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ABSTRACT. In this paper we introduce a strong version of the Birkhoff-James
orthogonality in Hilbert C*-modules. More precisely, we consider elements x
and y of a Hilbert C*-module V' over a C*-algebra A which satisfy |z| <
|l + yal| for all a € A. We show that this relation can be described as the
Birkhoff-James orthogonality of appropriate elements of V, and characterized
in terms of states acting on the underlying C*-algebra A. Some analogous
relations of this type are considered as well.

1. INTRODUCTION AND PRELIMINARIES

The notion of orthogonality in an arbitrary normed linear space may be intro-
duced in various ways (e.g. see [, 2]). Among them, the one which is frequently
studied in literature is the Birkhoff-James orthogonality [7, 9, 14, 15, 16]: if
x,y are elements of a normed linear space X, then x is orthogonal to y in the
Birkhoff-James sense, in short x L vy, if

[zl < [l + Ayl (A eC). (1.1)

If X is an inner product space, then the Birkhoff—-James orthogonality is equiv-
alent to the usual orthogonality given by the inner product. It is easy to see
that the Birkhoff-James orthogonality is nondegenerate (x L z if and only if
x = 0), homogenous (z L y = (Ax L py for all A\, u € C)), not symmetric (z L y
need not imply y L ), and not additive (x L y and z L z need not imply
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x L (y+2)). Also, for every x,y € X there is A € C such that = L (Ax +y). By
the Hahn—Banach theorem, if x,y are two elements of a normed linear space X,
then x L y if and only if there is a norm one linear functional f of X such that
f(z) = ||z|| and f(y) = 0. Characterizations of the Birkhoff-James orthogonality

in C*-algebras and Hilbert C*-modules were obtained in several papers such as
[5] and [6].

In Hilbert C*-modules the role of scalars is played by the elements of the
underlying C*-algebra. So, it is natural to generalize the notion of the Birkhoff—
James orthogonality in the following way. Instead of (1.1), one can consider
elements z and y of a given Hilbert A-module V satisfying

2]l < llz +yall  (a € A). (1.2)

Evidently, the condition (1.2) is stronger than (1.1), and weaker than the orthog-
onality with respect to the inner product.

In the second section we study the relation (1.2). We show in Theorem 2.5 that
x and y satisfy (1.2) if and only if z is orthogonal to y(y, z) in the Birkhoff-James
sense, which enables us to apply some results of [5] to characterize (1.2) in terms
of the states acting on the underlying C*-algebra. In particular, we consider (1.2)
for elements of Hilbert K(H)-modules (Proposition 2.10), as well as for elements
of the C*-algebra B(H) (Proposition 2.8).

The concluding Section 3 discusses some other possible generalizations of (1.1)
which are natural in Hilbert C*-modules. However, it turns out that most of
them just describe the orthogonality with respect to the inner product.

Before stating our results, let us recall some basic facts about C*-algebras and
Hilbert C*-modules and introduce our notation.

Throughout, B(H, K) stands for the linear space of all bounded linear operators
between Hilbert spaces H and K. When H = K, we write B(H). By K(H) we
denote the algebra of all compact operators on H, and by T(H) the algebra
of all trace-class operators on H. For A € B(H, K') the symbol ||A| denotes the
operator norm of A. Ker A stands for the kernel of A. By I we denote the identity
operator on H. By tr(A) we denote the trace of A € T(H). The algebra of all
complex n X n matrices is denoted by M, (C). We shall identify B(C") and M, (C)
in the usual way.

A positive element a of a C*-algebra A is a self-adjoint element whose spectrum
o(a) is contained in [0, 00). If a € A is positive, we write a > 0. A partial order
may be introduced on the set of self-adjoint elements of a C*-algebra A : if a and
b are self-adjoint elements of A such that a — b > 0, we write a > b or b < a.
If @ > 0, then there exists a unique positive b € A such that a = b?; such an
element b, denoted by a%, is called the positive square root of a. If 0 < a < b then
0< az < bz. The converse does not hold in general, but it holds in commutative
C*-algebras. Also, if 0 < a < b then 0 < c*ac < ¢*be for all ¢ € A.

An approximate unit for a C*-algebra A is an increasing net (e;);c; of positive
elements in the closed unit ball of A such that lim,es ||a — ae;|| = 0 for all a € A,
or equivalently lim;e; ||a — e;al| = 0 for all @ in A.
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A linear functional ¢ of A is positive if p(a) > 0 for every positive element
a € A. A state is a positive linear functional whose norm is equal to one. The
numerical range of a € A, denoted by V'(a), is the set of all ¢(a), where ¢ ranges
over the states of A. The center of A is denoted by Z(.A). General references for
the theory of C*-algebras are [10, 20].

A (right) Hilbert C*-module V' over a C*-algebra A (or a (right) Hilbert A-
module) is a linear space which is a right A-module equipped with an A-valued
inner-product (-, -) : VxV — A that is sesquilinear, positive definite and respects
the module action, i.e.,

(1) (z, 0y + B2) = alz,y) + B{x, 2) for 2,y,2 € V, a, B € C,
) (x,ya) = (x,y)a for x,y € V, a € A,

(2
(3) (z,y)" = (y,z) for z,y €V,
4) (z, >>0f0rx€V if (z,z) =0 then z = 0,

and such that V is complete with respect to the norm defined by ||z]| = ||(z, z)| 2,
z € V. In fact, for every z,y € V it holds (y,x){z,y) < ||z||*(y,y), wherefrom
[z ) < [l [yl

Obviously, every Hilbert space is a Hilbert C-module. Also, every C*-algebra
A can be regarded as a Hilbert C*-module over itself with the inner product
(a,b) := a*b, and the corresponding norm is just the norm on A because of
the C*-condition. (For details about Hilbert C*-modules we refer the reader to
[18, 19, 21, 24].)

If z is an element of a Hilbert A-module V| |z| € A denotes the unique positive
square root of (z,z) € A. In the case of a C*-algebra we get the usual |a| =
(a*a)'/?. Although the definition of |z| has the same form as that of the norm of
an element of an inner product space, there are some significant differences. For
example, it is well known that the C*-valued triangle inequality |z +y| < |z|+ |y
for elements x and y of a Hilbert C*-module need not hold (see [12]). Actually,
it was recently proved in [17] that the C*-valued triangle inequality holds for
every two elements of V' if and only if A is commutative. The case of equality in
triangle inequality was characterized in [3] for elements of B(H), and in [4] for
elements of Hilbert C*-modules.

In a Hilbert A-module V' we have the following version of the Cauchy—Schwarz
inequality:

oz, y))P < oz 2)e((y,y)  (z,y € V),
where ¢ is a positive linear functional of A.

2. PROPERTIES AND CHARACTERIZATIONS OF THE STRONG
BIRKHOFF—JAMES ORTHOGONALITY

As we have already mentioned, for two elements z,y of a normed linear space
X, it holds = L y if and only if there is a norm one linear functional f of X such
that f(x) = ||z|| and f(y) = 0. If we have additional structures on a normed
linear space X, then we obtain other characterizations of the Birkhoff-James
orthogonality. One of the first results of this form is the result obtained by
Bhatia and Semrl [3] for the C*-algebra B(H) of all bounded linear operators on
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a Hilbert space H. The following result is the content of Theorem 1.1 and Remark
3.1 of [8].
Theorem 2.1. Let A, B € B(H).

(a) If dim H < oo, then A L B if and only if there is a unit vector £ € H
such that ||AE|| = ||A|| and (A&, BE) = 0.

(b) Ifdim H = oo, then A L B if and only if there is a sequence of unit vectors
(&) C H such that lim,,_ || A&, || = |A|| and lim,,_,« (A&, BE,) = 0.

The characterization of the Birkhoff-James orthogonality for elements of a
Hilbert C*-module by means of the states of the underlying C*-algebra was ob-
tained in [5]. The following result is Theorem 2.7 of [5]. (The same result is later
obtained in [6] by using a different approach.)

Theorem 2.2. Let V' be a Hilbert A-module, and x,y € V. Then x L y if and
only if there is a state ¢ of A such that p({(x,x)) = ||z||* and ({x,y)) = 0.

We now introduce a new type of orthogonality in Hilbert C*-modules.

Definition 2.3. An element z of a Hilbert A-module V is strongly Birkhoff-
James orthogonal to an element y € V, in short « L, y, if

2]l < lz +yall  (a € A).

For every x,y € V it holds
(r,y)=0=zx L,y=x Ly (2.1)
Indeed, if (z,y) = 0, then for all a € A we have
|z + yall* = |{z + ya, 2 + ya) | = [z, 2) + (ya.ya)|| > |[{z, 2)|| = [|=]*,

i.e., L, y. Further, if x L, y, then for every A\ € C we have ||z|| < ||z + Aye;|,
i € I, where (e;);cs is an approximate unit for A. Since lim;e; ||ye; —y|| = 0 ([19],
p. 5), we get = L y.

The converses in (2.1) do not hold in general, as shown in the following example.

Example 2.4. Let us take A = Mjy(C), regarded as a Hilbert C*-module over
itself.

(a) Let A= {(1) _01 ]Then]J_Asince
I+X 0
jraaal =[50 ]| =t =

for all A € C. But I L. A since for B = —A we have ||[[ + AB|| =0 < |||

b) Let A = L0 . For any B = bi by
0 0

we have

1+b; b
I+ asi=| | 14 ]| 2=

Therefore I L, A, but (I, A) = A #0.
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In the next theorem we obtain some characterizations of the strong Birkhoff—
James orthogonality. First observe that x L, y is equivalent to ||z|| < ||z + A\yal|
for all a € A and X € C, that is

xl,y<e (xLyaforallac A (2.2)

By Theorem 2.2, it means that x L, y if and only if for every a € A there is a
state o, of A such that ¢, ((z,z)) = ||z||* and ¢, ({z,y)a) = 0. It turns out that
this can be accomplished with a single state .

Theorem 2.5. Let V' be a Hilbert A-module, and x,y € V. The following state-
ments are mutually equivalent:

(a) = L, y;

(b) = Lyly, x);

(c) there is a state p of A such that p({x,z)) = ||z||* and p({z,y){y, x)) = 0;
(d) there is a state ¢ of A such that o((z,z)) = ||z||* and ¢({x,y)a) =0 for

all a € A.

Proof. 1t follows from (2.2) that (a)=-(b), and from Theorem 2.2 we have (b)<(c).
To prove (c¢)=-(d), it is enough to notice that for every a € A, by the Cauchy—
Schwarz inequality, we have
le({z, y)a)|* < o({z, y){y, 2))p(a"a).

The implication (d)=-(a) follows from (2.2) and Theorem 2.2. O

Next we discuss some properties of the relation 1, . We show that, as in the
case of the classical Birkhoff-James orthogonality (see [5, Theorem 2.9 (a)]), for
any two elements x and y of a Hilbert A-module V, the relation x L, y can be
described by means of the orthogonality of appropriate elements of the underlying

C*-algebra A.

Proposition 2.6. Let V' be a Hilbert A-module, and x,y € V.
(b) If A is unital and x L, y, then (x,y) does not have a right inverse in A.
(c) z Liy<e (v Liya foralla € A) < (z L ya for alla € A).

Proof. (a) If z L, y, then there is a state ¢ such that ¢({z,z)) = ||z|* and
gp((x, y)a) = 0 for all a € A. Then for every a € A it holds

[z, 2)l = ll=]1* = (2, z) + (z,y)a)| < {2, z) + (z,y)al,

so (x,z) L, (x,y).

Conversely, if (z,z) L, (x,y) then ||(z,x)| < |[{(z,z) + (x,y)al| for all a € A,
that is, |z||* < ||{z, z + ya)|| < ||z||||z + yal| for all a € A. Tt follows that = L, y.

(b) Let e be the unit of A. If # L, y, then there is a state ¢ such that
o({z,z)) = ||z|* and ¢((z,y)a) = 0 for all a € A. Suppose that (x,y) has a
right inverse b € A. Then for a = b we have p(e) = ¢({x,y)b) = 0, which is not
possible.

(c) By using an approximate unit for .4, it is easy to prove the first equivalence.
We have already noticed that z L, y < (x L ya,Va € A). O
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The converse in part (b) of the previous proposition does not hold: for a
counterexample we can take any = # 0 such that (z,x) is noninvertible.

Remark 2.7. Let A be a unital C*-algebra with the unit e, regarded as a Hilbert
C*-module over itself.

(a) If @ € A is such that aa® is not invertible then, by Theorem 1 of [22],
0 € o(aa*) C V(aa*). Hence, there is a state ¢ of A such that p(aa*) = 0.
By Theorem 2.5 (¢) we conclude that e L, a. When a € A is noninvertible,
then at least one of the elements aa* and a*a is noninvertible. Thus, e 1, a or
e 1, a* for every noninvertible a € A. In particular, e L, a for every self-adjoint
noninvertible a € A.

(b) The relation L, is not additive. Indeed, let a € A be a nonzero noninvertible
positive element. Then |lalle —a € A is also a nonzero noninvertible positive
element, so by (a) we have e 1, a and e L, (||lalle —a), but e L, (a+ (||a]le —a)).

It is also nonsymmetric. Namely, by Theorem 2.5, a L, e & a L ele,a) &
a1l a< a=0 while, by (a), e L, a for every noninvertible self-adjoint element

ac A.

By combining Theorem 2.1 and Theorem 2.5 we obtain the following result.

Proposition 2.8. For every A, B € B(H) the following statements hold.

(a) If dim H < oo, then A L, B if and only if there is a unit vector £ € H
such that ||AE|| = ||A|| and B*A¢ = 0.

(b) If dim H = oo, then A L, B if and only if there is a sequence of unit
vectors (€,) C H such that lim,,_, [|A&, || = ||A] and lim,,_., B*AE, = 0.

In particular, for a nonzero positive operator A € B(H) the following statements
hold.

(¢) If dim H < oo, then A L, B if and only if there is a unit vector & € H
such that A = ||A||§ and B*¢ = 0.

(d) If dim H = oo, then A L, B if and only if there is a sequence of unit
vectors (§,) C H such that lim,_,« (A&, — || Al|&) = 0 and lim,, .o, B*¢,, =
0.

Proof. By Theorem 2.5, A 1, B< A 1 B(B,A) = BB*A.

Let dim H < oo. By Theorem 2.1 (a), A L BB*A if and only if there ex-
ists a unit vector £ € H such that ||A¢|| = [|A| and (AE, BB*A{) = 0. Since
| B*AE||? = (A, BB*AE), the statement (a) is proved. Using Theorem 2.1 (b),
we can similarly prove the statement (b).

Suppose A is nonzero and positive. We shall use [23, Lemma 2.1] which says
that, whenever (,) is a sequence of unit vectors in H such that lim,, ., ||A&,| =
| A, then lim, (A&, — ||A]|&,) = 0. In particular, if £ is a unit vector in H
such that || A¢|| = [|A||, then A = || A||€.

When dim H < oo we have proved that A 1, B if and only if [|A¢|| = ||Al| and
B*A¢ = 0 for some unit vector £ € H. Since A > 0, || A¢|| = ||A|| & AE = ||A|€.
Therefore, B*A( =0 < B*¢ =0, as A # 0.

If dim H = oo then, A 1, B if and only if there is a sequence of unit vectors
(¢,) C H such that lim, . [|A&.|| = ||A]| and lim, . B*AE, = 0. The first
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condition is equivalent to lim,, .. (A&, — [|A||&,) = 0. If lim,, o, B*AE, = 0 then
lim B¢, = —[|A[|7'B*( lim (A&, — [|Al|$,)) =0,
and if lim,, .., B*§, = 0 then
lim B*AE, — B*(lim (A6, — | AJ.)) = 0,

so the second conditions are also equivalent. OJ

If A and B are elements of (the Hilbert B(H)-module) B(H, K) then, by
Proposition 2.6 (a), A L, B if and only if A*A 1, A*B. Since A*A, A*B € B(H)
and A*A is positive, we may apply Proposition 2.8 to obtain the following result.

Corollary 2.9. Let A,B € B(H, K).

(a) If dim H < oo, then A L, B if and only if there is a unit vector £ € H
such that A*A¢ = || A||*¢ and B*A¢ = 0.

(b) If dim H = oo, then A L, B if and only if there is a sequence of unit vec-
tors (£,) C H such that lim,, o (A* A&, —||A||%¢,) = 0 and lim,, ., B*AE, =
0.

In the case of Hilbert C*-modules over the C*-algebra K(H) of compact oper-
ators, Theorem 2.2 and Theorem 2.5 can be formulated in the following ways.

Proposition 2.10. Let V be a Hilbert K(H)-module, and x,y € V.

(a) L y if and only if there is a positive trace one operator p € T(H) such
that tr(p{z,z)) = ||z||* and tr(p(z,y)) = 0.

(b) = L, y if and only if there is a positive trace one operator p € T(H) such
that tr(p(z,z)) = ||z||* and p{x,y) = 0.

Proof. (a) This follows from Theorem 2.2 and the fact that every state ¢ of K(H)
is of the form a — tr(pa) for some positive trace one operator p € T(H) (see e.g.
[20, Theorem 4.2.1]).

(b) If L, y then, by Theorem 2.5, there is a state ¢ : K(H) — C such
that o((z,z)) = ||z]|*> and ¢({z,y)a) = 0 for all « € K(H). Let p € T(H) be a
positive trace one operator such that ¢(a) = tr(pa), a € K(H). Then we have
tr(p(z,z)) = ||z|* and tr(p(z,y)a) = 0 for all a € K(H). For a = (y,z)p we
obtain tr(p(x, y)(y, z)p) = 0. Since p{x,y)(y, x)p is a positive operator with zero
trace, it has to be 0, and then p(x,y) = 0.

Conversely, suppose that there is a positive trace one operator p € T(H) such
that p(z,y) = 0 and tr(p(z,x)) = ||z||*. Since p is a positive trace one operator,
one can define a state ¢ on K(H) by setting p(a) = tr(pa), a € K(H). Then we
have o((z,2)) = tr(p(z,2)) = 2]]? and (2, 5)(y,2)) = tr(p(z, Y){y,2)) = 0.
By Theorem 2.5 we deduce that = 1, y. O

3. ON THE INNER PRODUCT ORTHOGONALITY IN HILBERT C*-MODULES

Our motivation for Definition 2.3 was the fact that Hilbert C*-modules gen-
eralize Hilbert spaces in the sense that inner products take values in arbitrary
C*-algebras instead of C. There are other logical ways how to generalize (1.1).
For example, we can replace the norm ||- || in (1.1) and in (1.2) by the " C*-valued
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norm” | - | defined by |z| = (z,z)2. Since the function ¢ — ¢2 is not operator
monotone, we have to differ cases |z|* < |z +yal? and |z| < |2+ yal, respectively,
|z|?> < |z + \y|? and |z| < |z + A\y|. However, as it is proved in the next theorem,
most of these generalizations are too strong in the sense that they coincide with
(x,y) = 0. The only relation for which we do not know whether it in general
coincides with (x,y) = 0 is that defined by |z| < |z + Ay| for all A € C.

Theorem 3.1. Let V' be a Hilbert A-module, and x,y € V. The following state-
ments are mutually equivalent:
(a) (z,y) = 0;
(b) |z|* < |z + ya|* for all a € A;
(c) |z]* < |z + Ay|? for all X € C;
(d) |z| < |x + ya| for all a € A.

Proof. The equivalence of (a) and (b) was proved in [I3, Proposition 2.1]. By
Theorem 2.2.6 of [20], (b) implies (d).

(d)=(a) This is obvious for y = 0, so suppose that y # 0. Let ap = — IIylHQ (y,x) €
A. Then
1 2
[z +yaol® = |z — —y(y,x)
Iyl
B > 2 1
- ‘.T| 2<$,y><y,$> + 4<$7y><y7y><y7x>
[yl [yl
< ol = b)) + e ) @)
Iyl [yl
1
- ‘ |2_ ||y||2<xay><yax>
< |z (3.1)

It follows that |z + yag| < |z| which, together with (d), gives |z + yao| = |z|, and
then |z + yag|* = |z|?. In particular, we have equality in (3.1), so (z,y){y,z) = 0,
and therefore (z,y) = 0.

(b)=-(c) If (€;)ier is an approximate unit in A then |z|? < |z + Aye;
A€ Cand i€ I. Then we have

lim |z + Aye:|* = lim((z,z) + Mz, y)ei + Aeily, z) + [Aeily, y)er)
(z,2) + Mz,y) + My z) + My, y)
= v+ M

for all A € C, and we get (c).

(¢c)=(a) If (c) holds, then

Mz,y) + My, 2) + A (y,y) 20 (A€ Q). (32)

In particular, choosing real \'s we get

Mz, y) + My, z) + Xy, y) >0 (A €R),

2 for all

that is,
(z,y) + (y,2) + My, ) >0 (A >0), (3.3)
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and
(z,9) + (v, 2) + My,y) <0 (A <0). (3.4)
Taking limy oy in (3.3) and limy_,_ in (3.4) we obtain
(z,y) + (y,x) = 0. (3.5)

Putting i\, A € R, in (3.2) we get i\(z,y) —iA(y, z) + \*(y,y) > 0 for all A € R,
and, as above,

(z,y) = (y,2) = 0. (3.6)
Note that (3.5) and (3.6) yield (x,y) = 0, so (a) holds. O

If a and b are positive commuting elements of a C*-algebra A, then a < b &
a®? < b?. Thus, as a consequence of Theorem 3.1, the following result immediately
follows.

Corollary 3.2. Let V be a Hilbert C*-module over a C*-algebra A, and x,y € V
such that |x| € Z(A). Then (z,y) = 0 if and only if |z| < |z + Ay| for all X € C.

Though we could not prove that Corollary 3.2 holds without the assumption
that |z| € Z(A), it seems very likely that it does. The following results are in
favor of this assumption.

Proposition 3.3. Let V' be a Hilbert M, (C)-module, and x,y € V such that
lz| < |x 4+ Ay| for all X € C. Then tr({z,y)) = 0. In particular, if moreover
(z,y) > 0 then (x,y) = 0.

Proof. Denote by u;(T), i = 1,...,n, the eigenvalues of a self-adjoint matrix
T € M, (C) arranged in decreasing order: ui(7) > -+ > p, (7).

Since |z| < |z + Ay| for all A € C, by the Courant-Fischer theorem (see [25,
Theorem 8.9]), we obtain p;(|z]) < wi(|Jz + Ayl|), ¢ = 1,...,n, for all A € C.
Thus we have p;(|z|*) < wi(|z + Ay[?), i = 1,...,n, for all A\ € C. By Theorem
8.20 of [25], for every A € C there is a unitary matrix uy € M,(C) such that
|z|* < ui|z+Ay|*uy. Therefore, tr(|z|?) < tr(|Jz+Ay|?) for every A € C, from which
(similarly as in the proof of (¢)=-(a) in Theorem 3.1) it follows that tr({z,y)) =
0. 0

Lemma 3.4. Let A, B € M, (C) satisfy |A| < |[A+ AB| for all A € C. If A is
invertible, then o(A™'B) = {0}, and if B is invertible then o(B~'A) = {0}. In

particular, either A or B is noninvertible.

Proof. First observe that Ker (A + AB) = Ker A N Ker B for every A € C\ {0}.
Indeed, let A # 0 and £ € Ker (A + AB). From |A| < |A + AB| it follows that
[[ASE]? = (JAI€,€) < (A + ABIE,€) = 0, 50 |AF€ = 0 and then A£ = 0. Since
A # 0 and (A+ AB)§ = 0 we get B = 0. This proves that Ker (A + AB) C
Ker AN Ker B. The reverse inclusion is obvious.

If A (resp. B) is invertible, then so is A+ AB for all A # 0, and also A™'(A +
AB) = I + MA'B (resp. B™'(A+ AB) = B A+ \I) for all A\ # 0. Then
o(A™'B) = {0} (resp. o(BtA) = {0}). In particular, A~'B (resp. B'A) is

noninvertible, wherefrom B (resp. A) is noninvertible. O
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Observe that in the case of matrices we can restrict our discussion to positive
A. Indeed, for A € M, (C) we have A = U|A| for some unitary U € M, (C),
so |A+ AB| = ||A| + \U*B| and A*B = |A|(U*B). We may also assume that
Al = 1.

We conclude the paper with the theorem which states that Corollary 3.2 holds
in My (C) without assuming that |z| € Z(.A). Although the calculation is elemen-
tary, we include it for the convenience of the reader.

Recall that for A € My(C) we have

Al - 1 (VAo + 4°)
\/tr (A*A) + 2,/det(A*A)
(see e.g. [11, p. 460]).
Theorem 3.5. If A, B € M,(C) are such that
Al < |A+AB| (A€ ), (3.7)

then A*B = 0.

Proof. It A =0 or B =0, we are done. So suppose that A and B are nonzero.
As we have already mentioned, we may assume that A > 0 and [|A| = 1.

Since (3.7) implies ||A|| < ||[A + AB]J| for all A € C, by Theorem 2.1 there is a
unit vector £ € C? such that ||A¢|| =1 and (AE, BE) = 0. Since A > 0 it follows
that A = ¢ and (B¢, &) = 0. Let 0(A) = {1,a}, and n € C?, ||n|| = 1, be such
that An = an and (§,n7) = 0. Let U € M»(C) be the unitary matrix which maps
the standard orthonormal basis of C? to the orthonormal basis {£,n}. Then we

have
. 10 . 0 b
UAU—[O a}’ UBU—{b2 bg]
Since (3.7) is equivalent with |[U*AU| < |[U*AU + AU*BU| for all A € C, and
A*B = 0 if and only if (U*AU)*(U*BU) = 0, without loss of generality we can
assume that A and B are of the forms
10 10 b
A—[o a}’ B_{bg bg}'

We differ three cases: A is invertible, B is invertible, and both A and B are
noninvertible.

(1) Suppose A is invertible. Then a # 0. From Proposition 3.3, by =1 tr(A*B) =
0. By Lemma 3.4, B is noninvertible, and therefore b; = 0 or by = 0. So, the only
candidates for B are [ 8 8 and 2 8 1 for some b # 0. We shall now prove
that they do not satisfy (3.7). We may assume that b = 1.

0 1
IfB—[O O}Jhen

|A+ \B| =

1 {a—l—l A
VIE+@+12 A atad®+ AP

. < a+1 . .. . ‘
By (3.7) we have 1 < Tt which is impossible for A # 0
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0 0
IfB—{1 Ol,then
1 a+1+A%  da }
A+ AB| = .
| Ul e e
By (3.7) we get a < ﬁ, which is impossible for A # 0.

(2) Suppose B is invertible. Then, by Lemma 3.4, A is noninvertible, so A =

é 8 } . Since B is invertible, b; # 0 and by # 0. By Lemma 3.4, we have

o(B7'A) = {0} wherefrom b3 = 0. So, we may assume that B = { 2 (1) ] for
some b # 0. Then

1 2
A+ AB| = L+ [A[*[6](1 + [b]) ) A ]
V1 + AR+ )2 A [APF(L+[0])
It is a routine calculation to show that for A # 0 we have
20b| + 1

det(|JA+AB| —|A) >0 M* > ———— —

so (3.7) cannot be satisfied for every A € C.

(3) Suppose A and B are both noninvertible. Then A = {

10 ) )
0 O]' Since B is

noninvertible it follows that b; = 0 or by = 0.

If by = 0, then A*B = 0. If b; # 0 then by = 0, and therefore B = [ 01 } , SO

0 b
1 L+ |Al]b] A }
A+ AB| = < .
AP = T DEL X IMOABE + AL+ [o])
Since % < 1 for A # 0, these A and B cannot satisfy (3.7). O

Remark 3.6. Since (x,y) = 0 if and only if (y,z) = 0, Theorem 3.1 can be
extended with the following statements:

(e) |y|* < |y + zal? for all a € A;
(f) |y? < |y + Ax|? for all A € C;
(2) ly| < |y + za| for all a € A.

Also, as a consequence of Theorem 3.5 we have that for A, B € M(C) it holds
(JA] <|A+ AB| forall A € C) & (|B| < |B+ A\A] for all A € C).
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