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Abstract. Let a, b, c and d be functions in L2 = L2(T, dθ/2π), where T
denotes the unit circle. Let P denote the set of all trigonometric polynomials.
Suppose the singular integral operators A and B are defined by A = aP + bQ
and B = cP + dQ on P, where P is an analytic projection and Q = I − P
is a co-analytic projection. In this paper, we use the Helson–Szegő type set
(HS)(r) to establish the condition of a, b, c and d satisfying ‖Af‖2 ≥ ‖Bf‖2
for all f in P. If a, b, c and d are bounded measurable functions, then A and
B are bounded operators, and this is equivalent to that B is majorized by
A on L2, i.e., A∗A ≥ B∗B on L2. Applications are then presented for the
majorization of singular integral operators on weighted L2 spaces, and for the
normal singular integral operators aP + bQ on L2 when a − b is a complex
constant.

1. Introduction

Let m denote the normalized Lebesgue measure dθ/2π on the unit circle T =
{|z| = 1}. For 0 < p ≤ ∞, Lp = Lp(T, m) denotes the usual Lebesgue space on
T and Hp denotes the usual Hardy space on T. Let S be the singular integral
operator defined by

(Sf)(ζ) =
1

πi

∫
T

f(η)

η − ζ
dη (a.e.ζ ∈ T)
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where the integral is understood in the sense of Cauchy’s principal value (cf. [6],
Vol. 1, p.12). If f is in L1 then (Sf)(ζ) exists for almost all ζ on T. Let

P = (I + S)/2 and Q = (I − S)/2,

where I denotes the identity operator. Then Pzn = 0 if n < 0, and Pzn = zn

if n ≥ 0. P is said to be an analytic projection or the Riesz projection. Let
P1 = span{zn : n ≥ 0} be the set of analytic polynomials, and let P2 = zP1 =
span{zn : n < 0}. Then Q = I − P , P (f1 + f2) = f1 and Q(f1 + f2) = f2 for all
f1 ∈ P1 and f2 ∈ P2. Q is said to be a co-analytic projection. Let α, β ∈ L∞,
and W is a nonnegative function in L1. In [8] and [16], the condition of α, β
and W such that αP + βQ is contractive was given. In [9], the conditions of
α, β and W such that αP + βQ is bounded and bounded below was given. In
[10] and [11], for α, β ∈ L∞, the norm formula of αP + βQ on the weighted L2

space was given. In [10], [11] and [16], the another proofs of Feldman–Krupnik–
Markus’s theorem ([6], Vol. 2, p.213, Theorem 5.1, and p.215, Lemma 5.3) were
given. In this paper, for a, b, c, d ∈ L2, we consider the singular integral operators
A = aP + bQ and B = cP + dQ. If a, b, c, d 6∈ L∞, then A and B are unbounded.
In Section 2, we use the Helson–Szegő type set (HS)(r) to establish the condition
of a, b, c and d satisfying ‖Af‖2 ≥ ‖Bf‖2 for all f in P . The main theorem is
Theorem 2.4. If a, b, c, d ∈ L∞, then A and B are bounded, and this is equivalent
to that B is majorized by A on L2, i.e., A∗A ≥ B∗B on L2. As an application of
Theorem 2.4, we have Theorem 2.5. In Section 3, some applications are presented
for the majorization of singular integral operators on weighted L2 spaces, and for
the normal singular integral operators aP + bQ on L2 when a − b is a complex
constant.

2. Main Theorem

In this section, we use the Helson–Szegő type set (HS)(r) to establish the
condition of a, b, c and d satisfying ‖Af‖2 ≥ ‖Bf‖2 for all f in P . The main
theorem is Theorem 2.4. If a, b, c, d ∈ L∞, then this is equivalent to that B
is majorized by A on L2, i.e., A∗A ≥ B∗B on L2. By Douglas’s criterion (cf.
[4], [14], p.2), this implies that there is a contraction C on L2 such that B is

factorized as B = CA. Let f̃ denote the harmonic conjugate function of f ∈ L1.
Then Sf = if̃ +

∫
T fdm. It is well known that the Helson–Szegő set

(HS) = {eu+ṽ ; u, v ∈ L∞ are real functions, and ‖v‖∞ <
π

2
}

is equal to the set of all Muckenhoupt (A2)-weights (cf. [5], p.254).

Definition 2.1. For a function r satisfying 0 ≤ r ≤ 1 and
∫

T rdm > 0, we define
the Helson–Szegő type set (HS)(r):

(HS)(r) = {γeu+ṽ ; γ is a positive constant, u, v are real functions,

u ∈ L1, v ∈ L∞, |v| ≤ π/2, r2eu + e−u ≤ 2 cos v}

If |v| ≤ π/2, then eṽ cos v ∈ L1 (cf. [5], p.161), and hence e−ṽ cos v ∈ L1.
Therefore (HS)(r) ⊂ {W : W > 0, r2W ∈ L1, W−1 ∈ L1}. If r−1 ∈ L∞, then
(HS)(r) ⊂ (HS). In [9], we defined the another Helson–Szegő type set which is
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similar to HS(r). We use HS(r) to study the majorization of singular integral
operators.

Lemma 2.2. Let W be a non-negative function in L1, and let φ be a function
in L1. Suppose |φ| ≥ W and

∫
T(|φ| −W )dm > 0. Then the following conditions

(1) ∼ (3) are equivalent.

(1) There is a k in H1 such that |φ− k| ≤ W .
(2) There is a non-zero k in H1 such that |φ− k| ≤ W .
(3) log |φ| ∈ L1 and there is a V in (HS)(r) such that φ/V is in H1/2, where

r = |φ|−1
√
|φ|2 −W 2.

Proof. (1) ⇒ (2) : By (1), if k = 0, then 0 ≤ |φ| −W ≤ 0, and hence |φ| = W .
This is a contradiction. Therefore k 6= 0.
(2) ⇒ (3) : By (2), |φ − k| ≤ W ≤ |φ|, and hence 0 < |k| ≤ 2|φ|. Since
log |k| ∈ L1, log |φ| ∈ L1. Since∣∣∣∣1− k

φ

∣∣∣∣2 ≤ W 2

|φ|2
= 1− |φ|2 −W 2

|φ|2
= 1− r2 ≤ 1,

it follows that Re(k/φ) ≥ 0. Since log |k/φ| ∈ L1, it follows that there are real
functions u ∈ L1 and v ∈ L∞, |v| ≤ π/2 such that k/φ = e−u−iv. Then 0 ≤ r ≤ 1
and |1−e−u−iv|2 ≤ 1−r2. Hence r2+e−2u ≤ 2e−u cos v, and so r2eu+e−u ≤ 2 cos v.
Since φ = keu+iv, it follows that φe−u−ṽ = keiv−ṽ ∈ Hp, for some p > 0. Since
e−u ≤ 2 cos v, it follows that e−u−ṽ ≤ 2e−ṽ cos v. Since |v| ≤ π/2, e−ṽ cos v ∈ L1

(cf. [5], p.161). Hence e−u−ṽ ∈ L1. Since φ ∈ L1, it follows that φe−u−ṽ ∈ H1/2.
(3) ⇒ (1) : By (3), if k = φe−u−iv, then k = (φe−u−ṽ)eṽ−iv ∈ Hp, for some
p > 0. Since |φ − k|2 = |φ|2|1 − e−u−iv|2 = |φ|2e−u(eu + e−u − 2 cos v) and
eu + e−u − 2 cos v ≤ (1 − r2)eu = |W/φ|2eu, it follows that |φ − k| ≤ W . Hence
|k| ≤ |φ|+ W , and so k ∈ H1. This completes the proof. �

Lemma 2.3. Let W1, W2 be real functions in L1, and let φ be a function in
L1. Suppose |φ|2 − W1W2 ≥ 0. Then the following conditions (1) and (2) are
equivalent.

(1) For all f1 ∈ P1 and f2 ∈ P2,

|
∫

T
f1f2φdm| ≤ 1

2

∫
T
(|f1|2W1 + |f2|2W2)dm.

(2) W1 ≥ 0, W2 ≥ 0, and either (a) or (b) holds.
(a) |φ|2 −W1W2 = 0.
(b) log |φ| ∈ L1, and there is a V in (HS)(r) such that φ/V is in H1/2,

where r = |φ|−1
√
|φ|2 −W1W2.

Proof. (1) ⇒ (2) : By Cotlar-Sadosky’s lifting theorem [3], W1 ≥ 0, W2 ≥ 0, and
there is a k in H1 such that |φ− k|2 ≤ W1W2. By Lemma 2.2, this implies (2).
(2) ⇒ (1) : Suppose (a) holds. Then

|
∫

T
f1f2φdm| ≤

∫
T
|f1f2φ|dm =

∫
T
|f1f2|

√
W1W2dm

≤ 1

2

∫
T
(|f1|2W1 + |f2|2W2)dm.
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This implies (1). Suppose
∫

T(|φ|2−W1W2)dm > 0 and (b) holds. Then it follows
from Lemma 2.2 that there is a k in H1 such that |φ − k|2 ≤ W1W2. Hence for
all f1 ∈ P1 and f2 ∈ P2,

|
∫

T
f1f2φdm| = |

∫
T
f1f2(φ− k)dm|

≤
∫

T
|f1f2| · |φ− k|dm

≤
∫

T
|f1f2|

√
W1W2dm

≤ 1

2

∫
T
(|f1|2W1 + |f2|2W2)dm.

This implies (1). This completes the proof. �

Remark A. In Lemma 2.3, if |φ|2 −W1W2 ≤ 0 then

|
∫

T
f1f2φdm| ≤

∫
T
|f1f2φ|dm ≤

∫
T
|f1f2|

√
W1W2dm

≤ 1

2

∫
T
(|f1|2W1 + |f2|2W2)dm,

and so (1) holds without the condition (2).

Theorem 2.4. Let a, b, c, d be functions in L2. Then the following conditions (1)
and (2) are equivalent.

(1) For all f in P,∫
T
|(aP + bQ)f |2dm ≥

∫
T
|(cP + dQ)f |2dm.

(2) |a| ≥ |c|, |b| ≥ |d|, and either (a) or (b) holds.
(a) ad− bc = 0.
(b) log |ab̄− cd̄| ∈ L1, and there is a V in (HS)(r) such that (ab̄− cd̄)/V

is in H1/2, where r = |ad− bc|/|ab̄− cd̄|.

Proof. (1) implies that∫
T
|af1 + bf2|2dm ≥

∫
T
|cf1 + df2|2dm.

Let W1 = |a|2 − |c|2, W2 = |b|2 − |d|2, and let φ = ab̄− cd̄. Then W1, W2 are real
functions in L1, and φ is a function in L1 such that for all f1 ∈ P1 and f2 ∈ P2,∫

T
{|f1|2W1 + |f2|2W2 + 2Re(f1f2φ)}dm ≥ 0.

This is equivalent to the condition (1) of Theorem 2.4. Since |φ|2 − W1W2 =
|ad− bc|2 and

r2 =
|φ|2 −W1W2

|φ|2
=
|ab̄− cd̄|2 − (|a|2 − |c|2)(|b|2 − |d|2)

|ab̄− cd̄|2
=

∣∣∣∣ad− bc

ab̄− cd̄

∣∣∣∣2 ,
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this theorem follows from Lemma 2.3. This completes the proof. �

Remark B. For a function r satisfying 0 ≤ r ≤ 1 and
∫

T rdm > 0,

(HS)(r) = {W ∈ L1 : W > 0,

∫
T
|f |2Wdm ≥

∫
T
|rPf |2Wdm, (f ∈ P)}.

Proof. Let a = b =
√

W, c = r
√

W and d = 0. By Theorem 2.4, W/V ∈ H1/2.
By Neuwirth–Newman’s theorem (cf. [14], p.79), W/V is a constant, so W ∈
(HS)(r). The converse is also true. �

Theorem 2.5. Let W be a positive function in L1. Let a, b, c, d be in L∞. Then
the following conditions (1) and (2) are equivalent.

(1) For all f in P,∫
T
|(aP + bQ)f |2Wdm ≥

∫
T
|(cP + dQ)f |2Wdm.

(2) |a| ≥ |c|, |b| ≥ |d|, and either (a) or (b) holds.
(a) ad− bc = 0.
(b) log |ab̄ − cd̄|W ∈ L1, and there is a V in (HS)(r) such that (ab̄ −

cd̄)W/V is in H1/2, where r = |ad− bc|/|ab̄− cd̄|.

Proof. Suppose (1) holds and (a) of (2) does not hold. Let a1 = a
√

W, b1 =

b
√

W, c1 = c
√

W, d1 = d
√

W . Then
∫

T |a1d1 − b1c1|dm > 0 and∫
T
|(a1P + b1Q)f |2dm ≥

∫
T
|(c1P + d1Q)f |2dm,

for all f in P . By Theorem 2.4, this implies that log |a1b̄1 − c1d̄1| ∈ L1, |a1|2 −
|c1|2 ≥ 0, |b1|2− |d1|2 ≥ 0, and there is a V in (HS)(r) such that (a1b̄1− c1d̄1)/V
is in H1/2, where r = |a1d1 − b1c1|/|a1b̄1 − c1d̄1| = |ad− bc|/|ab̄− cd̄|. Hence (b)
of (2) holds, so (1) implies (2). The converse is also true. �

Remark C. Let W be a positive function in L1. Let L2(W ) be the weighted
Lebesgue space with the norm

‖f‖2,W = {
∫

T
|f |2Wdm}1/2.

When W = 1, then we write ‖f‖ = ‖f‖W . Let A = aP + bQ, and let B =
cP + dQ. Then the condition (1) implies that B is majorized by A on L2(W ),
i.e., A∗A ≥ B∗B on L2(W ), i.e., ‖Af‖2,W ≥ ‖Bf‖2,W for all f in L2(W ).

3. Applications of Theorem 2.4

The equivalence of (1) and (3) of the following corollary is Widom–Devinatz–
Rochberg’s theorem (cf. [1], [7], [6], [13], p.250, [15], p.93). Nakazi [7] removed
the condition W ∈ (HS) and established the condition of α satisfying∫

T
|(αP + Q)f |2Wdm ≥ ε2

∫
T
|Pf |2Wdm,

for all f ∈ P .
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Corollary 3.1. ([7]) Let W be in (HS) and let α be in L∞. Then the following
are equivalent.

(1) Tα is bounded below on H2(W ).
(2) α−1 ∈ L∞, and there is a V in (HS) such that αW/V is in H1/2.
(3) α−1 ∈ L∞, and there is an inner function q and a real function t ∈ L1

such that α/|α| = qeit̃ and We−t ∈ (HS).

Proof. By (1), there is a constant ε > 0 such that∫
T
|P (αPf)|2Wdm =

∫
T
|Tα(Pf)|2Wdm ≥ ε2

∫
T
|Pf |2Wdm,

for all f ∈ P . Since W ∈ (HS), P is bounded on L2(W ), so

‖P‖2
W

∫
T
|(αP + Q)f |2Wdm ≥

∫
T
|P (αP + Q)f |2Wdm

=

∫
T
|P (αPf)|2Wdm ≥ ε2

∫
T
|Pf |2Wdm,

for all f ∈ P . Let a = ‖P‖W α
√

W, b = ‖P‖W

√
W, c = ε

√
W and d = 0. Then∫

T
|(aP + bQ)f |2dm ≥

∫
T
|cP + dQ)f |2dm.

By Theorem 2.4, |a| ≥ |c|, so ‖P‖W |α| ≥ ε > 0, and r = |ad − bc|/|ab̄ − cd̄| =
ε/(‖P‖W |α|) ≤ 1. Since α ∈ L∞, r−1 ∈ L∞. By Theorem 2.4, there is a V in
(HS)(r) such that ‖P‖2

W αW/V = (ab̄ − cd̄)/V is in H1/2. Since V ∈ (HS)(r),
V = γeu+ṽ, where u and v are real functions such that u ∈ L1, v ∈ L∞, |v| ≤
π/2, and r2eu + e−u ≤ 2 cos v. Since r−1 ∈ L∞, u ∈ L∞ and ‖v‖∞ < π/2, so
V ∈ (HS). This implies (2). The converse is also true. Suppose (2) holds. Since
αW/V ∈ H1/2, there is an inner function q and real function t ∈ L1 such that

αW/V = qet+it̃. Thus α/|α| = qeit̃ and We−t = V/|α| ∈ (HS). This implies (3).
The converse is also true. This completes the proof. �

The following corollary is the Feldman–Krupnik–Markus theorem ([6], Vol. 2,
p.213, Theorem 5.1, and p.215, Lemma 5.3). ‖αP +βQ‖W and ‖P‖W denote the
operator norms of each operators on L2(W ). In [11], this theorem was generalized
to the case when α and β are functions in L∞.

Corollary 3.2. ([6]) Let α and β be constants. Let

γ =

∣∣∣∣α− β

2

∣∣∣∣2 (‖P‖2
W − 1)

then

‖αP + βQ‖W =

√
γ +

(
|α|+ |β|

2

)2

+

√
γ +

(
|α| − |β|

2

)2

.
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Proof. We assume that ‖αP + βQ‖2
W 6= αβ̄. Let a = b =

√
W‖αP + βQ‖W ,

c = α
√

W and d = β
√

W . Then for all f in P ,∫
T
|(aP + bQ)f |2dm ≥

∫
T
|(cP + dQ)f |2dm.

By Theorem 2.4, log |‖αP +βQ‖2
W −αβ̄| = log |ab̄− cd̄| ∈ L1, and there is a V in

(HS)(r) such that (‖αP + βQ‖2
W − |αβ̄|)W/V = (ab̄− cd̄)/V is in H1/2, where

r =
|ad− bc|
|ab̄− cd̄|

=
|α− β|‖αP + βQ‖W

|‖αP + βQ‖2
W − αβ̄|

.

Since ‖αP +βQ‖2
W 6= αβ̄, W/V ∈ H1/2 and W/V ≥ 0. By the Neuwirth–Newman

theorem (cf. [14], p.79), W/V is a constant, so W ∈ (HS)(r). By Theorem 2.4∫
T
|f |2Wdm ≥

∫
T
|rPf |2Wdm.

Hence r = 1/‖P‖W , so ‖P‖W is described by ‖αP + βQ‖W . By the calculation,
‖αP + βQ‖W is described by α, β and ‖P‖W . This completes the proof. �

An operator A is called hyponormal if its self-commutator A∗A− AA∗ is pos-
itive. If α − β is a constant, then the following theorem gives the descriptions
of symbols of normal (and hyponormal) operators αP + βQ. Brown and Halmos
([2]) proved that the Toeplitz operator Tα is normal if and only if α satisfies the
condition (2) of the following corollary for some c ∈ C. In [12], normal singular
integral operator αP + βQ is considered without the condition that α − β is a
constant.

Corollary 3.3. Let α and β be non-constant functions in L∞. Suppose α− β is
a non-zero constant. Then the following are equivalent.

(1) αP + βQ is normal.
(2) α = cf + f̄ + b for some f ∈ zH2 and b ∈ C, where c = (α− β)/(ᾱ− β̄).
(3) αP + βQ is hyponormal.

Proof. (3) ⇒ (1): By (3), ‖(αP + βQ)f‖2 ≥ ‖(αP + βQ)∗f‖2, for all f ∈ L2.
Since α− β ∈ C, it follows that

(αP + βQ)∗ = ((α− β)P + βI)∗ = (ᾱ− β̄)P + β̄I = ᾱP + β̄Q.

Thus ‖αPf + βQf‖2 ≥ ‖ᾱPf + β̄Qf‖2. Hence 2 Re
∫

T(αβ̄ − ᾱβ)PfQfdm ≥ 0,

for all f ∈ L2. This implies that 2 Re
∫

T(αβ̄ − ᾱβ)PfQfdm = 0, for all f ∈ L2.
Thus ‖(αP + βQ)f‖2 = ‖(αP + βQ)∗f‖2, for all f ∈ L2. Therefore αP + βQ is
normal.
(1) ⇒ (3): Trivial.
(3) ⇔ (2): There exists a complex constant c such that β = α + c. By Theorem
2.4 and the above proof, if αc̄ − ᾱc = 0, then (3) and (2) are equivalent. By
Theorem 2.4, if αc̄ − ᾱc 6= 0, then (3) and (2) are equivalent, because (HS)(1)
is the set of all positive constants, and the real function i(αc̄ − ᾱc) belongs to
H1/2 ∩ L∞ = H∞, so that it is a real constant. �
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