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Abstract. Assume that the linear matrix equation AXA∗ = B = B∗ has a

Hermitian solution and is partitioned as
[

A1

A2

]
X[A∗

1, A∗
2 ] =

[
B11 B12

B∗
21 B22

]
. We

study in this paper relations among the Hermitian solutions of the equation
and the three small-size matrix equations A1X1A

∗
1 = B11, A1X2A

∗
2 = B12 and

A2X3A
∗
2 = B22. In particular, we establish closed-form formulas for calculat-

ing the maximal and minimal ranks and inertias of X −X1 −X2 −X∗
2 −X3,

and use the formulas to derive necessary and sufficient conditions for the Her-
mitian matrix equality X = X1 +X2 +X∗

2 +X3 to hold and Hermitian matrix
inequalities X > (>, <, 6) X1 + X2 + X∗

2 + X3 to hold in the Löwner partial
ordering.

1. Introduction

Throughout this paper, Cm×n and Cm
H stand for the sets of all m× n complex

matrices and all m ×m complex Hermitian matrices, respectively; the symbols
AT , A∗, r(A) and R(A) stand for the transpose, conjugate transpose, rank and
range (column space) of a matrix A ∈ Cm×n, respectively; Im denotes the identity
matrix of order m; [ A, B ] denotes a row block matrix consisting of A and B.
A > 0 (A > 0) means that A is Hermitian positive definite (Hermitian positive
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semi-definite). Two Hermitian matrices A and B of the same size are said to
satisfy the inequality A > B (A > B) in the Löwner partial ordering if A−B is
positive definite (positive semi-definite). The Moore–Penrose inverse of a matrix
A ∈ Cm×n, denoted by A†, is defined to be the unique matrix X ∈ Cn×m satisfying
the following four matrix equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

Further, denote EA = Im − AA† and FA = In − A†A. The ranks of EA and
FA are given by r(EA) = m − r(A) and r(FA) = n − r(A). The inertia of A is
defined to be the triplet In(A) = { i+(A), i−(A), i0(A) }, where i+(A), i−(A) and
i0(A) are the numbers of the positive, negative and zero eigenvalues of A counted
with multiplicities, respectively. The two numbers i+(A) and i−(A) are usually
called partial inertia of A. For a matrix A ∈ Cm

H , both r(A) = i+(A)+ i−(A) and
i0(A) = m− r(A) hold.

Consider the following well-known Hermitian linear matrix equation

AXA∗ = B, (1.1)

where A ∈ Cm×n and B ∈ Cm
H are given, and X ∈ Cn×n is an unknown matrix.

Eq. (1.1) is one of the simplest linear matrix equations with symmetric pattern,
which has attracted much attention of many authors since 1970s. If the known
matrices in (1.1) are given in partitioned form

Ai ∈ Cmi×n, Bii ∈ Cmi
H , B12 ∈ Cm1×m2 , m1 + m2 = m, i = 1, 2,

we can rewrite (1.1) as [
A1

A2

]
X[ A∗

1, A∗
2 ] =

[
B11 B12

B∗
21 B22

]
, (1.2)

Comparing both sides of (1.2), we obtain the following triple equations

A1XA∗
1 = B11, A1XA∗

2 = B12, A2XA∗
2 = B22. (1.3)

In other words, (1.2) can be regarded as a combination of three small-size equa-
tions. The triple equations in (1.3) do not necessarily have a common Hermitian
solution. In this case, we rewrite (1.3) as three independent matrix equations as
follows

A1X1A
∗
1 = B11, A1X2A

∗
2 = B12, A2X3A

∗
2 = B22. (1.4)

It is obvious that solvability conditions and general (Hermitian) solutions of the
triple matrix equations are not necessarily the same as those for (1.2), and there-
fore, it would be of interest to consider possible relations among the four equations
in (1.2) and (1.4) in general cases. In this paper, we consider the following de-
composition of a Hermitian solution X of (1.1) into the sum of solutions of the
equations in (1.4):

X = X1 + X2 + X∗
2 + X3. (1.5)

In addition, we consider the following four Hermitian matrix inequalities

X > (>, <, 6) X1 + X2 + X∗
2 + X3 (1.6)

in the Löwner partial ordering.
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It has just been realized in matrix theory that expansion formulas for ranks and
inertias of matrices are simple and useful methods for characterizing properties
of matrices and their operations. In the past two decades, many types of closed-
form formula for calculating (maximal and minimal) ranks and inertias of matrices
were systematically established. These formulas bring deep insights into relations
among matrices and their operations, and lead to many essential developments
in elementary linear algebra and matrix theory. One of remarkable applications
of matrix rank and inertias formulas, as described in Lemma 1.1 below, is to
establish or characterize various complicated matrix equalities and inequalities.
In this paper, we first establish a group of analytical formulas for calculating the
maximal and minimal ranks and inertias of the matrix X −X1 −X2 −X∗

2 −X3,
and then use them to characterize the equality in (1.5) and the inequalities in
(1.6). This work is motivated by some recent results on additive decompositions
of solutions of the matrix equation AXB = C in [15] and of g-inverses of general
matrices in [21], as well as additive decomposition of Hermitian solutions of the
matrix equation AXA∗ = B and the open problems in [17].

We shall use the following results on ranks and inertias of matrices in the latter
part of this paper.

Lemma 1.1 ([14]). Let S be a set consisting of matrices over Cm×n, and let H
be a set consisting of Hermitian matrices over Cm

H . Then, the following hold.

(a) Under m = n, S has a nonsingular matrix if and only if max
X∈S

r(X) = m.

(b) Under m = n, all X ∈ S are nonsingular if and only if min
X∈S

r(X) = m.

(c) 0 ∈ S if and only if min
X∈S

r(X) = 0.

(d) S = {0} if and only if max
X∈S

r(X) = 0.

(e) There exists a matrix X > 0 (X < 0) in H if and only if

max
X∈H

i+(X) = m

(
max
X∈H

i−(X) = m

)
.

(f) All X ∈ H satisfy X > 0 (X < 0) if and only if

min
X∈H

i+(X) = m

(
min
X∈H

i−(X) = m

)
.

(g) There exists a matrix X > 0 (X 6 0) in H if and only if

min
X∈H

i−(X) = 0

(
min
X∈H

i+(X) = 0

)
.

(h) All X ∈ H satisfy X > 0 (X 6 0) if and only if

max
X∈H

i−(X) = 0

(
max
X∈H

i+( X) = 0

)
.
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Lemma 1.2 ([12]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then,
the following rank expansion formulas hold

r[ A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.7)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (1.8)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC). (1.9)

The following rank expansion formulas follow directly from (1.7)–(1.9)

r

[
A BFP

EQC 0

]
= r

A B 0
C 0 Q
0 P 0

− r(P )− r(Q), (1.10)

r

[
EP AFQ EP B
CFQ D

]
= r

A B P
C D 0
Q 0 0

− r(P )− r(Q), (1.11)

r

[
M N

EP A EP B

]
= r

[
M N 0
A B P

]
− r(P ), (1.12)

r

[
M AFP

N BFP

]
= r

M A
N B
0 P

− r(P ). (1.13)

The following results are well known.

Lemma 1.3. Let A ∈ Cm
H , B ∈ Cn

H, Q ∈ Cm×n, and assume that P ∈ Cm×m is
nonsingular. Then,

i±(PAP ∗) = i±(A), (1.14)

i±(λA) =

{
i±(A) if λ > 0
i∓(A) if λ < 0

, (1.15)

i±

[
A 0
0 B

]
= i±(A) + i±(B), (1.16)

i+

[
0 Q

Q∗ 0

]
= i−

[
0 Q

Q∗ 0

]
= r(Q). (1.17)

Lemma 1.4 ([14]). Let A ∈ Cm
H , B ∈ Cm×n, D ∈ Cm×n, and let

U =

[
A B
B∗ 0

]
, V =

[
A B
B∗ D

]
.

Then, the following inertia expansion formulas hold

i±(U) = r(B) + i±(EBAEB), (1.18)

i±(V ) = i±(A) + i±

[
0 EAB

B∗EA D −B∗A†B

]
. (1.19)

In particular, the following hold.
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(a) If A > 0, then

i+(U) = r[ A, B ], i−(U) = r(B), r(U) = r[ A, B ] + r(B). (1.20)

(b) If A 6 0, then

i+(U) = r(B), i−(U) = r[ A, B ], r(U) = r[ A, B ] + r(B). (1.21)

(c) If R(B) ⊆ R(A), then

i±(V ) = i±(A) + i±( D −B∗A†B ), r(V ) = r(A) + r( D −B∗A†B ). (1.22)

(d) If R(B) ∩R(A) = {0} and R(B∗) ∩R(D) = {0}, then

i±(V ) = i±(A) + i±(D) + r(B), r(V ) = r(A) + 2r(B) + r(D). (1.23)

The following inertia expansion formulas follow directly from (1.18) and (1.19)

i±

[
A BFP

FP B∗ 0

]
= i±

 A B 0
B∗ 0 P ∗

0 P 0

− r(P ), (1.24)

i±

[
EQAEQ EQB
B∗EQ D

]
= i±

 A B Q
B∗ D 0
Q∗ 0 0

− r(Q). (1.25)

The two-sided matrix equations AXA∗ = B and AXB = C have many essen-
tial applications in mathematics and other fields, and were extensively studied in
the literature; see, e.g., [1, 3, 5, 6, 7, 9, 11, 13, 14, 18, 19, 20]. Concerning the
consistency and general solutions of AXA∗ = B and AXB = C, the following
results are well known; see, e.g., [5, 7, 13, 14].

Lemma 1.5. There exists an X ∈ Cn
H such that (1.1) holds if and only if R(B) ⊆

R(A), or equivalently, AA†B = B. In this case, the general Hermitian solution
of (1.1) can be written as

X = A†B(A†)∗ + FAV + V ∗FA, (1.26)

where V ∈ Cn×n is arbitrary.

Lemma 1.6. Let A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q be given. Then, the
matrix equation

AXB = C (1.27)

has a solution for X ∈ Cn×p if and only if R(C) ⊆ R(A) and R(C∗) ⊆ R(B∗),
or equivalently, AA†CB†B = C. In this case, the general solution of (1.27) can
be written in the following parametric form

X = A†CB† + FAV1 + V2EB, (1.28)

where V1, V2 ∈ Cn×p are arbitrary.
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Lemma 1.7 ([10, 16]). Let A ∈ Cm
H , B ∈ Cm×n and C ∈ Cp×m be given. Then,

closed-form formulas for calculating the global maximal and minimal rank and
inertias of A−BXC − (BXC)∗ are given by

max
X∈Cn×p

r[ A−BXC − (BXC)∗ ] (1.29)

= min

{
r[ A, B, C∗ ], r

[
A B
B∗ 0

]
, r

[
A C∗

C 0

]}
, (1.30)

min
X∈Cn×p

r[ A−BXC − (BXC)∗ ] (1.31)

= 2r[ A, B, C∗ ] + max{ s+ + s−, t+ + t−, s+ + t−, s− + t+ }, (1.32)

and

max
X∈Cn×p

i±[ A−BXC − (BXC)∗ ] = min

{
i±

[
A B
B∗ 0

]
, i±

[
A C∗

C 0

]}
, (1.33)

min
X∈Cn×p

i±[ A−BXC − (BXC)∗ ] = r[ A, B, C∗ ] + max{ s±, t± }, (1.34)

where

s± = i±

[
A B
B∗ 0

]
− r

[
A B C∗

B∗ 0 0

]
, t± = i±

[
A C∗

C 0

]
− r

[
A B C∗

C 0 0

]
.

In particular, if R(B) ⊆ R(C∗), then

max
X∈Cn×p

r[ A−BXC − (BXC)∗ ] = min

{
r[ A, C∗ ], r

[
A B
B∗ 0

]}
, (1.35)

min
X∈Cn×p

r[ A−BXC − (BXC)∗ ] = 2r[ A, C∗ ] + r

[
A B
B∗ 0

]
− 2r

[
A B
C 0

]
,

(1.36)

max
X∈Cn×p

i±[ A−BXC − (BXC)∗ ] = i±

[
A B
B∗ 0

]
, (1.37)

min
X∈Cn×p

i±[ A−BXC − (BXC)∗ ] = r[ A, C∗ ] + i±

[
A B
B∗ 0

]
− r

[
A B
C 0

]
, (1.38)

and

max
X∈Cn×m

r[ A−BX − (BX)∗ ] = min

{
m, r

[
A B
B∗ 0

]}
, (1.39)

min
X∈Cn×m

r[ A−BX − (BX)∗ ] = r

[
A B
B∗ 0

]
− 2r(B), (1.40)

max
X∈Cn×m

i±[ A−BX − (BX)∗ ] = i±

[
A B
B∗ 0

]
, (1.41)

min
X∈Cn×m

i±[ A−BX − (BX)∗ ] = i±

[
A B
B∗ 0

]
− r(B). (1.42)

The matrices X that satisfy (1.30)–(1.42) (namely, the global maximizers and
minimizers of the objective rank and inertia functions) are not necessarily unique
and their expressions were also given in [10] by using certain simultaneous de-
composition of the three given matrices.
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2. Equalities for solutions of AXA∗ = B and the small-size
equations

Theorem 2.1. Assume that the matrix equation (1.1) has a Hermitian solution,
and Let S be the set of all Hermitian solutions of (1.1), T be the set of all sums
of X1 + X2 + X∗

2 + X3, where X1 and X3 are Hermitian solutions of the first and
third matrix equations in (1.4), respectively, X2 is solution of the second matrix
equation in (1.4). Also let

P =

[
0 B12

B∗
12 −B22

]
. (2.1)

Then, the following hold.

(a) S ∩ T 6= ∅ if and only if r

[
0 A∗

A P

]
= 2r(A).

(b) S ⊇ T if and only if A = 0 or r

[
0 A∗

A P

]
+ 2r(A) = 2r(A1) + 2r(A2).

(c) S ⊆ T if and only if r(A) = r(A1) + r(A2) or r

[
0 A∗

A P

]
= 2r(A).

Proof. It is easy to see from the definition of rank of matrix that for two sets S1

and S2 consisting of matrices of the same size, the following assertions

S1 ∩ S2 6= ∅ ⇔ min
A∈S1, B∈S2

r( A−B ) = 0, (2.2)

S1 ⊆ S2 ⇔ max
A∈S1

min
B∈S2

r( A−B ) = 0 (2.3)

hold. Hence, we see from (2.2) and (2.3) that (1.6) is equivalent to

min
X∈S, X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 ) = 0; (2.4)

while the set inclusion S ⊇ T is equivalent to

max
X1+X2+X∗

2+X3∈T
min
X∈S

r( X −X1 −X2 −X∗
2 −X3 ) = 0; (2.5)

and set inclusion S ⊆ T is equivalent to

max
X∈S

min
X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 ) = 0. (2.6)

By Lemmas 1.5 and 1.6, X −X1 −X2 −X∗
2 −X3 can be written as

X −X1 −X2 −X∗
2 −X3

= G + FAV + V ∗FA − FA1V1 − V ∗
1 FA1 − FA1U1 − U2FA2 − U∗

1 FA1 − FA2U
∗
2

− FA2V2 − V ∗
2 FA2

= G + HW + W ∗H∗, (2.7)

where

G = A†B(A†)∗ − (A1)
†B11(A

†
1)
∗ − (A1)

†B12(A
†
2)
∗

−(A2)
†B∗

12(A
†
1)
∗ − (A2)

†B22(A
†
2)
∗,

H = [ FA, FA1 , FA2 , FA1 , FA2 ],
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and W ∗ = [ V ∗, −V ∗
1 , −U2, −U∗

1 , −V ∗
2 ] is arbitrary. Applying (1.40) to (2.7)

gives

min
X∈S, X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 )

= min
W

r( G + HW + W ∗H∗) = r

[
G H
H∗ 0

]
− 2r(H). (2.8)

Applying (1.10) to the row block matrix in (2.8) and simplifying, we obtain

r(H) = r[ FA, FA1 , FA2 , FA1 , FA2 ] = r[ FA, FA1 , FA2 ]

= r


In In In

A 0 0
0 A1 0
0 0 A2

− r(A)− r(A1)− r(A2)

= n + r

 A A
A1 0
0 A2

− r(A)− r(A1)− r(A2)

= n + r(A)− r(A1)− r(A2), (2.9)

r[ FA1 , FA2 ] = r

 In In

A1 0
0 A2

− r(A1)− r(A2)

= n + r(A)− r(A1)− r(A2). (2.10)

Comparing (2.9) and (2.10) gives r[ FA, FA1 , FA2 ] = r[ FA1 , FA2 ], that is

R( FA ) ⊆ R[ FA1 , FA2 ]. (2.11)
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From (2.11) and the given assumptions AA†B = B, A1A
†
1B11 = B11, A2A

†
2B22 =

B22, A1A
†
1B12(A

†
2)
∗A∗

2 = B12, A2A
†
2B

∗
12(A

†
1)
∗A∗

1 = B∗
12, we obtain

r

[
G H
H∗ 0

]
= r

 G FA1 FA2

FA1 0 0
FA2 0 0



= r


G In In 0 0
In 0 0 A∗

1 0
In 0 0 0 A∗

2

0 A1 0 0 0
0 0 A2 0 0

− 2r(A1)− 2r(A2)

= r


A†B(A†)∗ In In 0 0

In 0 0 A∗
1 0

In 0 0 0 A∗
2

B11(A
†
1)
∗ + A1A

†
1B12(A

†
2)
∗ A1 0 0 0

B22((A2)
†)∗ + A2A

†
2B

∗
12(A

†
1)
∗ 0 A2 0 0

− 2r(A1)− 2r(A2)

= r


A†B(A†)∗ In 0 0 0

In 0 0 −A∗
1 0

0 0 0 A∗
1 A∗

2

0 −A1 A1 −B11 B12

0 0 A2 B∗
12 −B22

− 2r(A1)− 2r(A2)

= r


A†B(A†)∗ In 0 0

In 0 0 A∗
[
−Im1 0

0 0

]
0 0 0 A∗

0

[
−Im1 0

0 0

]
A A

[
−B11 B12

B∗
12 −B22

]

− 2r(A1)− 2r(A2)

= r


0 In 0 0

In 0 0 A∗
[
−Im1 0

0 0

]
0 0 0 A∗

0

[
−Im1 0

0 0

]
A A

[
0 B12

B∗
12 −B22

]

− 2r(A1)− 2r(A2)

= 2n + r

[
0 A∗

A P

]
− 2r(A1)− 2r(A2). (2.12)

Substituting (2.9) and (2.12) into (2.8) yields

min
X∈S, X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 ) = r

[
0 A∗

A P

]
− 2r(A). (2.13)

Substituting (2.13) into (2.4) leads to (a).
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Applying (1.42) to (2.7) gives

min
X∈S

r( X −X1 −X2 −X∗
2 −X3 )

= min
V

r
[
A†B(A†)∗ + FAV + V ∗FA −X1 −X2 −X∗

2 −X3

]
= r

[
A†B(A†)∗ −X1 −X2 −X∗

2 −X3 FA

FA 0

]
− 2r(FA). (2.14)

Applying (1.37) to the block matrix in (2.14) and simplifying, we obtain

max
X1+X2+X∗

2+X3∈T
r

[
A†B(A†)∗ −X1 −X2 −X∗

2 −X3 FA

FA 0

]

= max
V1, V2, U1, U2

r

[
G FA

FA 0

]
−

[
FA1 FA2 FA1 FA2

0 0 0 0

]
V1

U∗
2

U1

V2

 [ In, 0 ]

−
[
In

0

]
[ V ∗

1 , U2, U∗
1 , V ∗

2 ]


FA1 0
FA2 0
FA1 0
FA2 0




= min

{
r

[
G FA In

FA 0 0

]
, r

[
G H
H∗ 0

]}
= min

{
2n− r(A), 2n + r

[
0 A∗

A P

]
− 2r(A1)− 2r(A2)

}
. (2.15)

Combining (2.14) and (2.15) yields

max
X1+X2+X∗

2+X3∈T
min
X∈S

r( X −X1 −X2 −X∗
2 −X3 )

= min

{
r(A), r

[
0 A∗

A P

]
+ 2r(A)− 2r(A1)− 2r(A2)

}
. (2.16)

Substituting (2.16) into (2.5) leads to

A = 0 or r

[
0 A∗

A P

]
+ 2r(A) = 2r(A1) + 2r(A2). (2.17)

Also note that if A = 0, then B = 0 in (1.1) under the given assumption. In
such a case, the second rank equality in (2.17) holds as well under the given
assumption. Thus, we obtain (b).

Let

H = (A1)
†B11(A

†
1)
∗ + (A1)

†B12(A
†
2)
∗ + (A2)

†B∗
12(A

†
1)
∗ + (A2)

†B22(A
†
2)
∗,



40 Y. LI, Y. TIAN

and rewrite (2.7) as

X −X1 −X2 −X∗
2 −X3

= X −H − [ FA1 , FA2 , FA1 , FA2 ]


V1

U∗
2

U1

V2

− [ V ∗
1 , U2, U∗

1 , V ∗
2 ]


FA1

FA2

FA1

FA2

.

Applying (1.20) to this expression gives

min
X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 )

= r


X −H FA1 FA2 FA1 FA2

FA1 0 0 0 0
FA2 0 0 0 0
FA1 0 0 0 0
FA2 0 0 0 0

− 2r[ FA1 FA2 , FA1 FA2 ]. (2.18)

Applying (1.37) to the 5× 5 block matrix in (2.18) gives

max
V

r




G FA1 FA2 FA1 FA2

FA1 0 0 0 0
FA2 0 0 0 0
FA1 0 0 0 0
FA2 0 0 0 0

 +


FA

0
0
0
0

V [ In, 0, 0, 0, 0 ]

+


In

0
0
0
0

V ∗[FA, 0, 0, 0, 0 ]



= min

r


G FA1 FA2 FA1 FA2 In

FA1 0 0 0 0 0
FA2 0 0 0 0 0
FA1 0 0 0 0 0
FA2 0 0 0 0 0

, r

[
G H
H∗ 0

]
= min

{
n + r[ FA1 , FA2 , FA1 , FA2 ], r

[
G H
H∗ 0

]}
= min

{
2n + r(A)− r(A1)− r(A2), 2n + r

[
0 A∗

A P

]
− 2r(A1)− 2r(A2)

}
.

(2.19)

Combining (2.18) and (2.19) yields

max
X∈S

min
X1+X2+X∗

2+X3∈T
r( X −X1 −X2 −X∗

2 −X3 )

= min

{
r(A1) + r(A2)− r(A), r

[
0 A∗

A P

]
− 2r(A)

}
. (2.20)
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Substituting (2.20) into (2.6) gives (c). �

3. Inequalities for solutions of AXA∗ = B and the small-size
equations

Theorem 3.1. Let S and T be defined as in Theorem 2.1. Also let

Q =

[
B11 B12

B∗
12 −B22

]
.

Then, the following hold.

(a) There exist X ∈ S, X1+X2+X∗
2+X3 ∈ T such that X > X1+X2+X∗

2+X3

if and only if

i+

[
0 A∗

A Q

]
= r(A1) + r(A2). (3.1)

(b) There exist X ∈ S, X1+X2+X∗
2+X3 ∈ T such that X < X1+X2+X∗

2+X3

if and only if

i−

[
0 A∗

A Q

]
= r(A1) + r(A2). (3.2)

(c) All X ∈ S, X1 + X2 + X∗
2 + X3 ∈ T satisfy X > X1 + X2 + X∗

2 + X3 if
and only if

i−

[
0 A∗

A Q

]
+ n = r(A1) + r(A2). (3.3)

(d) All X ∈ S, X1 + X2 + X∗
2 + X3 ∈ T satisfy X 6 X1 + X2 + X∗

2 + X3 if
and only if

i+

[
0 A∗

A Q

]
+ n = r(A1) + r(A2). (3.4)

(e) There exist X ∈ S, X1+X2+X∗
2+X3 ∈ T such that X > X1+X2+X∗

2+X3

if and only if

i−

[
0 A∗

A Q

]
= r(A). (3.5)

(f) There exist X ∈ S, X1+X2+X∗
2+X3 ∈ T such that X 6 X1+X2+X∗

2+X3

if and only if

i+

[
0 A∗

A Q

]
= r(A). (3.6)

(g) All X ∈ S, X1 + X2 + X∗
2 + X3 ∈ T satisfy X > X1 + X2 + X∗

2 + X3 if
and only if

i+

[
0 A∗

A Q

]
= r(A) + n. (3.7)
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(h) All X ∈ S, X1 + X2 + X∗
2 + X3 ∈ T satisfy X < X1 + X2 + X∗

2 + X3 if
and only if

i−

[
0 A∗

A Q

]
= r(A) + n. (3.8)

Proof. Let

G1 =
1

2
A†

1B11 +
1

2
A†

2B
∗
12(A

†
1)
∗A∗

1, G2 =
1

2
A+

2 B22 +
1

2
A†

1B12(A
†
2)
∗A∗

2.

Note that X > X1 + X2 + X∗
2 + X3 (X < X1 + X2 + X∗

2 + X3) for some X ∈
S, X1 + X2 + X∗

2 + X3 ∈ T is equivalent to

max
X∈S, X1+X2+X∗

2+X3∈T
i+( X −X1 −X2 −X∗

2 −X3 ) = n (3.9)(
max

X∈S, X1+X2+X∗
2+X3∈T

i−( X −X1 −X2 −X∗
2 −X3 ) = n

)
;

X > X1 + X2 + X∗
2 + X3 (X 6 X1 + X2 + X∗

2 + X3) holds for some X ∈
S, X1 + X2 + X∗

2 + X3 ∈ T is equivalent to

min
X∈S, X1+X2+X∗

2+X3∈T
i−( X −X1 −X2 −X∗

2 −X3 ) = 0 (3.10)(
min

X∈S, X1+X2+X∗
2+X3∈T

i+( X −X1 −X2 −X∗
2 −X3 ) = 0

)
;

X > X1+X2+X∗
2+X3 (X < X1+X2+X∗

2+X3) for all X ∈ S, X1+X2+X∗
2+X3 ∈

T is equivalent to

min
X∈S, X1+X2+X∗

2+X3∈T
i+( X −X1 −X2 −X∗

2 −X3 ) = n (3.11)(
min

X∈S, X1+X2+X∗
2+X3∈T

i−( X −X1 −X2 −X∗
2 −X3 ) = n

)
;

X > X1+X2+X∗
2+X3 (X 6 X1+X2+X∗

2+X3) for all X ∈ S, X1+X2+X∗
2+X3 ∈

T is equivalent to

max
X∈S, X1+X2+X∗

2+X3∈T
i−( X −X1 −X2 −X∗

2 −X3 ) = 0 (3.12)(
max

X∈S, X1+X2+X∗
2+X3∈T

i+( X −X1 −X2 −X∗
2 −X3 ) = 0

)
.

From (2.7), (1.41) and (1.42), we have
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min
X∈S, X1+X2+X∗

2+X3∈T
i±( X −X1 −X2 −X∗

2 −X3 )

= min
W

i±( G + HW + W ∗H∗)

= i±

[
G H
H∗ 0

]
− r(H), (3.13)

max
X∈S, X1+X2+X∗

2+X3∈T
i±( X −X1 −X2 −X∗

2 −X3 )

= max
W

i±( G + HW + W ∗H∗)

= i±

[
G H
H∗ 0

]
. (3.14)

From (2.11) and the given assumptions, we obtain

i±

[
G H
H∗ 0

]
= i±


G FA FA1 FA2

FA 0 0 0
FA1 0 0 0
FA2 0 0 0

 = i±

 G FA1 FA2

FA1 0 0
FA2 0 0



= i±


G In In 0 0
In 0 0 A∗

1 0
In 0 0 0 A∗

2

0 A1 0 0 0
0 0 A2 0 0

− r(A1)− r(A2)

= i±


A†B(A†)∗ In In G1 G2

In 0 0 A∗
1 0

In 0 0 0 A∗
2

G∗
1 A1 0 0 0

G∗
2 0 A2 0 0

− r(A1)− r(A2)

= i±


A†B(A†)∗ In 0 0 0

In 0 0 −A∗
1 0

0 0 0 A∗
1 A∗

2

0 −A1 A1 −B11 B12

0 0 A2 B∗
12 −B22

− r(A1)− r(A2)

= i±


A†B(A†)∗ In 0 0

In 0 0 A∗
[
−Im1 0

0 0

]
0 0 0 A∗

0

[
−Im1 0

0 0

]
A A

[
−B11 B12

B∗
12 −B22

]

− r(A1)− r(A2)
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(3.15)

= i±


0 In 0 0

In 0 0 A∗
[
−Im1 0

0 0

]
0 0 0 A∗

0

[
−Im1 0

0 0

]
A A

[
B11 B12

B∗
12 −B22

]

− r(A1)− r(A2)

= n + i±

[
0 A∗

A Q

]
− r(A1)− r(A2). (3.16)

Substituting (3.16) and (2.9) into (3.13) and (3.14) gives

min
X∈S, X1+X2+X∗

2+X3∈T
i±( X −X1 −X2 −X∗

2 −X3 )

= i±

[
0 A∗

A Q

]
− r(A), (3.17)

max
X∈S, X1+X2+X∗

2+X3∈T
i±( X −X1 −X2 −X∗

2 −X3 )

= n + i±

[
0 A∗

A Q

]
− r(A1)− r(A2). (3.18)

Substituting (3.17) and (3.18) into (3.9)–(3.12) yields (a)–(h). �

In addition to (1.5) and (1.6), other two possible equalities for the solutions of
(1.1) and (1.4) are

X = (X1 + X3)/2, (3.19)

X = (X1 + X2 + X∗
2 + X3)/4, (3.20)

(3.21)

while eight possible equalities in the Löwner partial ordering for the solutions of
(1.1) and (1.4) are

X > (>, <, 6) (X1 + X3)/2, (3.22)

X > (>, <, 6) (X1 + X2 + X∗
2 + X3)/4. (3.23)

It is no doubt that closed-form formulas calculating the maximal and minimal
ranks and inertias can be established for the difference of both sides of (3.19)–
(3.23), while necessary and sufficient conditions for the equality and inequalities
to hold can be derived, as demonstrated in the previous two sections, from the
rank and inertia formulas.
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