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Abstract. Let H : Mm → Mm be a holomorphic function of the algebra
Mm of complex m×m matrices. Suppose that H is orthogonally additive and
orthogonally multiplicative on self-adjoint elements. We show that either the
range of H consists of zero trace elements, or there is a scalar sequence {λn}
and an invertible S in Mm such that

H(x) =
∑
n≥1

λnS−1xnS, ∀x ∈ Mm,

or
H(x) =

∑
n≥1

λnS−1(xt)nS, ∀x ∈ Mm.

Here, xt is the transpose of the matrix x. In the latter case, we always have
the first representation form when H also preserves zero products. We also
discuss the cases where the domain and the range carry different dimensions.

1. Introduction

Let E and F be real or complex Banach spaces, and n a positive integer. A
map P : E → F is called a bounded n-homogeneous polynomial if there is a
bounded symmetric n-linear operator T : E × · · · × E → F such that

P (x) = T (x, . . . , x), ∀x ∈ E.
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In this case, we have

T (x1, . . . , xn) =
1

2nn!

∑
εi=±1

ε1 · · · εnP

(
n∑

i=1

εixi

)
, ∀x1, . . . , xn ∈ E.

A map H : U → F is said to be holomorphic on a nonempty open subset U of
E if for each a in U there exist an open ball BE(a; r) ⊆ U , centered at a with
radius r > 0, and a unique sequence of bounded n-homogeneous polynomials
Pn : E → F such that

H(x) =
∞∑

n=0

Pn(x− a)

uniformly for all x in BE(a; r).
To study holomorphic functions, we might assume, after translation, a = 0. A

holomorphic function H : BE(0; r) → F has its Taylor series at zero:

H(x) =
∞∑

n=0

Pn(x) (1.1)

uniformly for all x in BE(0; r). In the complex case, we have the Cauchy integral
formulae:

Pn(x) =
1

2πi

∫
|λ|=1

H(λx)

λn+1
dλ, n = 0, 1, 2, . . . . (1.2)

For the general theory of homogeneous polynomials and holomorphic functions,
we refer to [11, 17].

When E, F are Banach algebras, a function Φ : E → F is said to be orthogo-
nally additive if

fg = gf = 0 implies Φ(f + g) = Φ(f) + Φ(g), ∀f, g ∈ E,

and orthogonally multiplicative if

fg = gf = 0 implies Φ(f)Φ(g) = 0, ∀f, g ∈ E.

The notions of orthogonally additive and orthogonally multiplicative transforma-
tions have been studied by many authors, for example, [2, 13, 14, 12, 9, 1, 15, 20,
3, 7, 18, 8, 4, 19, 16].

Our goal is to study orthogonally additive and orthogonally multiplicative holo-
morphic functions between C∗-algebras. Every abelian C∗-algebra is the algebra
C0(X) of continuous functions of a locally compact Hausdorff space X vanish-
ing at infinity. In general, a C∗-algebra can be embedded into B(H) as a norm
closed self-adjoint subalgebra. When E, F are algebras of continuous functions,
it is established in [5] the following nice representation.

Proposition 1.1 ([5]). Let H : BC0(X)(0; r) → C0(Y ) be a bounded orthogonally
additive and orthogonally multiplicative holomorphic function. Then there exist
a sequence {hn} of bounded scalar continuous functions in C(Y ) and a map ϕ :
Y → X such that

H(f)(y) =
∑
n≥1

hn(y)(f(ϕ(y)))n, ∀y ∈ Y,
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uniformly for all f in BC0(X)(0; r). Here, ϕ is continuous wherever any hn is
nonvanishing.

Talking orthogonality of a pair of elements a, b in a general C∗-algebra (in
B(H)), people usually refers one of the following situations.

(i) Zero product: ab = 0.
(ii) Two side zero product: ab = ba = 0.
(iii) Range orthogonality: a∗b = 0.
(iv) Initial space or domain orthogonality: ab∗ = 0.
(v) Range and domain orthogonality: a∗b = ab∗ = 0.

In the abelian case, however, all these concepts coincide. They coincide in general
when both a, b are self-adjoint.

Some partial results concerning the structures of homogeneous polynomials
between general C∗-algebras are also given in [5]. For example, we have

Proposition 1.2 ([5]). Let H be a complex Hilbert space of arbitrary dimension.
Let P : B(H) → B(H) be a bounded n-homogeneous polynomial, which is additive
and multiplicative on pairs of orthogonal self-adjoint elements. Suppose that P (1)
is invertible or P (B(H)) ⊃ B(H)+. Then there is a nonzero scalar λ and an
invertible operator S in B(H) such that either

P (x) = λS−1xnS, ∀x ∈ B(H),

or

P (x) = λS−1(xt)nS, ∀x ∈ B(H).

Here, xt is the transpose of a bounded linear operator x in B(H) with respect
to some arbitrary but fixed orthogonal basis of the Hilbert space H. For a matrix
x = (xij), we simply define xt = (xji) to be the transpose of x.

However, results in [5] usually assume a rather strong hypothesis that P (1) is
invertible or P (A) ⊃ B+. It is not very likely every summand Pn in the Taylor
series (1.1) of a holomorphic function H : BA(0; r) → B would satisfy one of these
conditions. Thus, a general structure result about such holomorphic functions is
still far away from reaching.

In this paper, we will establish another important case. We will give a de-
scription of orthogonally additive and orthogonally multiplicative holomorphic
function H : Mm → Mm of complex matrix algebras.

In the following we say that a map H between complex matrices is orthogonally
additive (resp. multiplicative) on self-adjoint elements if H(a+ b) = H(a)+H(b)
(resp. H(a)H(b) = 0) whenever a, b are self-adjoint complex matrices in its
domain with ab = 0.

Theorem 1.3. Let m and s be positive integers with m ≥ 2 and m ≥ s. Let
H : BMm(0; r) → Ms be a holomorphic function between complex matrix algebras.
Assume H is orthogonally additive and orthogonally multiplicative on self-adjoint
elements. Then either

(A) the range of H consists of zero trace elements (this case occurs whenever
s < m), or
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(B) there exist a scalar sequence {λn} (some λn can be zero) and an invertible
m×m matrix S such that

H(x) =
∑
n≥1

λnS
−1xnS, ∀x ∈ BMm(0; r), (‡)

or
H(x) =

∑
n≥1

λnS
−1(xt)nS, ∀x ∈ BMm(0; r).

In the case (B), we always have the representation (‡) when H also preserves zero
products, i.e.,

ab = 0 =⇒ H(a)H(b) = 0, ∀a, b ∈ BMm(0; r).

The proof of Theorem 1.3 will be given in the next section. The following
example shows that the exception case in Theorem 1.3 can occur when s = m.

Example 1.4. Let Eij be the matrix unit with ‘1’ at the (i, j)th entry and ‘0’
elsewhere. Consider the linear map T : M2 → M2 defined by T (E11) = E12, and
T (Eij) = 0 for all other i, j. Then T is an orthogonally multiplicative, and linear
(and thus holomorphic) map. It is plain that the range of T consists of nilpotent
matrices.

On the other hand, we can have other possibilities when the range have larger
dimension than the domain.

Example 1.5. Consider θ : Mk → Mk+2 defined by

(
aij

)
7→



0 a11 a12 . . . a1k 0
0 0 0 . . . 0 a11

0 0 0 . . . 0 a21
...

. . .
...

0 0 0 . . . 0 ak1

0 0 0 . . . 0 0

 .

Then θ is linear (and thus holomorphic), and orthogonally multiplicative on self-
adjiont elements. Note that the range of θ does not have trivial multiplication,
since θ(E11)

2 = E1,k+2. However, θ cannot be written as the form cϕ for any fixed
element c in Mk+2 and any homomorphism or anti-homomorphism ϕ : Mk →
Mk+2. Assume on the contrary that θ = cϕ. Then we arrive at a contradiction

E1,k+2 = θ(E11)
2 = θ(E11)cϕ(E11) = θ(E11)c(ϕ(E12)ϕ(E21))

= θ(E11)(cϕ(E12))ϕ(E21)) = θ(E11)θ(E12)ϕ(E21) = 0ϕ(E21) = 0.

Example 1.6. Consider φ : Mk → M2k+2 defined by(
aij

)
7→
(
aij

)
⊕ θ

(
aij

)
.

Here, θ is the map defined in Example 1.5. Again θ is linear (and thus holomor-
phic) and orthogonally multiplicative. However, θ cannot be written in any form
stated in Theorem 1.3(B), although its range contains elements of nonzero trace.

The infinite dimensional case can be more complicated.
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Example 1.7. Let H be a separable infinite dimensional Hilbert space with an
orthonormal basis {en : n = 1, 2, . . .}.
(a) Consider θ : B(H) → B(H) defined by(

aij

)
7→ J2

(
aij

)
J∗2 +

(
0 a11

0 0

)
⊕ 0.

Here, J : B(H) → B(H) is the unilateral shift operator sending en to en+1

for n = 1, 2, . . .. Then θ is not of the standard form, while its range contains
elements of nonzero trace.

(b) Let E and F be the isometries in B(H) such that E(en) = e2n and F (en) =
e2n−1 for n = 1, 2, . . ., respectively. Define a holomorphic function H :
B(H) → B(H) by

H(a) = EaE∗ + F (at)2F ∗, ∀a ∈ B(H).

Then H is orthogonally additive and orthogonally multiplicative, but not
zero product preserving. (Readers can make up one preserving zero products
easily.) The range of H contains the identity H(1) = 1. However, it cannot
be written in any form stated in Theorem 1.3(B).

2. The proofs

We begin with an observation.

Lemma 2.1. Let H : BE(0; r) → F be a holomorphic function between C∗-
algebras with Taylor series at zero H =

∑∞
n=0 Pn.

(a) If H is orthogonally additive on self-adjoint elements then each Pn is also
orthogonally additive on self-adjoint elements.

(b) If H is orthogonally multiplicative on self-adjoint elements then each Pn is
also orthogonally multiplicative on self-adjoint elements. Indeed, for orthog-
onal self-adjoint elements x, y in BE(0; r) we have

xy = 0 =⇒ Pm(x)Pn(y) = 0, m, n = 0, 1, 2, . . . .

Proof. Let {x, y} be an orthogonal pair of self-adjoint elements in BE(0; r). Sup-
pose first that H is orthogonally additive. For sufficiently small scalar α, we
have

H(αx + αy) =
∑

n

Pn(αx + αy) =
∑

n

αnPn(x + y)

= H(αx) + H(αy) =
∑

n

(Pn(αx) + Pn(αy)) =
∑

n

αn(Pn(x) + Pn(y)).

As α can be arbitrary (but small), we see that

Pn(x + y) = Pn(x) + Pn(y), n = 0, 1, 2, . . . .

Suppose then H is orthogonally multiplicative. For sufficiently small scalars
α, β, we have

0 = H(αx)H(βy) =
∑
m,n

Pm(αx)Pn(βy) =
∑
m,n

αmβnPm(x)Pn(y).
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As α, β can be arbitrary (but small), we see that

Pn(x)Pm(y) = 0, n, m = 0, 1, 2, . . . .

�

It follows from Lemma 2.1 that if H is orthogonally additive then P0 = 0.
The following linearization of orthogonally additive n-homogeneous polynomi-

als of matrix algebras is an important tool of us. The result for general C∗-
algebras is given by C. Palazuelos, A. M. Peralta and I. Villanueva [18], and M.
Burgosy, F. J. Fernández-Poloz, J. J. Garcésx and A. M. Peralta [6], which extend
the commutative version of D. Perez-Garcia and I. Villanueva [20] (see also [18]).

Lemma 2.2. Let F be a complex Banach space, and P : Mm → F an n-
homogeneous polynomial. If P is orthogonally additive on self-adjoint elements
then there exists a linear operator T : Mm → F such that

P (x) = T (xn), ∀x ∈ Mm.

Recall that we say a map θ between rings preserving zero products if θ(x)θ(y) =
0 whenever xy = 0. We say that a set Z of a ring has trivial products, if xy = 0
for all x, y in Z.

Lemma 2.3 ([9, Corollary 2.4]). Let m and s be positive integers with m ≥ 2 and
m ≥ s. Let F be an algebraically closed field of characteristic 0 and θ : Mm(F) →
Ms(F) a linear map preserving zero products. Then either the range of θ has
trivial multiplication, or m = s and there exist an invertible matrix S in Mm(F)
and a nonzero scalar c such that

θ(x) = cS−1xS ∀x ∈ Mm(F).

Note that the orthogonal multiplicity of an orthogonal additive polynomial P
does not guarantee its linearization T preserving zero products. So we cannot
apply Lemma 2.3 directly. But when x, y are idempotents with xy = 0, we have
T (x)T (y) = P (x)P (y) = 0. This suggests the following two lemmas. Fortunately,
they are sufficient for our proof of Theorem 1.3.

Lemma 2.4. Let m and s be positive integers with m ≥ 2 and m ≥ s. Let
θ : Mm → Ms be a complex linear map. Assume that

θ(p)θ(q) = 0 whenever p, q are orthogonal rank one projections. (2.1)

Then either

(A) the range of θ consists of nilpotent elements (this happens whenever s < m),
or

(B) m = s and there exist an invertible matrix S in Mm and a nonzero scalar λ
such that

θ(x) = λS−1xS, ∀x ∈ Mm,

or

θ(x) = λS−1xtS, ∀x ∈ Mm.
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Proof. Note that (2.1) holds indeed for all orthogonal pairs of self-adjoint matrices
(through spectral decompositions). For any projection p in Mm, we have

(1− p)p = p(1− p) = 0.

The assumption implies that

θ(1− p)θ(p) = θ(p)θ(1− p) = 0.

Hence

θ(1)θ(p) = θ(p)θ(1) = θ(p)2

holds for all projections p in Mm. By the spectral theory, we have

θ(1)θ(a) = θ(a)θ(1) (2.2)

for all self-adjoint, and thus for all, a in Mm. Moreover,

θ(1)θ(a2) = θ(a2)θ(1) = θ(a)2

holds for all self-adjoint elements a in Mm. Considering (a+b)2 for two self-adjoint
elements a and b, we have

θ(1)θ(ab + ba) = θ(a)θ(b) + θ(b)θ(a).

Since very complex matrix a in Mm can be written as a = b +
√
−1c for two

self-adjoint matrices b and c, we see that

θ(1)θ(a2) = θ(a2)θ(1) = θ(a)2, ∀a ∈ Mm. (2.3)

It follows further that

θ(1)θ(ab + ba) = θ(a)θ(b) + θ(b)θ(a), ∀a, b ∈ Mm. (2.4)

Suppose that there is an x in Mm such that θ(x) is not nilpotent. It follows
from (2.2) and (2.3) that

θ(1)sθ(x2)s = (θ(1)θ(x2))s = θ(x)2s 6= 0.

Consequently, θ(1) is not nilpotent, and thus its spectrum contains a complex
number λ 6= 0. Using the Riesz functional calculus, we have an idempotent e
in Ms such that eθ(1) = θ(1)e = λe 6= 0 and e commutes with every matrix
commuting with θ(1) (see, e.g., [10, Prop. 4.11]). Since θ(1) commutes with all
θ(a)’s, so does e. Define Ψ : Mm → Ms by Ψ(a) = eθ(a)/λ. It follows from (2.4)
that

Ψ(ab + ba) = Ψ(a)Ψ(b) + Ψ(b)Ψ(a), ∀a, b ∈ Mm.

By the well-known theorem of Herstein, we see that either Ψ = 0, or Ψ is an
injective homomorphism or anti-homomorphism. But the first case implies the
contradiction e = Ψ(1) = 0. Hence, the latter case occurs, and we must have
s = m. This forces e = 1 and thus θ(1) = λ. It follows from the Noether-Skolem
theorem that we have one of the expected representations of θ. This completes
the proof. �
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Lemma 2.5. Let m and s be positive integers with m ≥ 2 and m ≥ s. Let
θ : Mm → Ms be a complex linear map. Assume that

θ(e)θ(f) = 0 whenever e, f are rank one idempotents with ef = 0.

If the range of θ does not consist of nilpotent elements then s = m, and there
exist an invertible matrix S in Mm and a nonzero scalar λ such that

θ(x) = λS−1xS, ∀x ∈ Mn.

Proof. Since projections are idempotents, it follows from Lemma 2.4 that m = s
and there is an invertible matrix S and a nonzero scalar λ such that 1

λ
Sθ(x)S−1

is either always x or always xt. Consider the idempotents a, b in Mm with the
top left 2× 2 blocks given below and zero elsewhere, respectively:(

1 0
0 0

)
and

(
0 0
1 1

)
.

Then ab = 0 but ba 6= 0. Since θ preserves zero products, so does 1
λ
SθS−1.

Because atbt = (ba)t 6= 0, we conclude that 1
λ
Sθ(x)S−1 = x for all x in Mm. This

gives us the desired assertion. �

Proof of Theorem 1.3. It is not difficult to see that the two cases stated in the
conclusions are exclusive. Assume from now on H(d) is a matrix in Ms of nonzero
trace for some d in BMm(0; r).

Lemma 2.1 ensures that each summand Pn is an orthogonally additive and
orthogonally multiplicative n-homogeneous polynomial, and the constant term
P0 = H(0) = 0. Lemma 2.2 provides a linear map Tn : Mm → Ms for each n such
that

Pn(x) = Tn(xn), ∀x ∈ Mm.

Inherited from {Pn}, the family {Tn} satisfies the orthogonality preserving prop-
erty stated in (2.1).

Since H(d) =
∑

n Tn(dn), the continuity of the trace functional ensures that
some Tk(d

k) in the sum has nonzero trace. In particular, Tk(d
k) is not a nilpotent.

Lemma 2.4 ensures m = s and provides an invertible matrix Sk and a nonzero
scalar λk such that

Pk(x) = λkS
−1
k xkSk, ∀x ∈ BMm(0; r),

or

Pk(x) = λkS
−1
k (xt)kSk, ∀x ∈ BMm(0; r).

We claim that all other Pn either carries a similar form or constantly zero.
Redefining H(x) with 1

λk
SkH(x)S−1

k or 1
λk

SkH(xt)S−1
k , we can assume

Pk(x) = xk, ∀x ∈ BMm(0; r).

Suppose that with a nonzero scalar λn and an invertible Sn in Mm we have

Pn(x) = λnS
−1
n xnSn, ∀x ∈ BMm(0; r),

or

Pn(x) = λnS
−1
n (xt)nSn, ∀x ∈ BMm(0; r).
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By Lemma 2.1(b),

xS−1
n ySn = S−1

n ySnx = 0, whenever x, y are orthogonal projections.

This forces
S−1

n ySn = αyy

with some scalar αy for every rank one projection y in Mm. In particular, every
nonzero vector is an eigenvector of Sn. Thus Sn = αI for some nonzero scalar
α. In other words, we can assume that Pn(x) = λnx

n for all x in BMm(0; r), or
Pn(x) = λn(xt)n for all x in BMm(0; r). However, Lemma 2.1(b) ruins out the
possibility of the second case. For example, try the pair of orthogonal projections

a =
1

2

(
1

√
−1

−
√
−1 1

)
⊕ 0 and b =

1

2

(
1 −

√
−1√

−1 1

)
⊕ 0.

While ab = 0, we have abt 6= 0.
Suppose next that there is a Pn whose range consists of nilpotent elements. We

will verify that Pn = 0. Arguing as above, we have

xTn(y) = Tn(y)x = 0, whenever x, y are orthogonal projections.

This forces
Tn(y) = αyy

with some scalar αy for every rank one projection y in Mm. Since βmnTn(y)m =
Pn(βy)m = 0 for all small scalar β > 0, we see that αy = 0. Since every self-adjoint
matrix is an orthogonal sum of rank one projections, the linear map Tn = 0, and
thus Pn = 0, on Mm.

The claim is established. It follows that there is a scalar sequence {λn} and an
invertible S in Mm such that

H(x) =
∑
n≥1

λnS
−1xnS, ∀x ∈ BMm(0; r).

Translating back to the original situation, there is also another possible case that

H(x) =
∑
n≥1

λnS
−1(xt)nS, ∀x ∈ BMm(0; r).

Finally, assume that H also preserves zero products, and thus so does every
Pk. Consequently, the linearization Tk sends two rank one idempotents with
zero products to a pair of elements with zero products. By Lemma 2.5, we have
Tk(x) = λkS

−1xkS for all x in Mm. This forces H carries the first form as in (‡).
This completes the proof. �
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