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Abstract. In this paper we introduce a strong version of the Birkhoff–James
orthogonality in Hilbert C∗-modules. More precisely, we consider elements x
and y of a Hilbert C∗-module V over a C∗-algebra A which satisfy ‖x‖ ≤
‖x + ya‖ for all a ∈ A. We show that this relation can be described as the
Birkhoff–James orthogonality of appropriate elements of V, and characterized
in terms of states acting on the underlying C∗-algebra A. Some analogous
relations of this type are considered as well.

1. Introduction and preliminaries

The notion of orthogonality in an arbitrary normed linear space may be intro-
duced in various ways (e.g. see [1, 2]). Among them, the one which is frequently
studied in literature is the Birkhoff–James orthogonality [7, 9, 14, 15, 16]: if
x, y are elements of a normed linear space X, then x is orthogonal to y in the
Birkhoff–James sense, in short x ⊥ y, if

‖x‖ ≤ ‖x + λy‖ (λ ∈ C). (1.1)

If X is an inner product space, then the Birkhoff–James orthogonality is equiv-
alent to the usual orthogonality given by the inner product. It is easy to see
that the Birkhoff–James orthogonality is nondegenerate (x ⊥ x if and only if
x = 0), homogenous (x ⊥ y ⇒ (λx ⊥ µy for all λ, µ ∈ C)), not symmetric (x ⊥ y
need not imply y ⊥ x), and not additive (x ⊥ y and x ⊥ z need not imply
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x ⊥ (y + z)). Also, for every x, y ∈ X there is λ ∈ C such that x ⊥ (λx + y). By
the Hahn–Banach theorem, if x, y are two elements of a normed linear space X,
then x ⊥ y if and only if there is a norm one linear functional f of X such that
f(x) = ‖x‖ and f(y) = 0. Characterizations of the Birkhoff–James orthogonality
in C∗-algebras and Hilbert C∗-modules were obtained in several papers such as
[5] and [6].

In Hilbert C∗-modules the role of scalars is played by the elements of the
underlying C∗-algebra. So, it is natural to generalize the notion of the Birkhoff–
James orthogonality in the following way. Instead of (1.1), one can consider
elements x and y of a given Hilbert A-module V satisfying

‖x‖ ≤ ‖x + ya‖ (a ∈ A). (1.2)

Evidently, the condition (1.2) is stronger than (1.1), and weaker than the orthog-
onality with respect to the inner product.

In the second section we study the relation (1.2). We show in Theorem 2.5 that
x and y satisfy (1.2) if and only if x is orthogonal to y〈y, x〉 in the Birkhoff–James
sense, which enables us to apply some results of [5] to characterize (1.2) in terms
of the states acting on the underlying C∗-algebra. In particular, we consider (1.2)
for elements of Hilbert K(H)-modules (Proposition 2.10), as well as for elements
of the C∗-algebra B(H) (Proposition 2.8).

The concluding Section 3 discusses some other possible generalizations of (1.1)
which are natural in Hilbert C∗-modules. However, it turns out that most of
them just describe the orthogonality with respect to the inner product.

Before stating our results, let us recall some basic facts about C∗-algebras and
Hilbert C∗-modules and introduce our notation.

Throughout, B(H, K) stands for the linear space of all bounded linear operators
between Hilbert spaces H and K. When H = K, we write B(H). By K(H) we
denote the algebra of all compact operators on H, and by T(H) the algebra
of all trace-class operators on H. For A ∈ B(H, K) the symbol ‖A‖ denotes the
operator norm of A. Ker A stands for the kernel of A. By I we denote the identity
operator on H. By tr(A) we denote the trace of A ∈ T(H). The algebra of all
complex n×n matrices is denoted by Mn(C). We shall identify B(Cn) and Mn(C)
in the usual way.

A positive element a of a C∗-algebra A is a self-adjoint element whose spectrum
σ(a) is contained in [0,∞). If a ∈ A is positive, we write a ≥ 0. A partial order
may be introduced on the set of self-adjoint elements of a C∗-algebra A : if a and
b are self-adjoint elements of A such that a − b ≥ 0, we write a ≥ b or b ≤ a.
If a ≥ 0, then there exists a unique positive b ∈ A such that a = b2; such an
element b, denoted by a

1
2 , is called the positive square root of a. If 0 ≤ a ≤ b then

0 ≤ a
1
2 ≤ b

1
2 . The converse does not hold in general, but it holds in commutative

C∗-algebras. Also, if 0 ≤ a ≤ b then 0 ≤ c∗ac ≤ c∗bc for all c ∈ A.
An approximate unit for a C∗-algebra A is an increasing net (ei)i∈I of positive

elements in the closed unit ball of A such that limi∈I ‖a− aei‖ = 0 for all a ∈ A,
or equivalently limi∈I ‖a− eia‖ = 0 for all a in A.
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A linear functional ϕ of A is positive if ϕ(a) ≥ 0 for every positive element
a ∈ A. A state is a positive linear functional whose norm is equal to one. The
numerical range of a ∈ A, denoted by V (a), is the set of all ϕ(a), where ϕ ranges
over the states of A. The center of A is denoted by Z(A). General references for
the theory of C∗-algebras are [10, 20].

A (right) Hilbert C∗-module V over a C∗-algebra A (or a (right) Hilbert A-
module) is a linear space which is a right A-module equipped with an A-valued
inner-product 〈· , ·〉 : V×V → A that is sesquilinear, positive definite and respects
the module action, i.e.,

(1) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ V, α, β ∈ C,
(2) 〈x, ya〉 = 〈x, y〉a for x, y ∈ V, a ∈ A,
(3) 〈x, y〉∗ = 〈y, x〉 for x, y ∈ V,
(4) 〈x, x〉 ≥ 0 for x ∈ V ; if 〈x, x〉 = 0 then x = 0,

and such that V is complete with respect to the norm defined by ‖x‖ = ‖〈x, x〉‖ 1
2 ,

x ∈ V. In fact, for every x, y ∈ V it holds 〈y, x〉〈x, y〉 ≤ ‖x‖2〈y, y〉, wherefrom
‖〈x, y〉‖ ≤ ‖x‖‖y‖.

Obviously, every Hilbert space is a Hilbert C-module. Also, every C∗-algebra
A can be regarded as a Hilbert C∗-module over itself with the inner product
〈a, b〉 := a∗b, and the corresponding norm is just the norm on A because of
the C∗-condition. (For details about Hilbert C∗-modules we refer the reader to
[18, 19, 21, 24].)

If x is an element of a Hilbert A-module V, |x| ∈ A denotes the unique positive
square root of 〈x, x〉 ∈ A. In the case of a C∗-algebra we get the usual |a| =
(a∗a)1/2. Although the definition of |x| has the same form as that of the norm of
an element of an inner product space, there are some significant differences. For
example, it is well known that the C∗-valued triangle inequality |x+y| ≤ |x|+ |y|
for elements x and y of a Hilbert C∗-module need not hold (see [12]). Actually,
it was recently proved in [17] that the C∗-valued triangle inequality holds for
every two elements of V if and only if A is commutative. The case of equality in
triangle inequality was characterized in [3] for elements of B(H), and in [4] for
elements of Hilbert C∗-modules.

In a Hilbert A-module V we have the following version of the Cauchy–Schwarz
inequality:

|ϕ(〈x, y〉)|2 ≤ ϕ(〈x, x〉)ϕ(〈y, y〉) (x, y ∈ V ),

where ϕ is a positive linear functional of A.

2. Properties and characterizations of the strong
Birkhoff–James orthogonality

As we have already mentioned, for two elements x, y of a normed linear space
X, it holds x ⊥ y if and only if there is a norm one linear functional f of X such
that f(x) = ‖x‖ and f(y) = 0. If we have additional structures on a normed
linear space X, then we obtain other characterizations of the Birkhoff–James
orthogonality. One of the first results of this form is the result obtained by
Bhatia and Šemrl [8] for the C∗-algebra B(H) of all bounded linear operators on
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a Hilbert space H. The following result is the content of Theorem 1.1 and Remark
3.1 of [8].

Theorem 2.1. Let A, B ∈ B(H).

(a) If dim H < ∞, then A ⊥ B if and only if there is a unit vector ξ ∈ H
such that ‖Aξ‖ = ‖A‖ and (Aξ, Bξ) = 0.

(b) If dim H = ∞, then A ⊥ B if and only if there is a sequence of unit vectors
(ξn) ⊂ H such that limn→∞ ‖Aξn‖ = ‖A‖ and limn→∞(Aξn, Bξn) = 0.

The characterization of the Birkhoff–James orthogonality for elements of a
Hilbert C∗-module by means of the states of the underlying C∗-algebra was ob-
tained in [5]. The following result is Theorem 2.7 of [5]. (The same result is later
obtained in [6] by using a different approach.)

Theorem 2.2. Let V be a Hilbert A-module, and x, y ∈ V. Then x ⊥ y if and
only if there is a state ϕ of A such that ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉) = 0.

We now introduce a new type of orthogonality in Hilbert C∗-modules.

Definition 2.3. An element x of a Hilbert A-module V is strongly Birkhoff–
James orthogonal to an element y ∈ V , in short x ⊥∗ y, if

‖x‖ ≤ ‖x + ya‖ (a ∈ A).

For every x, y ∈ V it holds

〈x, y〉 = 0 ⇒ x ⊥∗ y ⇒ x ⊥ y. (2.1)

Indeed, if 〈x, y〉 = 0, then for all a ∈ A we have

‖x + ya‖2 = ‖〈x + ya, x + ya〉‖ = ‖〈x, x〉+ 〈ya, ya〉‖ ≥ ‖〈x, x〉‖ = ‖x‖2,

i.e., x ⊥∗ y. Further, if x ⊥∗ y, then for every λ ∈ C we have ‖x‖ ≤ ‖x + λyei‖,
i ∈ I, where (ei)i∈I is an approximate unit for A. Since limi∈I ‖yei−y‖ = 0 ([19],
p. 5), we get x ⊥ y.

The converses in (2.1) do not hold in general, as shown in the following example.

Example 2.4. Let us take A = M2(C), regarded as a Hilbert C∗-module over
itself.

(a) Let A =

[
1 0
0 −1

]
. Then I ⊥ A since

‖I + λA‖ =

∥∥∥∥[
1 + λ 0

0 1− λ

]∥∥∥∥ = max{|1 + λ|, |1− λ|} ≥ ‖I‖

for all λ ∈ C. But I 6⊥∗ A since for B = −A we have ‖I + AB‖ = 0 < ‖I‖.

(b) Let A =

[
1 0
0 0

]
. For any B =

[
b1 b2

b3 b4

]
we have

‖I + AB‖ =

∥∥∥∥[
1 + b1 b2

0 1

]∥∥∥∥ ≥ 1 = ‖I‖.

Therefore I ⊥∗ A, but 〈I, A〉 = A 6= 0.
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In the next theorem we obtain some characterizations of the strong Birkhoff–
James orthogonality. First observe that x ⊥∗ y is equivalent to ‖x‖ ≤ ‖x + λya‖
for all a ∈ A and λ ∈ C, that is

x ⊥∗ y ⇔ (x ⊥ ya for all a ∈ A). (2.2)

By Theorem 2.2, it means that x ⊥∗ y if and only if for every a ∈ A there is a
state ϕa of A such that ϕa(〈x, x〉) = ‖x‖2 and ϕa(〈x, y〉a) = 0. It turns out that
this can be accomplished with a single state ϕ.

Theorem 2.5. Let V be a Hilbert A-module, and x, y ∈ V. The following state-
ments are mutually equivalent :

(a) x ⊥∗ y;
(b) x ⊥ y〈y, x〉;
(c) there is a state ϕ of A such that ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉〈y, x〉) = 0;
(d) there is a state ϕ of A such that ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉a) = 0 for

all a ∈ A.

Proof. It follows from (2.2) that (a)⇒(b), and from Theorem 2.2 we have (b)⇔(c).
To prove (c)⇒(d), it is enough to notice that for every a ∈ A, by the Cauchy–
Schwarz inequality, we have

|ϕ(〈x, y〉a)|2 ≤ ϕ(〈x, y〉〈y, x〉)ϕ(a∗a).

The implication (d)⇒(a) follows from (2.2) and Theorem 2.2. �

Next we discuss some properties of the relation ⊥∗ . We show that, as in the
case of the classical Birkhoff–James orthogonality (see [5, Theorem 2.9 (a)]), for
any two elements x and y of a Hilbert A-module V, the relation x ⊥∗ y can be
described by means of the orthogonality of appropriate elements of the underlying
C∗-algebra A.

Proposition 2.6. Let V be a Hilbert A-module, and x, y ∈ V.

(a) x ⊥∗ y ⇔ 〈x, x〉 ⊥∗ 〈x, y〉.
(b) If A is unital and x ⊥∗ y, then 〈x, y〉 does not have a right inverse in A.
(c) x ⊥∗ y ⇔ (x ⊥∗ ya for all a ∈ A) ⇔ (x ⊥ ya for all a ∈ A).

Proof. (a) If x ⊥∗ y, then there is a state ϕ such that ϕ(〈x, x〉) = ‖x‖2 and
ϕ
(
〈x, y〉a

)
= 0 for all a ∈ A. Then for every a ∈ A it holds

‖〈x, x〉‖ = ‖x‖2 = |ϕ(〈x, x〉+ 〈x, y〉a)| ≤ ‖〈x, x〉+ 〈x, y〉a‖,
so 〈x, x〉 ⊥∗ 〈x, y〉.

Conversely, if 〈x, x〉 ⊥∗ 〈x, y〉 then ‖〈x, x〉‖ ≤ ‖〈x, x〉 + 〈x, y〉a‖ for all a ∈ A,
that is, ‖x‖2 ≤ ‖〈x, x + ya〉‖ ≤ ‖x‖‖x + ya‖ for all a ∈ A. It follows that x ⊥∗ y.

(b) Let e be the unit of A. If x ⊥∗ y, then there is a state ϕ such that
ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉a) = 0 for all a ∈ A. Suppose that 〈x, y〉 has a
right inverse b ∈ A. Then for a = b we have ϕ(e) = ϕ(〈x, y〉b) = 0, which is not
possible.

(c) By using an approximate unit for A, it is easy to prove the first equivalence.
We have already noticed that x ⊥∗ y ⇔ (x ⊥ ya, ∀a ∈ A). �
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The converse in part (b) of the previous proposition does not hold: for a
counterexample we can take any x 6= 0 such that 〈x, x〉 is noninvertible.

Remark 2.7. Let A be a unital C∗-algebra with the unit e, regarded as a Hilbert
C∗-module over itself.

(a) If a ∈ A is such that aa∗ is not invertible then, by Theorem 1 of [22],
0 ∈ σ(aa∗) ⊆ V (aa∗). Hence, there is a state ϕ of A such that ϕ(aa∗) = 0.
By Theorem 2.5 (c) we conclude that e ⊥∗ a. When a ∈ A is noninvertible,
then at least one of the elements aa∗ and a∗a is noninvertible. Thus, e ⊥∗ a or
e ⊥∗ a∗ for every noninvertible a ∈ A. In particular, e ⊥∗ a for every self-adjoint
noninvertible a ∈ A.

(b) The relation⊥∗ is not additive. Indeed, let a ∈ A be a nonzero noninvertible
positive element. Then ‖a‖e − a ∈ A is also a nonzero noninvertible positive
element, so by (a) we have e ⊥∗ a and e ⊥∗ (‖a‖e− a), but e 6⊥∗ (a+(‖a‖e− a)).

It is also nonsymmetric. Namely, by Theorem 2.5, a ⊥∗ e ⇔ a ⊥ e〈e, a〉 ⇔
a ⊥ a ⇔ a = 0 while, by (a), e ⊥∗ a for every noninvertible self-adjoint element
a ∈ A.

By combining Theorem 2.1 and Theorem 2.5 we obtain the following result.

Proposition 2.8. For every A, B ∈ B(H) the following statements hold.

(a) If dim H < ∞, then A ⊥∗ B if and only if there is a unit vector ξ ∈ H
such that ‖Aξ‖ = ‖A‖ and B∗Aξ = 0.

(b) If dim H = ∞, then A ⊥∗ B if and only if there is a sequence of unit
vectors (ξn) ⊂ H such that limn→∞ ‖Aξn‖ = ‖A‖ and limn→∞ B∗Aξn = 0.

In particular, for a nonzero positive operator A ∈ B(H) the following statements
hold.

(c) If dim H < ∞, then A ⊥∗ B if and only if there is a unit vector ξ ∈ H
such that Aξ = ‖A‖ξ and B∗ξ = 0.

(d) If dim H = ∞, then A ⊥∗ B if and only if there is a sequence of unit
vectors (ξn) ⊂ H such that limn→∞(Aξn−‖A‖ξn) = 0 and limn→∞ B∗ξn =
0.

Proof. By Theorem 2.5, A ⊥∗ B ⇔ A ⊥ B〈B, A〉 = BB∗A.
Let dim H < ∞. By Theorem 2.1 (a), A ⊥ BB∗A if and only if there ex-

ists a unit vector ξ ∈ H such that ‖Aξ‖ = ‖A‖ and (Aξ, BB∗Aξ) = 0. Since
‖B∗Aξ‖2 = (Aξ, BB∗Aξ), the statement (a) is proved. Using Theorem 2.1 (b),
we can similarly prove the statement (b).

Suppose A is nonzero and positive. We shall use [23, Lemma 2.1] which says
that, whenever (ξn) is a sequence of unit vectors in H such that limn→∞ ‖Aξn‖ =
‖A‖, then limn→∞(Aξn − ‖A‖ξn) = 0. In particular, if ξ is a unit vector in H
such that ‖Aξ‖ = ‖A‖, then Aξ = ‖A‖ξ.

When dim H < ∞ we have proved that A ⊥∗ B if and only if ‖Aξ‖ = ‖A‖ and
B∗Aξ = 0 for some unit vector ξ ∈ H. Since A ≥ 0, ‖Aξ‖ = ‖A‖ ⇔ Aξ = ‖A‖ξ.
Therefore, B∗Aξ = 0 ⇔ B∗ξ = 0, as A 6= 0.

If dim H = ∞ then, A ⊥∗ B if and only if there is a sequence of unit vectors
(ξn) ⊂ H such that limn→∞ ‖Aξn‖ = ‖A‖ and limn→∞ B∗Aξn = 0. The first
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condition is equivalent to limn→∞(Aξn − ‖A‖ξn) = 0. If limn→∞ B∗Aξn = 0 then

lim
n→∞

B∗ξn = −‖A‖−1B∗( lim
n→∞

(Aξn − ‖A‖ξn)) = 0,

and if limn→∞ B∗ξn = 0 then

lim
n→∞

B∗Aξn = B∗( lim
n→∞

(Aξn − ‖A‖ξn)) = 0,

so the second conditions are also equivalent. �

If A and B are elements of (the Hilbert B(H)-module) B(H, K) then, by
Proposition 2.6 (a), A ⊥∗ B if and only if A∗A ⊥∗ A∗B. Since A∗A, A∗B ∈ B(H)
and A∗A is positive, we may apply Proposition 2.8 to obtain the following result.

Corollary 2.9. Let A, B ∈ B(H, K).

(a) If dim H < ∞, then A ⊥∗ B if and only if there is a unit vector ξ ∈ H
such that A∗Aξ = ‖A‖2ξ and B∗Aξ = 0.

(b) If dim H = ∞, then A ⊥∗ B if and only if there is a sequence of unit vec-
tors (ξn) ⊂ H such that limn→∞(A∗Aξn−‖A‖2ξn) = 0 and limn→∞ B∗Aξn =
0.

In the case of Hilbert C∗-modules over the C∗-algebra K(H) of compact oper-
ators, Theorem 2.2 and Theorem 2.5 can be formulated in the following ways.

Proposition 2.10. Let V be a Hilbert K(H)-module, and x, y ∈ V.

(a) x ⊥ y if and only if there is a positive trace one operator p ∈ T(H) such
that tr(p〈x, x〉) = ‖x‖2 and tr(p〈x, y〉) = 0.

(b) x ⊥∗ y if and only if there is a positive trace one operator p ∈ T(H) such
that tr(p〈x, x〉) = ‖x‖2 and p〈x, y〉 = 0.

Proof. (a) This follows from Theorem 2.2 and the fact that every state ϕ of K(H)
is of the form a 7→ tr(pa) for some positive trace one operator p ∈ T(H) (see e.g.
[20, Theorem 4.2.1]).

(b) If x ⊥∗ y then, by Theorem 2.5, there is a state ϕ : K(H) → C such
that ϕ(〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉a) = 0 for all a ∈ K(H). Let p ∈ T(H) be a
positive trace one operator such that ϕ(a) = tr(pa), a ∈ K(H). Then we have
tr(p〈x, x〉) = ‖x‖2 and tr(p〈x, y〉a) = 0 for all a ∈ K(H). For a = 〈y, x〉p we
obtain tr(p〈x, y〉〈y, x〉p) = 0. Since p〈x, y〉〈y, x〉p is a positive operator with zero
trace, it has to be 0, and then p〈x, y〉 = 0.

Conversely, suppose that there is a positive trace one operator p ∈ T(H) such
that p〈x, y〉 = 0 and tr(p〈x, x〉) = ‖x‖2. Since p is a positive trace one operator,
one can define a state ϕ on K(H) by setting ϕ(a) = tr(pa), a ∈ K(H). Then we
have ϕ(〈x, x〉) = tr(p〈x, x〉) = ‖x‖2 and ϕ(〈x, y〉〈y, x〉) = tr(p〈x, y〉〈y, x〉) = 0.
By Theorem 2.5 we deduce that x ⊥∗ y. �

3. On the inner product orthogonality in Hilbert C∗-modules

Our motivation for Definition 2.3 was the fact that Hilbert C∗-modules gen-
eralize Hilbert spaces in the sense that inner products take values in arbitrary
C∗-algebras instead of C. There are other logical ways how to generalize (1.1).
For example, we can replace the norm ‖ ·‖ in (1.1) and in (1.2) by the ”C∗-valued



116 LJ. ARAMBAŠIĆ, R. RAJIĆ

norm” | · | defined by |x| = 〈x, x〉 1
2 . Since the function t 7→ t2 is not operator

monotone, we have to differ cases |x|2 ≤ |x+ya|2 and |x| ≤ |x+ya|, respectively,
|x|2 ≤ |x + λy|2 and |x| ≤ |x + λy|. However, as it is proved in the next theorem,
most of these generalizations are too strong in the sense that they coincide with
〈x, y〉 = 0. The only relation for which we do not know whether it in general
coincides with 〈x, y〉 = 0 is that defined by |x| ≤ |x + λy| for all λ ∈ C.

Theorem 3.1. Let V be a Hilbert A-module, and x, y ∈ V. The following state-
ments are mutually equivalent :

(a) 〈x, y〉 = 0;
(b) |x|2 ≤ |x + ya|2 for all a ∈ A;
(c) |x|2 ≤ |x + λy|2 for all λ ∈ C;
(d) |x| ≤ |x + ya| for all a ∈ A.

Proof. The equivalence of (a) and (b) was proved in [13, Proposition 2.1]. By
Theorem 2.2.6 of [20], (b) implies (d).

(d)⇒(a) This is obvious for y = 0, so suppose that y 6= 0. Let a0 = − 1
‖y‖2 〈y, x〉 ∈

A. Then

|x + ya0|2 =

∣∣∣∣x− 1

‖y‖2
y〈y, x〉

∣∣∣∣2
= |x|2 − 2

‖y‖2
〈x, y〉〈y, x〉+

1

‖y‖4
〈x, y〉〈y, y〉〈y, x〉

≤ |x|2 − 2

‖y‖2
〈x, y〉〈y, x〉+

1

‖y‖2
〈x, y〉〈y, x〉

= |x|2 − 1

‖y‖2
〈x, y〉〈y, x〉

≤ |x|2. (3.1)

It follows that |x + ya0| ≤ |x| which, together with (d), gives |x + ya0| = |x|, and
then |x+ ya0|2 = |x|2. In particular, we have equality in (3.1), so 〈x, y〉〈y, x〉 = 0,
and therefore 〈x, y〉 = 0.

(b)⇒(c) If (ei)i∈I is an approximate unit in A then |x|2 ≤ |x + λyei|2 for all
λ ∈ C and i ∈ I. Then we have

lim
i∈I

|x + λyei|2 = lim
i∈I

(〈x, x〉+ λ〈x, y〉ei + λei〈y, x〉+ |λ|2ei〈y, y〉ei)

= 〈x, x〉+ λ〈x, y〉+ λ〈y, x〉+ |λ|2〈y, y〉
= |x + λy|2,

for all λ ∈ C, and we get (c).
(c)⇒(a) If (c) holds, then

λ〈x, y〉+ λ〈y, x〉+ |λ|2〈y, y〉 ≥ 0 (λ ∈ C). (3.2)

In particular, choosing real λ’s we get

λ〈x, y〉+ λ〈y, x〉+ λ2〈y, y〉 ≥ 0 (λ ∈ R),

that is,
〈x, y〉+ 〈y, x〉+ λ〈y, y〉 ≥ 0 (λ > 0), (3.3)
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and

〈x, y〉+ 〈y, x〉+ λ〈y, y〉 ≤ 0 (λ < 0). (3.4)

Taking limλ→0+ in (3.3) and limλ→0− in (3.4) we obtain

〈x, y〉+ 〈y, x〉 = 0. (3.5)

Putting iλ, λ ∈ R, in (3.2) we get iλ〈x, y〉 − iλ〈y, x〉+ λ2〈y, y〉 ≥ 0 for all λ ∈ R,
and, as above,

〈x, y〉 − 〈y, x〉 = 0. (3.6)

Note that (3.5) and (3.6) yield 〈x, y〉 = 0, so (a) holds. �

If a and b are positive commuting elements of a C∗-algebra A, then a ≤ b ⇔
a2 ≤ b2. Thus, as a consequence of Theorem 3.1, the following result immediately
follows.

Corollary 3.2. Let V be a Hilbert C∗-module over a C∗-algebra A, and x, y ∈ V
such that |x| ∈ Z(A). Then 〈x, y〉 = 0 if and only if |x| ≤ |x + λy| for all λ ∈ C.

Though we could not prove that Corollary 3.2 holds without the assumption
that |x| ∈ Z(A), it seems very likely that it does. The following results are in
favor of this assumption.

Proposition 3.3. Let V be a Hilbert Mn(C)-module, and x, y ∈ V such that
|x| ≤ |x + λy| for all λ ∈ C. Then tr(〈x, y〉) = 0. In particular, if moreover
〈x, y〉 ≥ 0 then 〈x, y〉 = 0.

Proof. Denote by µi(T ), i = 1, . . . , n, the eigenvalues of a self-adjoint matrix
T ∈ Mn(C) arranged in decreasing order: µ1(T ) ≥ · · · ≥ µn(T ).

Since |x| ≤ |x + λy| for all λ ∈ C, by the Courant–Fischer theorem (see [25,
Theorem 8.9]), we obtain µi(|x|) ≤ µi(|x + λy|), i = 1, . . . , n, for all λ ∈ C.
Thus we have µi(|x|2) ≤ µi(|x + λy|2), i = 1, . . . , n, for all λ ∈ C. By Theorem
8.20 of [25], for every λ ∈ C there is a unitary matrix uλ ∈ Mn(C) such that
|x|2 ≤ u∗λ|x+λy|2uλ. Therefore, tr(|x|2) ≤ tr(|x+λy|2) for every λ ∈ C, from which
(similarly as in the proof of (c)⇒(a) in Theorem 3.1) it follows that tr(〈x, y〉) =
0. �

Lemma 3.4. Let A, B ∈ Mn(C) satisfy |A| ≤ |A + λB| for all λ ∈ C. If A is
invertible, then σ(A−1B) = {0}, and if B is invertible then σ(B−1A) = {0}. In
particular, either A or B is noninvertible.

Proof. First observe that Ker (A + λB) = Ker A ∩ Ker B for every λ ∈ C \ {0}.
Indeed, let λ 6= 0 and ξ ∈ Ker (A + λB). From |A| ≤ |A + λB| it follows that

‖|A| 12 ξ‖2 = (|A|ξ, ξ) ≤ (|A + λB|ξ, ξ) = 0, so |A| 12 ξ = 0 and then Aξ = 0. Since
λ 6= 0 and (A + λB)ξ = 0 we get Bξ = 0. This proves that Ker (A + λB) ⊆
Ker A ∩Ker B. The reverse inclusion is obvious.

If A (resp. B) is invertible, then so is A + λB for all λ 6= 0, and also A−1(A +
λB) = I + λA−1B (resp. B−1(A + λB) = B−1A + λI) for all λ 6= 0. Then
σ(A−1B) = {0} (resp. σ(B−1A) = {0}). In particular, A−1B (resp. B−1A) is
noninvertible, wherefrom B (resp. A) is noninvertible. �
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Observe that in the case of matrices we can restrict our discussion to positive
A. Indeed, for A ∈ Mn(C) we have A = U |A| for some unitary U ∈ Mn(C),
so |A + λB| = ||A|+ λU∗B| and A∗B = |A|(U∗B). We may also assume that
‖A‖ = 1.

We conclude the paper with the theorem which states that Corollary 3.2 holds
in M2(C) without assuming that |x| ∈ Z(A). Although the calculation is elemen-
tary, we include it for the convenience of the reader.

Recall that for A ∈ M2(C) we have

|A| = 1√
tr (A∗A) + 2

√
det(A∗A)

(√
det(A∗A)I + A∗A

)
,

(see e.g. [11, p. 460]).

Theorem 3.5. If A, B ∈ M2(C) are such that

|A| ≤ |A + λB| (λ ∈ C), (3.7)

then A∗B = 0.

Proof. If A = 0 or B = 0, we are done. So suppose that A and B are nonzero.
As we have already mentioned, we may assume that A ≥ 0 and ‖A‖ = 1.

Since (3.7) implies ‖A‖ ≤ ‖A + λB‖ for all λ ∈ C, by Theorem 2.1 there is a
unit vector ξ ∈ C2 such that ‖Aξ‖ = 1 and (Aξ, Bξ) = 0. Since A ≥ 0 it follows
that Aξ = ξ and (Bξ, ξ) = 0. Let σ(A) = {1, a}, and η ∈ C2, ‖η‖ = 1, be such
that Aη = aη and (ξ, η) = 0. Let U ∈ M2(C) be the unitary matrix which maps
the standard orthonormal basis of C2 to the orthonormal basis {ξ, η}. Then we
have

U∗AU =

[
1 0
0 a

]
, U∗BU =

[
0 b1

b2 b3

]
.

Since (3.7) is equivalent with |U∗AU | ≤ |U∗AU + λU∗BU | for all λ ∈ C, and
A∗B = 0 if and only if (U∗AU)∗(U∗BU) = 0, without loss of generality we can
assume that A and B are of the forms

A =

[
1 0
0 a

]
, B =

[
0 b1

b2 b3

]
.

We differ three cases: A is invertible, B is invertible, and both A and B are
noninvertible.

(1) Suppose A is invertible. Then a 6= 0. From Proposition 3.3, b3 = 1
a
tr(A∗B)=

0. By Lemma 3.4, B is noninvertible, and therefore b1 = 0 or b2 = 0. So, the only

candidates for B are

[
0 b
0 0

]
and

[
0 0
b 0

]
for some b 6= 0. We shall now prove

that they do not satisfy (3.7). We may assume that b = 1.

If B =

[
0 1
0 0

]
, then

|A + λB| = 1√
|λ|2 + (a + 1)2

[
a + 1 λ

λ a + a2 + |λ|2
]

.

By (3.7) we have 1 ≤ a+1√
|λ|2+(a+1)2

, which is impossible for λ 6= 0.
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If B =

[
0 0
1 0

]
, then

|A + λB| = 1√
|λ|2 + (a + 1)2

[
a + 1 + |λ|2 λa

λa a2 + a

]
.

By (3.7) we get a ≤ a2+a√
|λ|2+(a+1)2

, which is impossible for λ 6= 0.

(2) Suppose B is invertible. Then, by Lemma 3.4, A is noninvertible, so A =[
1 0
0 0

]
. Since B is invertible, b1 6= 0 and b2 6= 0. By Lemma 3.4, we have

σ(B−1A) = {0} wherefrom b3 = 0. So, we may assume that B =

[
0 1
b 0

]
for

some b 6= 0. Then

|A + λB| = 1√
1 + |λ|2(1 + |b|)2

[
1 + |λ|2|b|(1 + |b|) λ

λ |λ|2(1 + |b|)

]
.

It is a routine calculation to show that for λ 6= 0 we have

det(|A + λB| − |A|) ≥ 0 ⇔ |λ|2 ≥ 2|b|+ 1

|b|2(1 + |b|)2
,

so (3.7) cannot be satisfied for every λ ∈ C.

(3) Suppose A and B are both noninvertible. Then A =

[
1 0
0 0

]
. Since B is

noninvertible it follows that b1 = 0 or b2 = 0.

If b1 = 0, then A∗B = 0. If b1 6= 0 then b2 = 0, and therefore B =

[
0 1
0 b

]
, so

|A + λB| = 1√
(1 + |λ||b|)2 + |λ|2

[
1 + |λ||b| λ

λ |λ|(|λ||b|2 + |λ|+ |b|)

]
.

Since 1+|λ||b|√
(1+|λ||b|)2+|λ|2

< 1 for λ 6= 0, these A and B cannot satisfy (3.7). �

Remark 3.6. Since 〈x, y〉 = 0 if and only if 〈y, x〉 = 0, Theorem 3.1 can be
extended with the following statements:

(e) |y|2 ≤ |y + xa|2 for all a ∈ A;
(f) |y|2 ≤ |y + λx|2 for all λ ∈ C;
(g) |y| ≤ |y + xa| for all a ∈ A.

Also, as a consequence of Theorem 3.5 we have that for A, B ∈ M2(C) it holds

(|A| ≤ |A + λB| for all λ ∈ C) ⇔ (|B| ≤ |B + λA| for all λ ∈ C).
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