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Abstract. We give a complete relation between the singular values and eigen-
values of a complex skew symmetric matrix in terms of multiplicative majoriza-
tion and double occurrences of singular values and eigenvalues. Similar studies
are given for matrices in the algebras spn(C) and spn(R).

1. Introduction

Let A ∈ Cn×n with eigenvalues λ1, . . . , λn arranged in descending order |λ1| ≥
· · · ≥ |λn| according to their moduli. The singular values of A are the nonnegative
square roots of the eigenvalues of the positive semi-definite matrix A∗A and are
denoted by s1 ≥ · · · ≥ sn. Weyl [9] established the multiplicative majorization
relation between the eigenvalues and singular values of A and Horn [3] established
the converse (see Ando’s paper [1] for some majorization results).

Theorem 1.1. (Weyl-Horn) Let A ∈ Cn×n with singular values s1 ≥ · · · ≥ sn

and eigenvalues λ1, . . . , λn ordered as |λ1| ≥ · · · ≥ |λn|. Then

k∏
j=1

|λj| ≤
k∏

j=1

sj, k = 1, . . . , n− 1, (1.1)

n∏
j=1

|λj| =
n∏

j=1

sj. (1.2)
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Conversely, if |λ1| ≥ · · · ≥ |λn| and s1 ≥ · · · ≥ sn satisfy (1.1) and (1.2), then
there exists A ∈ Cn×n such that λ1, . . . , λn are the eigenvalues and s1, . . . , sn are
the singular values of A, respectively.

See [7] for a simple proof of Horn’s theorem. Thompson [8] studied the real
counterpart, i.e., A ∈ Rn×n. In this case the eigenvalues of A must occur in
complex conjugate pairs; and such is the only additional condition.

Our goal in Section 2 is to study the analogy of Theorem 1.1 for complex skew
symmetric matrix A ∈ Cm×m, i.e., A> = −A. This skew symmetry yields

det(A− tI) = det(A− tI)> = det(−A− tI),

i.e., the eigenvalues of A occur in pairs but opposite in sign, counting multiplic-
ities. Moreover the singular values s1, s1, . . . , s[m/2], s[m/2], (0) of A also occur in
pairs. Here (0) refers to a zero singular value when m is odd [4, p.217]. Indeed,
according to Hua decomposition [5, Theorem 7, p.481], there exists U ∈ U(m)
such that

UAU> =

{
s1J ⊕ s2J ⊕ · · · ⊕ snJ if m is even

s1J ⊕ s2J ⊕ · · · ⊕ snJ ⊕ (0) if m is odd,

where n := [m/2] and

J :=

(
0 1
−1 0

)
.

Here U(m) denotes the unitary group. Unlike unitary equivalence A 7→ UAV
(U, V ∈ U(m)) is used for the origin Weyl-Horn setting, unitary congruence
A 7→ UAU> (U ∈ U(m)) is only allowed to handle the skew symmetric case.
In Section 3 we have analogous study for the complex symplectic Lie algebra
spn(C). The doubly occurrence of the eigenvalues remains but the singular values
are arbitrary. The real case spn(R) is also studied.

2. Skew symmetric matrices

Denote by som(C) the set of m × m complex skew symmetric matrices. The
following theorem asserts that for the even case Weyl-Horn’s multiplicative ma-
jorization together with double occurrence of the eigenvalues and singular values
are the necessary and sufficient conditions. For the odd case, multiplicative weak
majoriation plays the role of multiplicative majorization.

Theorem 2.1. (1) Let A ∈ so2n(C) with singular values s1 ≥ s1 ≥ · · · ≥
sn ≥ sn and eigenvalues ±λ1, . . . ,±λn ordered as |λ1| ≥ · · · ≥ |λn|. Then
(1.1) and (1.2) hold. Conversely, if |λ1| ≥ · · · ≥ |λn| and s1 ≥ · · · ≥ sn

satisfy (1.1) and (1.2), then there exists A ∈ so2n(C) with eigenvalues
±λ1, . . . ,±λn and singular values s1, s1, . . . , sn, sn.

(2) Let A ∈ so2n+1(C) with singular values s1 ≥ s1 ≥ · · · ≥ sn ≥ sn ≥ 0 and
eigenvalues ±λ1, . . . ,±λn, 0. Then

k∏
j=1

|λj| ≤
k∏

j=1

sj, k = 1, . . . , n. (2.1)
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Conversely, if |λ1| ≥ · · · ≥ |λn| and s1 ≥ · · · ≥ sn satisfy (2.1), then there
exists A ∈ so2n+1(C) with eigenvalues ±λ1, . . . ,±λn, 0 and singular values
s1, s1, . . . , sn, sn, 0.

Proof. The necessity parts of both cases follow from Theorem 1.1. We now prove
the sufficiency.

Even case: Let

B :=

(
S

−S

)
,

where S := diag (s1, . . . , sn). Since s1, s2, . . . , sn and λ1, λ2, . . . , λn satisfy (1.1)
and (1.2), by Theorem 1.1, we can find U1, V1 ∈ U(n) such that

A1 := U1SV1 =

λ1 ∗ ∗
. . . ∗

λn

 .

Let U := U1 ⊕ V >
1 and V := V1 ⊕ U>

1 . Then U, V ∈ U(2n). Then

A2 := UBV =

(
U1SV1 0

0 −V >
1 SU>

1

)
=

(
A1 0
0 −A>

1

)
.

Clearly A2 has eigenvalues ±λ1, . . . ,±λn and singular values s1, s1, . . . , sn, sn.
However A2 is not skew symmetric in general. We will prove that A2 is unitarily

similar to a skew symmetric matrix. Let W := 1√
2

(
iIn In

In iIn

)
∈ U(2n). Then

A := WA2W
∗ =

1

2

(
A1 − A>

1 i(A1 + A>
1 )

−i(A1 + A>
1 ) A1 − A>

1

)
is skew symmetric and has eigenvalues ±λ1,±λ2, . . . ,±λn and singular values
s1, s1, . . . , sn, sn.

Odd case: Let m = 2n + 1. It is trivial if n = 0. For n ≥ 1, if sn = 0, then
s1, . . . , sn and λ1, . . . , λn satisfy (1.1) and (1.2). So it is reduced to the even case.
Suppose sn 6= 0. Let

A1 :=

Ŝ 0 u

0 −Ŝ 0
0 −u> 0

 ,

where

Ŝ := diag (s1, . . . , sn−1, ŝn), ŝn :=

∏n
j=1 λj∏n−1
j=1 sj

, u := (0, . . . , 0,
√

s2
n − ŝ2

n)>.

Direct computation shows that A1 has singular values s1, s1, . . . , sn, sn, 0. Clearly
s1, . . . , sn−1, ŝn and λ1, . . . , λn satisfy (1.1) and (1.2). Then by Theorem 1.1,

there are U, V ∈ U(n) such that A2 := UŜV is upper triangular with eigenvalues
λ1, . . . , λn. Let

A3 := (U ⊕ V > ⊕ (1))A1(V ⊕ U> ⊕ (1))

=

A2 0 Uu
0 −A>

2 0
0 −(Uu)> 0

 .
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Note that A3 has eigenvalues±λ1, . . . ,±λn, 0 and singular values s1, s1, . . . , sn, sn, 0.
We will prove that A3 is unitarily similar to a skew symmetric matrix. Define

W :=
e−iπ/4

√
2

(
iIn In

In iIn

)
⊕ (1).

Then

A := WA3W
∗ =

1

2

 A2 − A>
2 i(A2 + A>

2 ) eiπ/4Uu
−i(A2 + A>

2 ) A2 − A>
2 e−iπ/4Uu

−eiπ/4(Uu)> −e−iπ/4(Uu)> 0


is clearly skew symmetric and has the same eigenvalues and singular values as
A3. �

We remark that the real counterpart of Theorem 2.1 is trivial since by the
spectral decomposition of a real skew symmetric A ∈ so(m), the eigenvalues of
A are simply ±is1, . . . ,±isn, (0).

3. Matrices in the symplectic algebras spn(C) and spn(R)

Consider the complex symplectic Lie algebra [6, p.128-129] which is simple for
n ≥ 1:

spn(C) := sp(n)⊕ isp(n)

=

{(
A1 A2

A3 −A>
1

)
: A1, A2, A3 ∈ Cn×n, A

>
2 = A2, A

>
3 = A3

}
.

The compact group K = Sp(n, C) ∩ U(2n) [6] consists of the matrices(
U −V
V U

)
∈ U(2n).

It is known [2, Proposition 3.1] that for any B ∈ spn(C), there is U ∈ K such
that UBU∗ ∈ b ⊂ spn(C), where

b :=

{(
A1 A2

0 −A>
1

)
, A1 ∈ Cn×n is upper triangular, A>

2 = A2

}
(3.1)

is a Borel subalgebra of spn(C). The eigenvalues of A ∈ spn(C) occur in pairs but
opposite in sign as we can see it from (3.1). However, unlike the complex skew
symmetric case in the previous section, the singular values of A do not generally
occur in pairs, e.g.,

A =

(
1 2
0 −1

)
∈ sp1(C)

has distinct singular values.
We first have the following simple lemma.

Lemma 3.1. Let

S =

(
s1 0
0 s2

)
, U =

(
cos α sin α
− sin α cos α

)
, V =

(
sin α cos α
cos α − sin α

)
,
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where s1, s2 ≥ 0. Then

USV =

(
(s1 + s2) sin α cos α s1 cos2 α− s2 sin2 α
−s1 sin2 α + s2 cos2 α −(s1 + s2) sin α cos α

)
.

In particular, if we choose sin α =
√

s2√
s1+s2

and cos α =
√

s1√
s1+s2

, then

USV =

(√
s1s2 s1 − s2

0 −√s1s2

)
.

Theorem 3.2. Let A ∈ spn(C) with singular values s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n

and eigenvalues ±λ1, . . . ,±λn ordered as |λ1| ≥ · · · ≥ |λn|. Then (1.1) and (1.2)
hold for them. Conversely, if |λ1| ≥ |λ1| ≥ · · · ≥ |λn| ≥ |λn| and s1 ≥ s2 ≥ · · · ≥
s2n−1 ≥ s2n satisfy (1.1) and (1.2), then there exists A ∈ spn(C) with eigenvalues
±λ1, . . . ,±λn and singular values s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n.

Proof. The necessity of (1.1) for s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n and eigenvalues
±λ1, . . . ,±λn follows from Theorem 1.1.

For the sufficiency part, suppose that λ1, λ1, . . . , λn, λn and s1, . . . s2n satisfy
(1.1) and (1.2), i.e.,

√
s1s2 ≥ · · · ≥ √

s2n−1s2n, |λ1| ≥ · · · ≥ |λn|
satisfy (1.1) and (1.2). Let S := diag (s1, s3, . . . , s2n−1, s2, s4, . . . , s2n),

U :=



cos α1 sin α1

. . . . . .
cos αn sin αn

− sin α1 cos α1

. . . . . .
− sin αn cos αn



V :=



sin α1 cos α1

. . . . . .
sin αn cos αn

cos α1 − sin α1

. . . . . .
cos αn − sin αn


.

By Lemma 3.1, we can choose appropriate α1, . . . , αn such that

USV =



√
s1s2 s1 − s2

. . . . . .√
s2n−1s2n s2n−1 − s2n

−√s1s2

. . .
−√s2n−1s2n


.

Let B1 := diag (
√

s1s2, . . . ,
√

s2n−1s2n). Since
√

s1s2 ≥ · · · ≥ √
s2n−1s2n ≥ 0

and |λ1| ≥ · · · ≥ |λn| satisfy (1.1) and (1.2), by Theorem 1.1 we can find U1, V1 ∈
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U(n) such that

A1 := U1B1V1 =

λ1 ∗ ∗
. . . ∗

λn

 (3.2)

has singular values
√

s1s2, . . . ,
√

s2n−1sn and eigenvalues λ1, . . . , λn. Set Σ :=
diag (s1 − s2, . . . , s2n−1 − sn). Then

A := (U1 ⊕ V >
1 )USV (V1 ⊕ U>

1 ) =

(
U1B1V1 U1ΣU>

1

0 −(U1B1V1)
>

)
. (3.3)

Since U1ΣU>
1 is symmetric, we conclude that A ∈ spn(C) and has eigenvalues

±λ1, . . . ,±λn. Moreover A has singular values s1, . . . , s2n because of the above
unitary equivalence. So A is the required matrix. �

The split real form of spn(C) [6] is

spn(R)

=

{(
A1 A2

A3 −A>
1

)
: A>

2 = A2, A>
3 = A3, A1, A2, A3 ∈ Rn×n

}
= spn(C) ∩ R2n×2n.

The nonreal eigenvalues of each A ∈ spn(R) appear in quadruples (λ,−λ, λ̄,−λ̄).
The proof of the following result is similar to that of Theorem 3.2. The role of
Theorem 1.1 in the proof is played by Thompson’s result [8] and U1, V1 in (3.2)
are orthogonal and A1 is a real “upper triangular” matrix with 2 × 2 diagonal
blocks for nonreal λ’s and 1× 1 block for real λ’s.

Theorem 3.3. Let A ∈ spn(R) with singular values s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n

and eigenvalues ±λ1, . . . ,±λn (the nonreal λ’s appear in quadruples) ordered as
|λ1| ≥ · · · ≥ |λn|. Then (1.1) and (1.2) hold for them. Conversely, if |λ1| ≥ |λ1| ≥
· · · ≥ |λn| ≥ |λn| and s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n satisfy (1.1) and (1.2) and if
the nonreal λ’s appear in quadruples (λ,−λ, λ̄,−λ̄), then there exists A ∈ spn(R)
such that ±λ1, . . . ,±λn are the eigenvalues and s1 ≥ s2 ≥ · · · ≥ s2n−1 ≥ s2n are
the singular values of A, respectively.
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