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Abstract. For semisimple, commutative Banach algebras A and B, some
Banach algebra properties of the Cartesin product A× B are characterized in
terms of A and B. A couple of results are also proved for non-commutative
Banach algebras.

1. Introduction

Let (A, ‖ · ‖A) and (B, ‖ · ‖B) be semisimple, commutative Banach algebras. Let
A×B denote their Cartesian product. Then A×B is a semisimple, commutative
Banach algebra with co-ordinatewise product and with maximum norm; namely,

‖(a, b)‖ := max{‖a‖A, ‖b‖B} (a ∈ A; b ∈ B).

Note that the Gelfand space (resp., Shilov boundary) of A×B is homeomorphic
to the topological sum of the Gelfand spaces (resp., Shilov boundaries) of A and
B. Based on this result, we prove that the properties like UUNP, QDZP, TAP,
etc. are carried forward from A and B to A × B and vice-versa. Note that
not all properties of A and B can be carried forward to A × B. For example,
let A = B = C. Then they are division algebras but their cartesian product
A× B = C2 is not a division algebra.
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2. Main results on A× B

To set notations, we start with the definition of sum topology [3, p-33].

Definition 2.1. Let (X, τ1) and (Y, τ2) be topological spaces such that X and Y
are disjoint. Let τ = {U ⊂ X ∪ Y : U ∩ X ∈ τ1 and U ∩ Y ∈ τ2}. Then τ is a
topology on X ∪ Y , which is the sum topology on X ∪ Y . The topological space
(X ∪ Y, τ) is the topological sum of X and Y , which will be denoted by X

⊎
Y .

Let ∆(A) be the Gelfand space and ∂A be the Shilov boundary of A. For
a ∈ A, let â : ∆(A) −→ C be defined as â(ϕ) = ϕ(a) (ϕ ∈ ∆(A)).

The following result is proved in [6] for A and B being unital. Because of
the identities, the Gelfand spaces are compact Hausdorff spaces and the proof
becomes much easier. Here we prove it without assuming identities and with
different method.

Theorem 2.2. ∆(A× B) ∼= ∆(A)
⊎

∆(B) and ∂(A× B) ∼= ∂A
⊎

∂B.

Proof. Note that A × B is the direct sum of the two closed ideals A × {0} and
{0} × B. So ∆(A× B) = ∆(A) ∪∆(B) set theoretically. By [4, Lemma 2.2.15],
∆(A) and ∆(B) are open in ∆(A × B) carrying the topologies induced from
∆(A× B). Thus ∆(A× B) ∼= ∆(A)

⊎
∆(B).

Now, let â ∈ Â. Since Â∪ B̂ = Â × B, we have â = (̂a, 0). Since (̂a, 0) assumes
its maximum on ∂(A × B), the â would assume its maximum on ∂(A × B). So
∂(A×B) is a closed boundary for A. Since ∂A is the smallest closed boundary for
A, we get ∂A ⊂ ∂(A×B). Similarly, ∂B ⊂ ∂(A×B). Hence ∂A∪∂B ⊂ ∂(A×B).

For the reverse inclusion, let (a, b) ∈ A× B. Then (̂a, b) = â or (̂a, b) = b̂. If

(̂a, b) = â, then (̂a, b) attains its maximum on ∂A. If (̂a, b) = b̂, then (̂a, b) attains
its maximum on ∂B. Hence ∂A∪∂B is a closed boundary forA×B. Since ∂(A×B)
is the smallest closed boundary for A×B, we have ∂(A×B) ⊂ ∂A∪ ∂B. Hence
∂(A× B) ∼= ∂A

⊎
∂B. �

Now we characterize some Banach algebra properties of A × B in terms of A
and B. We start with the unique uniform norm property (UUNP) which was
introduced by Bhatt and Dedania [1].

Definition 2.3. A norm ‖ · ‖ (not necessarily complete) on A is a uniform norm
if ‖a2‖ = ‖a‖2 (a ∈ A). The Banach algebra A has unique uniform norm property
(UUNP) if it admits exactly one uniform norm.

Theorem 2.4. A× B has UUNP if and only if A and B have UUNP.

Proof. Let A×B have UUNP. Let F ⊂ ∆(A) be a closed set of uniqueness for A.
Then by definition of sum topology F ∪∆(B) is a closed subset of ∆(A)∪∆(B) =
∆(A × B). Moreover, it is also a set of uniqueness for A × B. Since A × B has
UUNP, by [1, Theorem 2.3], ∂A∪ ∂B = ∂(A× B) ⊂ F ∪∆(B). Since ∆(A) and
∆(B) are disjoint, ∂A ⊂ F . Thus ∂A is the smallest closed set of uniqueness for
A. Hence, by [1, Theorem 2.3], A has UUNP. Similarly, we can show that B has
UUNP.
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Conversely, assume that A and B have UUNP. Let F ⊂ ∆(A×B) be a closed
set of uniqueness for A × B. Then F = (F ∩ ∆(A)) ∪ (F ∩ ∆(B)). Let FA =
F ∩ ∆(A). Then FA is a closed set of uniqueness for A. Since A has UUNP,
by [1, Theorem 2.3], ∂A ⊂ FA. Similarly ∂B ⊂ FB. Hence, by Theorem 2.2,
∂(A × B) = ∂A ∪ ∂B ⊂ FA ∪ FB = F . Thus ∂(A × B) is the smallest closed
boundary of A× B. Hence, again by [1, Theorem 2.3], A× B has UUNP. �

Definition 2.5. [4, p-198] A is regular if for every closed set F ⊂ ∆(A) and
ϕ ∈ ∆(A) \ F , there exists a ∈ A such that â(ϕ) = 1 and â|F = 0.

The next result follows from [4, Theorem 4.3.8]. However, we prove it here
with elementary arguments.

Theorem 2.6. A× B is regular iff A and B are regular.

Proof. Let A × B be regular. Let F be a closed subsets of ∆(A) and let φ ∈
∆(A) \ F . Then F is closed in ∆(A × B) and ϕ ∈ ∆(A × B) \ F . By the

hypothesis, there exists (a, b) ∈ A × B such that (̂a, b)|F = 0 and (̂a, b)(ϕ) = 1.

But (̂a, b) = (̂a, 0) = â on ∆(A). Hence â|F = 0 and â(ϕ) = 1. Thus A is regular.
Similarly, B is regular.

Conversely, let A and B be regular. Let F be a closed subsets of ∆(A × B)
and ϕ ∈ ∆(A × B) \ F . Let FA = F ∩ ∆(A) and FB = F ∩ ∆(B). Then FA
and FB are closed subsets of ∆(A) and ∆(B) respectively and ϕ ∈ ∆(A) \ FA
or ϕ ∈ ∆(B) \ FB. Suppose ϕ ∈ ∆(A) \ FA. Then, by the hypothesis, there

exists a ∈ A such that â|FA = 0 and â(ϕ) = 1. Then (̂a, 0)|F = â|FA = 0 and

(̂a, 0)(ϕ) = â(ϕ) = 0. Similarly, if ϕ ∈ ∆(B) \ FB, then there exists b ∈ B such

that b̂|FB = 0 and b̂(ϕ) = 1. Then (̂0, b)|F = b̂|FB = 0 and (̂0, b)(ϕ) = b̂(ϕ) = 0.
Hence A× B is regular. �

Definition 2.7. [5, Definition 4, p-71] A has Quasi Divisior of Zero Property
(QDZP) if there exists an open set G ⊂ ∆(A) such that

(1) ∂A ⊂ G.
(2) For every open subset U of G, there exists a ∈ A and a non-empty open

subset V of U such that â = 1 on V and â = 0 on U c.

Theorem 2.8. A× B has QDZP iff A and B have QDZP.

Proof. Let A×B have QDZP. Then there exists an open set G ⊂ ∆(A×B) which
satisfies the following properties.

(1) ∂(A× B) ⊂ G.
(2) For each open subset U of G, there exists (a, b) ∈ A×B and a nonempty

open subset V of U such that (̂a, b) = 1 on V and (̂a, b) = 0 on U c.

Let GA = G ∩ ∆(A). Then GA will be open in ∆(A) and ∂A ⊂ GA. Now let
U ⊂ GA be open. Then U will be open in G also. Hence, by the hypothesis,
there exist (a, b) ∈ A×B and an open set φ 6= V ⊂ U satisfying (2) above. Since

U ⊂ ∆(A), we have â = (̂a, 0) = (̂a, b). Hence A has QDZP. Similarly, B has
QDZP.
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Conversely, suppose A and B have QDZP. Then there exist open subsets GA ⊂
∆(A) and GB ⊂ ∆(B) which satisfies the properties in the definition of QDZP.
Let G = GA ∪ GB. Then ∂(A × B) = ∂A ∪ ∂B ⊂ GA ∪ GB = GA ∪GB = G.
Let U ⊂ G be open. Then UA = U ∩GA and UB = U ∩GB are open in GA and
GB, respectively. Hence there exist a ∈ A and b ∈ B such that â = 0 outside

UA, â = 1 on some open subset φ 6= VA ⊂ UA, b̂ = 0 outside UB and b̂ = 1 on some

open subset φ 6= VB ⊂ UB. Then (̂a, b) = 0 outside U = UA ∪ UB and (̂a, b) = 1
on φ 6= VA ∪ VB ⊂ U . Thus A× B has QDZP. �

Definition 2.9. [5, Definition 5, p-72] Let M ⊆ A be a maximal ideal. A
separating net for M is a net {qα}α∈Λ in A such that

(1) supα∈Λ rA(qα) < ∞;
(2) limα→∞ rA(aqα) = 0 (a ∈ M);
(3) There exists b ∈ A such that qαb = qα (α ∈ Λ);
(4) For each α ∈ Λ, there exists pα ∈ A such that pα + qα − pαqα = 0.

Definition 2.10. [5, Definition 5, p-72] A has Topological Annihilator Property
(TAP) if there exists a dense subset D ⊂ ∂A such that ker ϕ admits a separating
net for every ϕ ∈ D.

Theorem 2.11. A× B has TAP iff A and B have TAP.

Proof. Let A×B have TAP. Then there exists dense subset D ⊂ ∂(A×B) such
that ker ϕ (ϕ ∈ D) admits a separating net. Let DA = D ∩ ∂A. Then DA will
be a dense subset of ∂A. Let ϕA ∈ DA. Define ϕ(a, b) = ϕA(a) ((a, b) ∈ A× B).
Then ϕ ∈ D. Hence ker ϕ admits a separating net say (aα, bα). Then (aα) will
be a separating net for ker ϕA. Thus A has TAP. Similarly, B has TAP.

Conversely, let A and B have TAP. Then there exist dense subsets DA ⊂ ∂A
and DB ⊂ ∂B such that each ker ϕ (ϕ ∈ DA∪DB) admits a separating net. Then
D = DA ∪ DB is a dense subset of ∂A ∪ ∂B = ∂(A × B). Hence A × B has
TAP. �

Note: For the rest, A and B are not assumed to be commutative.

Definition 2.12. [4, p-223] A norm | · | on A is spectral if rA(a) ≤ |a| (a ∈ A),
where rA(·) is the spectral radious on A. The algebra A has Spectral Extension
Property (SEP) if every norm on A is spectral.

The SEP is a very important property in Banach algebras [4, p-222]). We do
not know the converse of the following result even for commutative case.

Theorem 2.13. If A× B has SEP, then A and B have SEP.

Proof. Let | · | be a norm on A. Define |(a, b)|1 = |a| + ‖b‖B, where ‖ · ‖B is the
Banach algebra norm on B. Since A× B has SEP, we have

rA(a) = rA×B(a, 0) ≤ |(a, 0)|1 = |a| (a ∈ A).

Thus | · | is spectral on A, and so A has SEP. Similarly, B has SEP. �

Definition 2.14. A norm | · | on A is semisimple if the completion of (A, | · |)
is semisimple. The A has Weak Spectral Extension Property (WSEP) if every
semisimple norm on A is spectral.
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If A is commutative, then A has UUNP iff A has WSEP [1, Proposition-2.1].
Thus the WSEP is a non-commutative analogue of the UUNP. Unfortunately, we
do not know the converse of the following result also.

Theorem 2.15. If A× B has WSEP, then A and B have WSEP.

Proof. Let | · |A and | · |B be semisimple norms on A and B, respectively. Define

|(a, b)| = |a|A + |b|B ((a, b) ∈ A× B).

Then | · | is a norm on A × B. Note that (A, | · |A)̃ × (B, | · |B )̃ ∼= (A × B, | · |)̃,
where (X, ||| · |||)̃ denotes the completion of (X, ||| · |||). Since | · |A and | · |B are
semisimple norms on A and B, (A, | · |A)̃× (B, | · |B )̃ ∼= (A×B, | · |)̃ is semisimple.
So, by the hypothesis, | · | is a spectral norm on A× B. Hence,

|a|A = |(a, 0)| ≤ rA×B(a, 0) = rA(a).

Thus | · |A is a spectral norm on A. Similarly, | · |B is spectral on B. �
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