g (s)− γ) du (s) ≥ 0,

which implies

I (g) (2.3)

≤
(

Γ− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

) (
1

u (b)− u (a)

∫ b

a

g (s) du (s)− γ

)
≤ 1

4
(Γ− γ)2 .

Using Cauchy–Buniakowski–Schwarz’s integral inequality we have

I (g) ≥
[

1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

]2
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and thus by (2.3) we get

1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t) ≤ 1

2
(Γ− γ) . (2.4)

Now, since f is of p–Hf–Hölder type on [a, b], then we have∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ =

∣∣∣∣f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣
≤ 1

2
|f (t)− f (a)|+ 1

2
|f (t)− f (b)|

≤ Hf

2
[(t− a)p + (b− t)p] .

It follows that:

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ≤ Hf

(
b− a

2

)p

. (2.5)

Combining (2.4) and (2.5) with (2.2), we get

|T (f, g; u)| ≤ 1

u (b)− u (a)
sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

≤ Hf

2p+1
(Γ− γ) (b− a)p ,

as required. �

Corollary 2.2. Let g, u be as in Theorem 2.1. If f : [a, b] → C is Lf–Lipschitz
on [a, b], then

|T (f, g; u)| ≤ 1

4
Lf (Γ− γ) (b− a) .

When the function f is of bounded variation we can state the following result
as well:

Theorem 2.3. Let g, u be as in Theorem 2.1. Let f : [a, b] → C be a function of
bounded variation on [a, b], then we have

|T (f, g; u)| ≤ 1

4
(Γ− γ)

b∨
a

(f) . (2.6)

The constant 1
4

is best possible.

Proof. As in Theorem 2.1, we observe that

|T (f, g; u)| (2.7)

≤ 1

u (b)− u (a)
sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t),
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and

1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t) ≤ 1

2
(Γ− γ) . (2.8)

Since f is of bounded variation on [a, b], then we have

sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
= sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (t)− f (b)

2

∣∣∣∣
≤ 1

2
sup

t∈[a,b]

[|f (t)− f (a)|+ |f (t)− f (b)|] ≤ 1

2

b∨
a

(f) , (2.9)

for all t ∈ [a, b]. Finally, combining the inequalities (2.7)–(2.9), we obtain the
required result (2.6).

Assume that (2.6) holds with a constant C > 0,i.e.,

|T (f, g; u)| ≤ C (Γ− γ)
b∨
a

(f) . (2.10)

Consider the functions u (t) = t and f (t) = g (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] . Then∨b

a (f) = 2, Γ− γ = 2 and

1

b− a

∫ b

a

f (t) g (t) dt = 1,

∫ b

a

f (t) dt =

∫ b

a

g (t) dt = 0

and from (2.10) we get C ≥ 1
4

which proves the sharpness of the constant. �

We have the following result as well:

Theorem 2.4. Let g : [a, b] → C be such that g is of bounded variation on [a, b]
and u be a monotonic nondecreasing functions on [a, b], then we have

|T (f, g; u)| ≤

 Hf (b− a)p ∨b
a (g) , if f is Hf -p-Hölder

1
2

∨b
a (f)

∨b
a (g) , if f is of bounded variation

(2.11)

where, Hf > 0 and p ∈ (0, 1] are given.
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Proof. Using (1.4) we may write

|T (f, g; u)| (2.12)

≤ 1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

=
1

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∣∣∣∣∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣ du (t)

≤ 1

(u (b)− u (a))2

×
∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ∫ b

a

|g (t)− g (s)| du (s)

]
du (t) .

But since g is of bounded variation we then have∫ b

a

|g (t)− g (s)| du (s) ≤ sup
s∈[a,b]

|g (t)− g (s)|
∫ b

a

du (s)

≤
b∨
a

(g) [u (b)− u (a)] .

Therefore, if f is of p–Hölder type, then we have

|T (f, g; u)|

≤ 1

2

1

u (b)− u (a)

b∨
a

(g)

∫ b

a

[|f (t)− f (a)|+ |f (t)− f (b)|] du (t)

≤ Hf

2 (u (b)− u (a))

b∨
a

(g)

∫ b

a

[|t− a|p + |t− b|p] du (t)

=
Hf

2 (u (b)− u (a))

b∨
a

(g)

∫ b

a

[(t− a)p + (b− t)p] du (t). (2.13)

We have∫ b

a

[(t− a)p + (b− t)p] du (t) =

∫ b

a

(t− a)p du (t) +

∫ b

a

(b− t)p du (t) . (2.14)

Utilising the integration by parts formula, we have∫ b

a

(t− a)p du (t) = (b− a)p u (b)− p

∫ b

a

u (t) (t− a)p−1 dt
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and ∫ b

a

(b− t)p du (t) = − (b− a)p u (a) + p

∫ b

a

u (t) (b− t)p−1 dt.

Now, since u is monotonic we have∫ b

a

u (t) (t− a)p−1 dt ≥ 1

p
(b− a)p u (a) ,

and ∫ b

a

u (t) (b− t)p−1 dt ≤ 1

p
(b− a)p u (b) .

Thus, by (2.14), we get∫ b

a

[(t− a)p + (b− t)p] du (t) =

∫ b

a

(t− a)p du (t) +

∫ b

a

(b− t)p du (t) (2.15)

≤ 2 (b− a)p [u (b)− u (a)] ,

which gives by (2.13), that

|T (f, g; u)| ≤ Hf

2 (u (b)− u (a))

b∨
a

(g)

∫ b

a

[(t− a)p + (b− t)p] du (t).

≤ Hf (b− a)p
b∨
a

(g) ,

which prove the first part of inequality (2.11).
To prove the second part of (2.11), assume that f is of bounded variation, then

we have

|T (f, g; u)|

≤ 1

2

1

u (b)− u (a)

b∨
a

(g)

∫ b

a

[|f (t)− f (a)|+ |f (t)− f (b)|] du (t)

≤ 1

2

b∨
a

(g)
b∨
a

(f)

and thus the theorem is proved. �

Theorem 2.5. Let g, u : [a, b] → R be such that g is of q-Hg–Hölder type on
[a, b], and u be a monotonic nondecreasing functions on [a, b], then we have

|T (f, g; u)| ≤

 Hg (b− a)q ∨b
a (f) , if f is of bounded variation

1
2p HfHg (b− a)p+q , if f is Hf -p-Hölder

(2.16)

where Hf > 0 and p ∈ (0, 1] are given.
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Proof. Using (1.4), we may write

|T (f, g; u)| (2.17)

≤ 1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

=
1

(u (b)− u (a))2

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∣∣∣∣∫ b

a

[g (t)− g (s)] du (s)

∣∣∣∣ du (t)

≤ 1

(u (b)− u (a))2

×
∫ b

a

[∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣ ∫ b

a

|g (t)− g (s)| du (s)

]
du (t)

≤ 1

(u (b)− u (a))2 sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

[∫ b

a

|g (t)− g (s)| du (s)

]
du (t)

≤ 1

2 (u (b)− u (a))2

b∨
a

(f)

∫ b

a

[∫ b

a

|g (t)− g (s)| du (s)

]
du (t).

Since g is of q-Hg–Holder type on [a, b], then we have

|T (f, g; u)| (2.18)

≤ 1

2 (u (b)− u (a))2

b∨
a

(f)

∫ b

a

[∫ b

a

|g (t)− g (s)| du (s)

]
du (t)

≤ Hg

2 (u (b)− u (a))2

b∨
a

(f)

∫ b

a

[∫ b

a

|t− s|q du (s)

]
du (t).
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Now, using the Riemann–Stieltjes integral and then utilizing the monotonicity of
u on [a, b] (twice), we get∫ b

a

[∫ b

a

|t− s|q du (s)

]
du (t)

=

∫ b

a

[∫ t

a

(s− a)q du (s) +

∫ b

t

(b− s)q du (s)

]
du (t)

=

∫ b

a

[
(t− a)q u (t)− q

∫ t

a

(s− a)q−1 u (s) ds

− (b− t)q u (t) + q

∫ b

t

(b− s)q−1 u (s) ds

]
du (t)

≤
∫ b

a

[(t− a)q u (t)− (t− a)q u (a)− (b− t)q u (t) + (b− t)q u (b)] du (t)

≤
∫ b

a

[(t− a)q u (b)− (t− a)q u (a)− (b− t)q u (a) + (b− t)q u (b)] du (t)

= [u (b)− u (a)]

∫ b

a

[(t− a)q + (b− t)q] du (t)

≤ 2 (b− a)q [u (b)− u (a)]2 , by (2.15).

which proves the first part of (2.16).
To prove the second part of (2.16), assume that f is of p-Hf–Hölder type, then

we have

|T (f, g; u)|

≤ 1

(u (b)− u (a))2 sup
t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

[∫ b

a

|g (t)− g (s)| du (s)

]
du (t)

≤ Hg

2 (u (b)− u (a))2Hf

(
b− a

2

)p ∫ b

a

[∫ b

a

|t− s|q du (s)

]
du (t)

=
Hg

2 (u (b)− u (a))2Hf

(
b− a

2

)p

2 (b− a)q (u (b)− u (a))2

=
1

2p
HgHf (b− a)p+q ,

which proves the second part of (2.16), and thus the proof is established. �

3. Generalizations of some recent results

In this section we generalize some Grüss type inequalities for Lebesgue–Stieltjes
integral.

In the recent work [7], Dragomir has proved the following inequality:
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Theorem 3.1. Let f : [a, b] → C be of bounded variation on [a, b] and g : [a, b] →
C a Lebesgue integrable function on [a, b], then

|T (f, g)| ≤ 1

2

b∨
a

(f)
1

b− a

∫ b

a

∣∣∣∣g (t)− 1

b− a

∫ b

a

g (s) ds

∣∣∣∣ dt, (3.1)

where,
∨b

a (f) denotes the total variation of f on the interval [a, b]. The constant
1
2

is best possible in (3.1).

Another result when both functions are of bounded variation, was considered
in the same paper [7], as follows:

Theorem 3.2. If f, g : [a, b] → C are of bounded variation on [a, b], then

|T (f, g)| ≤ 1

4

b∨
a

(f)
b∨
a

(g) (3.2)

The constant 1
4

is best possible in (3.2).

The following result holds:

Theorem 3.3. Let f : [a, b] → C be of bounded variation on [a, b] and g : [a, b] →
C be such that g is a Lebesgue–Stieltjes integrable with respect to a monotonic
nondecreasing function u on [a, b], then

|T (f, g; u)| (3.3)

≤ 1

2

b∨
a

(f)
1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t).

The constant 1
2

is best possible.

Proof. Using (1.4) and utilizing the triangle inequality, we get

|T (f, g; u)|

≤ 1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

≤ 1

u (b)− u (a)
sup

t∈[a,b]

∣∣∣∣f (t)− f (a) + f (b)

2

∣∣∣∣
×

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

≤ 1

2

b∨
a

(f)
1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t) .

Since f is of bounded variation on [a, b], then we have that

|f (t)− f (a)|+ |f (t)− f (b)| ≤
b∨
a

(f)



NEW GRÜSS TYPE INEQUALITIES 87

for all t ∈ [a, b].
The sharpness of (3.3) follows immediately by taking u (t) = t and f (t) =

sgn
(
t− a+b

2

)
and g (t) =

(
t− a+b

2

)
. For the details see [7]. �

The variance of the function f : [a, b] → C which is square integrable on [a, b]
by D (f) and is defined as [7]:

D (f) :=
[
T

(
f, f

)]1/2

=

[
1

b− a

∫ b

a

|f (t)|2 dt−
∣∣∣∣ 1

b− a

∫ b

a

f (t) dt

∣∣∣∣2
]1/2

, (3.4)

where f denotes the complex conjugate function of f .
A generalization of D (f) in terms of Lebesgue–Stieltjes integral may be con-

sidered by defining the variance of the function f : [a, b] → C which is square
integrable with respect to a monotonic nondecreasing function u : [a, b] → C on
[a, b] by D (f ; u) and is defined as:

D (f ; u) :=
[
T

(
f, f ; u

)]1/2

=

[
1

u (b)− u (a)

∫ b

a

|f (t)|2 du (t)−
∣∣∣∣ 1

u (b)− u (a)

∫ b

a

f (t) du (t)

∣∣∣∣2
]1/2

.

(3.5)

Corollary 3.4. Let f : [a, b] → C be a function of bounded variation on [a, b],
then

D (f ; u) ≤ 1

2

b∨
a

(f) . (3.6)

Proof. Applying Theorem 3.3 for g = f we get

D2 (f ; u)

≤ 1

2

b∨
a

(f)
1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− 1

u (b)− u (a)

∫ b

a

f (s) du (s)

∣∣∣∣ du (t). (3.7)

By the Cauchy–Bunyakovsky–Schwarz integral inequality we have

1

u (b)− u (a)

∫ b

a

∣∣∣∣f (t)− 1

u (b)− u (a)

∫ b

a

f (s) du (s)

∣∣∣∣ du (t) ≤ D (f ; u) . (3.8)

Making use of (3.7) and (3.8) we get (3.6).
The sharpness follows by taking u (t) = t and f (t) = sgn

(
t− a+b

2

)
. We omit

the details. �

Remark 3.5. If in Theorems 2.1–2.5, we set g = f , then several bounds for
D (f ; u) under various assumptions for the functions involved may be deduced.
The details are omitted.

In the following we obtain another result when both functions f, g are of
bounded variation, which therefore generalizes Theorem 3.2 and refines the sec-
ond inequality of (2.11):
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Theorem 3.6. Let f, g : [a, b] → C be two functions of bounded variation on
[a, b], then

|T (f, g; u)| ≤ 1

4

b∨
a

(f)
b∨
a

(g) . (3.9)

The constant 1
4

is the best possible.

Proof. On making use of Theorem 3.3 and Corollary 3.4 we have

|T (f, g; u)| (3.10)

≤ 1

2

b∨
a

(f)
1

u (b)− u (a)

∫ b

a

∣∣∣∣g (t)− 1

u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣ du (t)

≤ 1

2

b∨
a

(f) D (g; u) ≤ 1

4

b∨
a

(f)
b∨
a

(g) .

The case of equality is obtained in (3.9) for f (t) = g (t) = sgn
(
t− a+b

2

)
, t ∈

[a, b]. �

Remark 3.7. By reconsidering the functions in Theorems 2.1–2.5 to be complex
valued functions and according to Remark 3.5, one may obtain several bounds
for T (f, g; u) using D (f ; u). The details are left to the interested readers.

4. Applications for selfadjoint operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; 〈·, ·〉) . Let A ∈ B (H) be selfadjoint and let ϕλ be
defined for all λ ∈ R as follows

ϕλ (s) :=

 1, for −∞ < s ≤ λ,

0, for λ < s < +∞.

Then for every λ ∈ R the operator

Eλ := ϕλ (A) (4.1)

is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [22, p. 256]:

Theorem 4.1 (Spectral Representation Theorem). Let A be a bonded selfadjoint
operator on the Hilbert space H and let m = min {λ |λ ∈ Sp (A)} =: min Sp (A)
and M = max {λ |λ ∈ Sp (A)} =: max Sp (A) . Then there exists a family of
projections {Eλ}λ∈R, called the spectral family of A, with the following properties

a) Eλ ≤ Eλ′ for λ ≤ λ′;
b) Em−0 = 0, EM = I and Eλ+0 = Eλ for all λ ∈ R;
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c) We have the representation

A =

∫ M

m−0

λdEλ. (4.2)

More generally, for every continuous complex-valued function ϕ defined on R
and for every ε > 0 there exists a δ > 0 such that∥∥∥∥∥ϕ (A)−

n∑
k=1

ϕ (λ′k)
(
Eλk

− Eλk−1

)∥∥∥∥∥ ≤ ε (4.3)

whenever 
λ0 < m = λ1 < · · · < λn−1 < λn = M,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′k ∈ [λk−1, λk] for 1 ≤ k ≤ n

(4.4)

this means that

ϕ (A) =

∫ M

m−0

ϕ (λ) dEλ, (4.5)

where the integral is of Riemann–Stieltjes type.

Corollary 4.2. With the assumptions of Theorem 4.1 for A, Eλ and ϕ we have
the representations

ϕ (A) x =

∫ M

m−0

ϕ (λ) dEλx for all x ∈ H (4.6)

and

〈ϕ (A) x, y〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, y〉 for all x, y ∈ H. (4.7)

In particular,

〈ϕ (A) x, x〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, x〉 for all x ∈ H. (4.8)

Moreover, we have the equality

‖ϕ (A) x‖2 =

∫ M

m−0

|ϕ (λ)|2 d ‖Eλx‖2 for all x ∈ H. (4.9)

We observe that the function u (λ) := 〈Eλx, x〉 is monotonic nondecreasing and
right continuous on [m,M ] .

Theorem 4.3. Let A be a bonded selfadjoint operator on the Hilbert space H
and let m = min {λ |λ ∈ Sp (A)} =: min Sp (A) and M = max {λ |λ ∈ Sp (A)}
=: max Sp (A) .

(i) If f : [m,M ] → C is a p–Hf–Hölder continuous function on [m, M ], where
p ∈ (0, 1] and Hf > 0 are given and g : [m,M ] → R is continuous and
γ = mint∈[m,M ] g (t) , Γ = maxt∈[m,M ] g (t) , then

|C (f, g; A; x)| ≤ 1

2p+1
Hf (Γ− γ) (M −m)p , (4.10)
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where C (f, g; A; x) denotes the following Čebyšev functional

C (f, g; A; x) := 〈f (A) g (A) x, x〉 − 〈f (A) x, x〉 · 〈g (A) x, x〉
and x ∈ H with ‖x‖ = 1.

(ii) If f : [m, M ] → C is continuous and of bounded variation on [m, M ] while
g is as in (i), then

|C (f, g; A; x)| ≤ 1

4
(Γ− γ)

M∨
m

(f) (4.11)

for any x ∈ H with ‖x‖ = 1.
(iii) If the function f is as in (i) and g : [m, M ] → C is continuous and of

bounded variation on [m, M ], then

|C (f, g; A; x)| ≤ Hf

M∨
m

(g) (M −m)p (4.12)

for any x ∈ H with ‖x‖ = 1.
(iv) If f is of bounded variation and g is continuous, then

|C (f, g; A; x)| ≤ 1

2
〈|g (A)− 〈g (A) x, x〉 1H |x, x〉

M∨
m

(f) (4.13)

for any x ∈ H with ‖x‖ = 1. Moreover, if g is also of bounded variation,
then we have the simpler bound

|C (f, g; A; x)| ≤ 1

2
〈|g (A)− 〈g (A) x, x〉 1H |x, x〉

M∨
m

(f) (4.14)

≤ 1

4

M∨
m

(f)
M∨
m

(g)

for any x ∈ H with ‖x‖ = 1.

Proof. (i) Fix x ∈ H with ‖x‖ = 1. Let s > 0 and extend by continuity the
functions f and g to the interval [m− s, M ] by preserving their properties from
[m, M ] . Consider also the monotonic function u (λ) := 〈Eλx, x〉 which is mono-
tonic nondecreasing and right continuous on [m− s, M ] .

Now, writing the inequality (2.1) for these functions we have∣∣∣∣ 1

u (M)− u (m− s)

∫ M

m−s

f (λ) g (λ) du (λ) (4.15)

− 1

u (M)− u (m− s)

∫ M

m−s

f (λ) du (λ) (4.16)

× 1

u (M)− u (m− s)

∫ M

m−s

g (λ) du (λ)

∣∣∣∣
≤ 1

2p+1
Hf (Γ− γ) (M −m + s)p .
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Now, by letting s → 0+ and utilizing the representation (4.8) and the fact that
u (M) = 1, u (m− 0) = 0 we get

|〈f (A) g (A) x, x〉 − 〈f (A) x, x〉 〈g (A) x, x〉| ≤ 1

2p+1
Hf (Γ− γ) (M −m)p

for x ∈ H with ‖x‖ = 1.
This proves the inequality (4.10).
The statement (ii) follows from (2.6), (iii) follows from (2.11), (iv) follows from

(3.3) and (3.10) by employing a similar argument.
The details are left to the interested reader. �

The above results may provide some interesting inequalities for fundamental
functions of operators such as the power and logarithmic functions.

If we consider the function f : [0,∞) → R, f (t) = tp with p ∈ (0, 1) then we
observe that this functions is p-Hölder continuous with the constant Hf = 1 on
any subinterval from [0,∞). So, if A is a positive operator on the Hilbert space
H with the spectrum Sp (A) ⊂ [m, M ] ⊂ [0,∞) then from (4.10) we have the
inequality

|〈Apg (A) x, x〉 − 〈Apx, x〉 〈g (A) x, x〉| ≤ 1

2p+1
(Γ− γ) (M −m)p (4.17)

with x ∈ H with ‖x‖ = 1 and for any function g : [m,M ] → R that is continuous
and γ = mint∈[m,M ] g (t) , Γ = maxt∈[m,M ] g (t) .

Now, if in (4.17) we choose g (t) = tq with q > 0, then we get the inequality∣∣〈Ap+qx, x
〉
− 〈Apx, x〉 〈Aqx, x〉

∣∣ ≤ 1

2p+1
(M q−mq) (M −m)p (4.18)

for any x ∈ H with ‖x‖ = 1.
If m > 0, then by choosing g (t) = ln t we get the logarithmic inequality

|〈Ap ln Ax, x〉 − 〈Apx, x〉 〈ln Ax, x〉| ≤ 1

2p+1
ln

(
M

m

)
(M −m)p (4.19)

for any x ∈ H with ‖x‖ = 1.
Now, if we take the function g (t) = tq with q > 0 and if A is a positive operator

on the Hilbert space H with the spectrum Sp (A) ⊂ [m, M ] ⊂ [0,∞), then we
get from (4.11)

|〈f (A) Aqx, x〉 − 〈f (A) x, x〉 〈Aqx, x〉| ≤ 1

4
(M q−mq)

M∨
m

(f) (4.20)

for any x ∈ H with ‖x‖ = 1, where f : [m, M ] → C is continuous and of bounded
variation on [m,M ].

If we take in (4.20) f (t) = tp with p > 0, then we get∣∣〈Ap+qx, x
〉
− 〈Apx, x〉 〈Aqx, x〉

∣∣ ≤ 1

4
(Mp−mp) (M q−mq) (4.21)

for any x ∈ H with ‖x‖ = 1.
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If m > 0, then by choosing g (t) = ln t we get the logarithmic inequality

|〈Aq ln Ax, x〉 − 〈ln Ax, x〉 〈Aqx, x〉| ≤ 1

4
ln

(
M

m

)
(M q−mq) (4.22)

for any x ∈ H with ‖x‖ = 1.

Remark 4.4. The interested reader in operator inequalities may be able to find
other recent results providing various bounds for the Čebyšev functional C (f, g; A; x)
in the papers [12]-[18] and the monograph [19].
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