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Abstract. In this paper some new Hardy–type inequalities on time scales are
derived and proved using the concept of superquadratic functions. Also, we
extend Hardy–type inequalities involving superquadratic functions with general
kernels to the case with arbitrary time scales. Several consequences of our
results are given and their connection with recent results in the literature are
pointed out and discussed.

1. INTRODUCTION

In a note published in 1920, Hardy [7] (see also [9]) announced (without proof)
that if p > 1 and f ≥ 0 is a p−integrable function over the finite interval (0, x),
then ∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx (1.1)

holds and the constant
(

p
p−1

)p

is the best possible. Inequality (1.1) which is

usually referred to in the literature as the classical Hardy inequality, was proved
in 1925 by Hardy [8] (see also [9, 10, 11, 12, 13] for the prehistory, history, and
further development of this inequality). In a recent paper, Oguntuase and Persson
[14] gave a review of recent development of Hardy inequality using the convexity
argument and the concept of superquadracity introduced by Abramovich et al.
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[1] while Donchev et al. [6] obtained some Hardy–type inequalities with general
kernels on time scales for multivariate convex functions.

Stefan Hilger (see e.g. [4, 5]) initiated the calculus of time scales in order to
create a theory that can unify discrete and continuous analysis. This new concept
has inspired researchers to study Hardy inequality on time scales. The history of
the Hardy inequality on time scales seems to have been initiated by Řehák [19]
in an attempt to unify and extend the classical Hardy integral inequality and the
discrete Hardy inequality by means of the theory of time scales.

First we recall some basic concepts used in this paper and also refer interested
reader to the books [4, 5] for a detailed theory of time scales. A time scale is an
arbitrary nonempty closed subset of the real numbers R.

Definition 1.1. Let T be a time scale. For t ∈ T, we define the forward jump
operator σ : T → T by

σ(t) = inf {s ∈ T : s > t} for all t ∈ T,

while the backward jump operator ρ : T → T is defined by

ρ(t) = sup {s ∈ T : s < t} for all t ∈ T.
The point t is said to be right-scattered if σ(t) > t, respectively left-scatted

if ρ(t) < t. Points that are right-scattered and left-scattered at the same time
are called isolated. The point t is called right-dense if t < sup T and σ(t) = t,
respectively left-dense if t > inf T and ρ(t) = t. Finally, the graininess function
µ : T → [0,∞) is defined by

µ(t) = σ(t)− t for all t ∈ T.

A mapping f : T → R is said to be rd-continuous if

(i) f is continuous at each right-dense point or maximal point of T;
(ii) at each left-dense point t ∈ T, lims→t− g(s) = g(t−) exists.

The set of all rd-continuous functions from T → R is usually denoted by Crd(T,R).
Let T be a time scale and [a, b) ⊂ R. The Lebesgue integral associated with

the measure µ on [a, b) is called the Lebesgue ∆−integral. If f : [a, b) → R, the

corresponding ∆−integral of f over [a, b) will be denoted by
∫ b

a
f(t)∆t. If T is a

time scale and the interval [a, b) ⊂ T consists of isolated points, then∫ b

a

f(t)∆t =
∑

t∈[a,b)

(σ(t)− t) f(t).

In 2005, Řehák [19] stated that if a > 0, p > 1, and f be a nonnegative function
such that the delta integral

∫∞
a

(f(s))p∆s exists as a finite number, then

∫ ∞

a

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)p

∆x <

(
p

p− 1

)p ∫ ∞

a

fp(x)∆x, (1.2)

unless f ≡ 0. If, in addition, µ(t)/t → 0 as t → ∞, then the constant
(

p
p−1

)p

is the best possible.
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In 2008, Özakan and Yildirim [17] gave a time scale Hardy inequality involv-
ing several functions and also derived a time scale Hardy–Knopp type inequality.
Furthermore, the same authors in another paper [18] further obtained a general-
ization of Hardy–Knopp’s type inequality for several functions and also derived
the Hardy–Knopp type inequality with a general kernel.

We also need the following definition of superquadratic functions:

Definition 1.2. (See [1, Definition 2.1]). A function φ : [0,∞) is called su-
perquadratic provided that for all x ≥ 0 there exists a constant Cx ∈ R such
that

φ(y)− φ(x)− φ (|y − x|) ≥ Cx(y − x)

for all y ≥ 0.
We say that φ is subquadratic if −φ is superquadratic.

A number of Hardy–type inequalities have recently been derived by using a
powerful convexity technique, see [14] and the references there. By instead of
convex functions using superquadratic functions some similar refined Hardy–type
inequalities can be derived. The first result in this direction can be found in [15]
(see also [16]) for the multidimensional analogue.

Our aim in this paper is to further develop and unify these techniques and de-
rive, prove and discuss some new refined Hardy–type inequalities on time scales
using the concept of superquadracity. Furthermore, we extend Hardy–type in-
equalities involving superquadratic functions with general kernels to arbitrary
time scales.

The results in Section 2 may be regarded as a generalization to this time scale
setting of the new refined Hardy–type inequalities with “breaking point” p = 2
recently published in [15]. In Section 3 we prove the corresponding result for
the more general case when the Hardy operator is replaced by a Hardy type
operator with general positive kernel. Moreover, these results are given even in a
multidimensional setting.

2. SOME TIME SCALE INEQUALITIES FOR
SUPERQUADRACITY

In a recent paper Bibi et al.[3] established the Fubini’s theorem on time scales
while Barić et al.[2] obtained a refined Jensen’s inequality on time scales for
superquadratic functions.These results are very useful in the proofs of our main
results and for the reader’s convenience, we recall these results before stating our
main results in this section.

Lemma 2.1. [3, Theorem 1.1] (Fubini’ theorem on Time Scales). Let (Ω,M, µ∆)
and (Λ,L, λ∆) be two finite dimensional time scale measures spaces. If f :
Ω × Λ → R is a µ∆ × λ∆−integrable functions and define the function φ(y) =∫

Ω
f(x, y)∆x for a.e. y ∈ Λ and ψ(x) =

∫
Λ
f(x, y)∆y for a.e. x ∈ Ω, then φ is

λ∆−integrable on Λ, ψ is µ∆−integrable on Ω and∫
Ω

∆x

∫
Λ

f(x, y)∆y =

∫
Λ

∆y

∫
Ω

f(x, y)∆x. (2.1)
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Lemma 2.2. (See [2, Theorem 2.5]). Let a, b ∈ T. Suppose f : [a, b]Tk → [0,∞)
is rd-continuous and φ : [0,∞) → R is continuous and superquadratic. Then

φ

(
1

b− a

∫ b

a

f (t) ∆t

)
≤ 1

b− a

∫ b

a

[
φ(f(s))− φ

(∣∣∣∣f(s)− 1

b− a

∫ b

a

f (t) ∆t

∣∣∣∣)]∆s.

(2.2)

Now we state and prove a strengthened form of a refined Hardy–type inequality
for superquadratic functions.

Theorem 2.3. Let u ∈ Crd([a, b],R) be a nonnegative function such that the

∆−integral
∫ b

t
u(t)

(x−a)(σ(x)−a)
∆x <∞ and define the weight function v by

v(t) = (t− a)

∫ b

t

u (x)

(x− a)(σ(x)− a)
∆x, t ∈ (a, b).

(a) If the real-valued function φ is superquadratic on (a, b), 0 < a < b ≤ ∞,
then ∫ b

a

u(x)φ

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)
∆x

x− a

+

∫ b

a

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

u (x)

(x− a)(σ(x)− a)
∆x∆t

≤
∫ b

a

v(x)φ(f(x))
∆x

x− a
(2.3)

holds for all ∆−integrable function f ∈ Crd([a, b],R) such that f(x) ∈ (a, c).
(b) If the real-valued function φ is subquadratic on (a, c), 0 < a < c ≤ ∞, then

(2.3) holds in the reversed direction.

Proof. (a) By using the refined Jensen inequality (2.2) and the Fubini theorem
(2.1) on time scales to the first term on the left hand side of (2.3), we find that∫ b

a

u(x)φ

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)
∆x

x− a

≤
∫ b

a

u(x)

(x− a)(σ(x)− a)

∫ σ(x)

a

φ(f (t))∆t∆x

−
∫ b

a

u(x)

(x− a)(σ(x)− a)

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

∆t∆x

=

∫ b

a

φ(f (t))

∫ b

t

u(x)

(x− a)(σ(x)− a)
∆x∆t

−
∫ b

a

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

u(x)

(x− a)(σ(x)− a)
∆x∆t
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=

∫ b

a

v(t)φ(f(t))
∆t

(t− a)

−
∫ b

a

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

u(x)

(x− a)(σ(x)− a)
∆x∆t.

(b) This is similar to the proof of (a) above but the only difference is that in
this case the inequality sign is reversed. The proof is complete. �

We now consider Theorem 2.3 in some special cases. First we note that if we
set u(x) ≡ 1, then we obtain that

v(x) =

{
1− x−a

b−a
if b <∞,

1 if b = ∞.

Hence, we have the following:

Corollary 2.4. Let the assumptions of Theorem 2.3 be satified.
(a) If φ is superquadratic and a < b <∞ , then∫ b

a

φ

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)
∆x

x− a

+

∫ b

a

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

∆x

(x− a)(σ(x)− a)
∆t

≤
∫ b

a

(
1− x− a

b− a

)
φ(f(x))

∆x

x− a
, (2.4)

and∫ ∞

a

φ

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)
∆x

x− a

+

∫ ∞

a

∫ ∞

t

φ

(∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
)

∆x

(x− a)(σ(x)− a)
∆t

≤
∫ ∞

a

φ(f(x))
∆x

x− a
. (2.5)

(b) The inequalities (2.4) and (2.5) hold in the reversed direction if φ is sub-
quadratic.

Example 2.5. By taking T = R and a = 0 in Corollary 2.4, inequalities (2.4)
and (2.5) read:∫ b

0

φ

(
1

x

∫ x

0

f (t) dt

)
dx

x
+

∫ b

0

∫ b

t

φ

(∣∣∣∣f(t)− 1

x

∫ x

0

f (t) dt

∣∣∣∣) dx

x2
dt

≤
∫ b

0

(
1− x

b

)
φ(f(x))

dx

x
, (2.6)
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and∫ ∞

0

φ

(
1

x

∫ x

0

f (t) dt

)
dx

x
+

∫ ∞

0

∫ ∞

t

φ

(∣∣∣∣f(t)− 1

x

∫ x

0

f (t) dt

∣∣∣∣) dx

x2
dt

≤
∫ ∞

0

φ(f(x))
dx

x
, (2.7)

respectively.

Remark 2.6. The inequalities (2.6) and (2.7) coincide with Proposition 2.1 from
[15], written for the case u(x)=1.

By using the well-known fact that the function φ(u) = up is superquadratic for
p ≥ 2 and subquadratic for 1 < p ≤ 2 we obtain the following:

Example 2.7. Assume that φ(u) = up and
∫ b

a
fp(x) ∆x

x−a
<∞. Then inequalities

(2.4) and (2.5) read:∫ b

a

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)p
∆x

x− a

+

∫ b

a

∫ b

t

∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
p

∆x

(x− a)(σ(x)− a)
∆t

≤
∫ b

a

(
1− x− a

b− a

)
fp(x)

∆x

x− a
(2.8)

for a < b <∞ and∫ ∞

a

(
1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

)p
∆x

x− a

+

∫ ∞

a

∫ ∞

t

∣∣∣∣∣f(t)− 1

σ(x)− a

∫ σ(x)

a

f (t) ∆t

∣∣∣∣∣
p

∆x

(x− a)(σ(x)− a)
∆t

≤
∫ ∞

a

fp(x)
∆x

x− a
(2.9)

respectively. Moreover, if 1 < p ≤ 2, then the inequalities (2.8) and (2.9) hold
in the reversed direction.

Remark 2.8. By taking T = R and a = 0 in Example 2.7, inequality (2.8) coincides
with inequality (3.2) in [15].

Remark 2.9. The natural “breaking point” (the point where the inequality re-
verses) in Hardy type inequalities is usually p = 1. However, here we see that for
our refined Hardy type inequality the natural breaking point is p = 2 and even
more remarkable for p = 2 we have a new identity even in our case with time
scales.
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3. REFINED TIME SCALES HARDY-TYPE INEQUALITIES FOR
SUPERQUADRATIC FUNCTIONS AND HARDY OPERATORS

WITH GENERAL KERNELS

Our first main result in this Section reads:

Theorem 3.1. Let (Ω1,Σ1, µ∆1) and (Ω2,Σ1, µ∆2) be two time scale measure
spaces with positive σ− finite measures and let u : Ω1 → R and k : Ω1 × Ω2 → R
be nonnegative such that k(x, .) is a µ∆2−integrable function for x ∈ Ω1. Further-
more, suppose that K : Ω1 → R is defined by

K(x) :=

∫
Ω2

k(x, y)∆µ2(y) > 0. x ∈ Ω1,

and

v(y) :=

∫
Ω2

u(x)
k(x, y)

K(x)
∆µ1(x) <∞, y ∈ Ω2.

If φ : [a,∞) → R (a ≥ 0) is a nonnegative superquadratic function, then the
inequality

∫
Ω2

u(x)φ (Akf(x)) ∆µ1(x)

+

∫
Ω2

∫
Ω2

u(x)
k(x, y)

K(x)
φ (|f(y)− Akf(x)|) ∆µ1(x)∆µ2(y)

≤
∫

Ω2

v(x)φ (f(x)) ∆µ2(x) (3.1)

holds for all nonnegative µ∆2−integrable function f : Ω2 → R and for Akf :
Ω1 → R defined by

Akf(x) =
1

K(x)

∫
Ω2

k(x, y)f(y)∆µ2(y), x ∈ Ω1.

If φ is subquadratic, then the inequality sign in (3.1) is reversed.

Proof. The proof follows by using Jensen’s inequality (2.2) and the Fubini theorem
(2.1) on time scales. Indeed, we obtain that
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∫
Ω2

u(x)φ (Akf(x)) ∆µ1(x)

=

∫
Ω2

u(x)φ

(
1

K(x)

∫
Ω2

k(x, y)f(y)∆µ2(y)

)
∆µ1(x)

≤
∫

Ω1

u(x)

K(x)

(∫
Ω2

k(x, y)φ (f(y)) ∆µ2(y)

)
∆µ1(x)

−
∫

Ω1

u(x)

K(x)

∫
Ω2

k(x, y)φ (|f(y)− Akf(x)|) ∆µ2(y)∆µ1(x)

=

∫
Ω2

φ (f(y))

(∫
Ω1

u(x)k(x, y)

K(x)
∆µ1(x)

)
∆µ2(y)

−
∫

Ω2

∫
Ω1

u(x)k(x, y)

K(x)
φ (|f(y)− Akf(x)|) ∆µ1(x)∆µ2(y)

from which (3.1) follows.
The proof of the case in which φ is subquadratic is similar the only difference

is that the inequality sign in (3.1) is reversed. The proof is complete. �

Example 3.2. In Theorem 3.1, let Ω1 = Ω2 = [a, b)T, 0 ≤ a < b ≤ ∞, where T is
a time scale, replace the time scale measures ∆µ1(x) and ∆µ2(y) by the Lebesgue
scale measures ∆x and ∆y respectively, and also replace u(x), v(y) and k(x, y) by
u(x)
x−a

, w(y)
y−a

and k(x, y) = 1, if 0 ≤ y ≤ σ(x), k(x, y) = 0 if y > σ(x), respectively.

In this setting we have

K(x) =

∫ σ(x)

a

k(x, t)∆t = σ(x)− a > 0. x ∈ [a, b)T,

and

Akf(x) =
1

(σ(x)− a)

∫ σ(x)

a

f(t)∆t, x ∈ Ω1.

If we let

v(t) = (t− a)

∫ b

t

u(x)
∆x

(σ(x)− a)(x− a)
<∞, t ∈ [a, b)T, (3.2)

then we obtain inequality∫ b

a

u(x)φ

(
1

(σ(x)− a)

∫ σ(x)

a

f(t)∆t

)
∆x

x− a

+

∫ b

a

∫ b

t

φ

(∣∣∣∣∣f(t)− 1

(σ(x)− a)

∫ σ(x)

a

f(t)∆t

∣∣∣∣∣
)

u(x)

(σ(x)− a)(x− a)
∆x∆t

≤
∫ b

a

v(x)φ (f(x))
∆x

x− a
, (3.3)

which coincides with inequality (2.3). Furthermore, the inequality sign in (3.3)
is reversed if φ is subquadratic.
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Remark 3.3. The problem to characterize Hardy type inequalities with general
weights and with general kernel is still an open question (see e.g. the books
[11, 12, 13] and the references there). However, when we have a special relation
between the weights (see (3.3) and (3.2)), we can even have general kernel and
refined Hardy inequality even for the case with time scales. In particular, by
applying these inequalities with φ(u) = up, which is superquadratic for p ≥ 2 and
subquadratic for 1 < p ≤ 2, we obtain some new refined Hardy–type inequalities
on time scales with “breaking point” p = 2, which reduces to a new identity for
p = 2.

Our next aim is to present our result in a more general multidimensional setting.
In the sequel we let n ∈ Z+ and set x = (x1, · · · , xn), t = (t1, · · · , tn) ∈ Rn,
Ω1,Ω2 ⊂ Rn are time scale measure spaces. Correspondinly, [a,b) means the set
[a1, b1)×[a2, b2)×· · ·×[an, bn), dx =dx1 · · · dxn and up = (u1 · · ·un)p. Furthermore,
for x, t ∈ Rn we write x < t if componentwise xi < ti, i = 1, 2, · · · , n and the
relations ≤,≥ and < are defined analogously. Also for a,b ∈ Rn, a < b, we define
(a,b) = {x ∈ Rn : a < x < b} . Moreover, (a,∞) = {x ∈ Rn : a < x <∞} and
the n-cells [a,b), (a,b] and [a,b] are defined similarly. In this setting, we obtain
the following multidimensional time scale Hardy–type inequality with general
kernel as follows:

Theorem 3.4. Let (Ω1,Σ1, µ∆1) and (Ω2,Σ1, µ∆2) be two time scale measure
spaces with positive σ− finite measures and let u : Ω1 → R and k : Ω1 × Ω2 → R
be nonnegative such that k(x, .) is a µ∆2−integrable function for x ∈ Ω1. Further-
more, suppose that K : Ω1 → R is defined by

K(x) =

∫
Ω2

k(x,y)∆µ2(y1) · · ·∆µ2(yn) > 0. x ∈ Ω1,

and

v(y) =

∫
Ω2

u(x)
k(x,y)

K(x)
∆µ1(x1) · · ·∆µ1(xn) <∞, y ∈ Ω2.

If φ : [a,∞) → R (ai ≥ 0, i = 1, · · · , n) is a nonnegative superquadratic
function, then the inequality∫

Ω2

u(x)φ ((Akf)(x)) ∆µ1(x1) · · ·∆µ1(xn)

+

∫
Ω2

∫
Ω2

u(x)
k(x,y)

K(x)
φ (|f(y)− (Akf)(x)|) ∆µ1(x1) · · ·∆µ1(xn)∆µ2(y1) · · ·∆µ2(yn)

≤
∫

Ω2

v(x)φ (f(x)) ∆µ2(x1) · · ·∆µ2(xn) (3.4)

holds for all nonnegative µ∆2−integrable function f : Ω2 → R and for Akf :
Ω1 → R defined by

(Akf)(x) =
1

K(x)

∫
Ω2

k(x,y)f(y)∆µ2(y1) · · ·∆µ2(yn), x ∈ Ω1.

If φ is subquadratic, then the inequality sign in (3.4) is reversed.
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Proof. The proof is similar to to that of Theorem 3.1 so we omit the details. �

Remark 3.5. For the one dimensional case n = 1, Theorem 3.4 coincides with
Theorem 3.1.

Corollary 3.6. Let u : Ω → R be nonnegative time scale measures and k :
Ω×Ω → R be nonnegative such that k(x) is ∆−integrable function. Furthermore,
suppose that K : Ω → R is defined by

K(x) =

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

k(x, t)∆t1 · · ·∆tn, xi ∈ [ai, bi)

and

v(t) =

∫ b1

t1

· · ·
∫ bn

tn

k(x, t)u(x)

K(x)
∆t1 · · ·∆tn, ti ∈ [ai, bi).

If φ : Ω → R is a nonnegative superquadratic function, then the inequality∫ b1

a1

· · ·
∫ bn

an

k(x, t)u(x)

K(x)
φ(Akf(x))∆x1 · · ·∆xn

+

∫ b1

a1

· · ·
∫ bn

an

(∫ b1

a1

· · ·
∫ bn

an

k(x, t)u(x)

K(x)
φ (|f(t)− Akf(x)|) ∆x1 · · ·∆xn

)
∆t1 · · ·∆tn

≤
∫ b1

a1

· · ·
∫ bn

an

v(x)φ(f(x))∆x1 · · ·∆xn (3.5)

holds for all ∆−integrable function f : Ω → Rn such that f(Ω) ⊂ Rn, where

Akf(x) =
1

K(x)

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

k(x, t)f(t)∆t1 · · ·∆tn.

If φ instead is subquadratic, then the inequality sign in (3.5) is reversed.

Proof. This follows from Theorem 3.4 by setting Ω = Ω1 = Ω2 = [a1, b1)T ×
[a2, b2)T×· · ·× [an, bn)T ⊂ Rn, 0 ≤ ai < bi ≤ ∞ for all i ∈ {i, · · · , n} , ∆µ1(x) and
∆µ1(x) and ∆µ2(y) by the Lebesgue scale measures ∆x and ∆t. Furthermore,

replace u(x), v(t) and k(x, t) by u(x)
x−a

, v(t)
t−a

and k(x, t) = 1,if 0 ≤ ti ≤ σ(xi),
k(x, t) = 0 if ti > σ(xi), then the result follows and the proof is complete. �

Remark 3.7. For the case T = R and n = 1 then Corollary 3.6 coincides with
Theorem 2.3

Corollary 3.8. Let u : Ω → R be nonnegative time scale measures and k :
Ω×Ω → R be nonnegative such that k(x) is ∆−integrable function. Furthermore,
suppose that K : Ω → R is defined by

K(x) =

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

∆t1 · · ·∆tn =
n∏

i=1

(σ(xi − ai), xi ∈ [ai, bi)

and

v(t) :=

∫ b1

t1

· · ·
∫ bn

tn

u(x)∏n
i=1(σ(xi − ai)

∆x1 · · ·∆xn, ti ∈ [ai, bi) (3.6)
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If φ : Ω → R is a nonnegative superquadratic function, then∫ b1

a1

· · ·
∫ bn

an

u(x)φ((Akf)(x))∆x1 · · ·∆xn

+

∫ b1

a1

· · ·
∫ bn

an

(∫ b1

a1

· · ·
∫ bn

an

u(x)φ (|f(t)− (Akf)(x)|) ∆x1 · · ·∆xn

)
∆t1 · · ·∆tn

≤
∫ b1

a1

· · ·
∫ bn

an

v(x)φ(f(x))∆x1 · · ·∆xn (3.7)

holds for all ∆−integrable function f : Ω → Rn such that f(Ω) ⊂ Rn, where

(Akf)(x) =
1∏n

i=1(σ(xi)− ai)

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

f(t)∆t1 · · ·∆tn.

If φ instead is subquadratic, then the inequality sign in (3.7) is reversed.

Proof. This follows directly from Theorem 3.1 by setting Ω = Ω1 = Ω2 =
[a1, b1)T × [a2, b2)T × · · · × [an, bn)T ⊂ Rn, 0 ≤ ai < bi ≤ ∞ for all i ∈ {i, · · · , n} ,
where T is a time scale.by replacing the time scale measures and also by replacing
∆µ1(x) and ∆µ2(y) by the Lebesgue scale measures ∆x and ∆t. Furthermore,

replace u(x), v(t) and k(x, t) by u(x)
x−a

, v(t)
t−a

and k(x, t) = 1,if ai ≤ ti < σ(xi) ≤ bi,
k(x, t) = 0 if 0 otherwise. Then the result follows and the proof is complete. �

Example 3.9. In Theorem 3.8, set ai = 0 for all i = 1, 2, .., n, and u(x) = 1
x1···xn

,

then inequality (3.7) reduces to∫ b1

0

· · ·
∫ bn

0

φ((Akf)(x))
∆x1 · · ·∆xn

x1 · · ·xn

+

∫ b1

0

· · ·
∫ bn

0

(∫ b1

t1

· · ·
∫ bn

t1

φ (|f(t)− (Akf)(x)|) ∆x1 · · ·∆xn

)
∆t1 · · ·∆tn
t1 · · · tn

≤
∫ b1

0

· · ·
∫ bn

0

n∏
i=1

(
1− xi

bi

)
φ(f(x))

∆x1 · · ·∆xn

x1 · · ·xn

. (3.8)

If φ instead is subquadratic, then the inequality sign in (3.8) is reversed.

Remark 3.10. In Example 3.9, set T = R, n = 1,and φ(x) = xp ( p ≥ 2), then
(3.8) yields the following result∫ b1

0

(
1

x

∫ x

0

f(t)dt

)p
dx

x

+

∫ b

0

(∫ b

t

∣∣∣∣f(t)− 1

x

∫ x

0

f(t)dt

∣∣∣∣ dx) dt

t

≤
∫ b

0

(
1− x

b

)
fp(x)

dx

x
. (3.9)

The inequality sign in (3.9) is reveresed if 1 < p ≤ 2.
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Remark 3.11. There are very few multidimensional Hardy–type inequalities in
the literature (see e.g. [11, 12, 13] and the references there). By applying our
result with the function φ(u) = up as in Remark 3.3 we obtain some new such
general refined Hardy type inequalities for the case when the weights are related
by (3.6).
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