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1. Introduction and preliminaries

Here you should state the introduction, preliminaries and your notation. Authors
are required to state clearly the contribution of the paper and its significance in
the introduction. There should be some survey of relevant literature.

1.1. Instructions for author(s). Manuscripts should be typeset in English
with double spacing by using AMS-LaTex. The authors are encouraged to use
the AFA style file that has been developed for LaTeX2e standard and can be
found at journal website

‘http://www.emis.de/journals/AFA/’.

While you are preparing your paper, please take care of the following:

(1) Abstract: 200 words or less.

(2) MSC2010: Primary only one item; and Secondary at least one item.

(3) Key words: At least 3 items and at most 5 items.

(4) Authors: Full names, mailing addresses and emails of all authors.

(5) Margins: A long formula should be broken into two or more lines. Empty
spaces in the text should be removed.

(6) Tags (Formula Numbers): Use and (6). Remove unused tags.

(7) Acknowledgement: At the end of paper but preceding to References.
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(8) References: Use [3] to refer to the specific book/paper [2] in the text. Re-
move unused references. References should be listed in the alphabetical
order according to the surnames of the first author at the end of the paper
and should be cited in the text as, e.g., [2] or [3, Theorem 4.2], etc.

(9) Abbreviations: Abbreviations of titles of periodicals/books should be
given by using Math. Reviews, see Abbreviations of names of serials
or MRLookup.

2. Main results

The following is an example of a definition.

Definition 2.1. Let X be a real or complex linear space. A mapping ‖ · ‖ : X →
[0,∞) is called a 2-norm on X if it satisfies the following conditions:

(1) ‖x‖ = 0 ⇔ x = 0,
(2) ‖λx‖ = ‖λ‖‖x‖ for all x ∈ X and all scalar λ,
(3) ‖x + y‖2 ≤ 2 (‖x‖2 + ‖y‖2) for all x, y ∈ X .

Here is an example of a table.

Table 1.

1 2 3

f(x) g(x) h(x)

a b c

This is an example of a matrix[
1 −2
3 5

] ∣∣∣∣5 2
0 3

∣∣∣∣ ∥∥∥∥5 2
0 3

∥∥∥∥
The following is an example of an example.

Example 2.2. Let θ : A → A be a homomorphism. Define ϕ : A → A by
ϕ(a) = a0θ(a). Then we have

ϕ(a1 . . . an) = a0θ(a1 . . . an)

= an
0θ(a1) . . . θ(an)

= a0θ(a1) . . . a0θ(an)

= ϕ(a1) . . . ϕ(an). (2.1)

Hence ϕ is an n-homomorphism.

The following is an example of a theorem and a proof. Please note how to refer
to a formula.

Theorem 2.3. If B is an open ball of a real inner product space X of dimension
greater than 1, Y is a real sequentially complete linear topological space, and
f : B \ {0} → Y is orthogonally generalized Jensen mapping with parameters
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s = t > 1√
2
r, then there exist additive mappings T : X → Y and b : R+ → Y

such that f(x) = T (x) + b (‖x‖2) for all x ∈ B \ {0}.

Proof. First note that if f is a generalized Jensen mapping with parameters t =
s ≥ r, then

f(λ(x + y)) = λf(x) + λf(y)

≤ λ(f(x) + f(y))

= f(x) + f(y) (2.2)

for some λ ≥ 1 and all x, y ∈ B \ {0} such that x ⊥ y.

Step (I)- the case that f is odd: Let x ∈ B \ {0}. There exists y0 ∈ B \ {0} such
that x ⊥ y0, x + y0 ⊥ x− y0. We have

f(x) = f(x)− λ f

(
x + y0

2 λ

)
− λ f

(
x− y0

2 λ

)
+ λ f

(
x + y0

2 λ

)
− λ2 f

( x

2 λ2

)
− λ2 f

( y0

2 λ2

)
+ λ f

(
x− y0

2 λ

)
− λ2f

( x

2 λ2

)
− λ2 f

(
−y0

2 λ2

)
+ 2 λ2 f

( x

2 λ2

)
= 2 λ2 f

( x

2 λ2

)
.

Step (II)- the case that f is even: Using the same notation and the same reason-

ing as in the proof of Theorem 2.3, one can show that f(x) = f(y0) and the
mapping Q : X → Y defined by Q(x) := (4λ2)nf((2λ2)−nx) is even orthogonally
additive.

Now the result can be deduced from Steps (I) and (II) and (2.2). �

The following is an example of a remark.

Remark 2.4. One can easily conclude that g is continuous by using Theorem 2.3.

Again, note how we refer to Theorem 2.3 and formula (2.1).

Acknowledgement. Acknowledgements could be placed at the end of the text
but precede the references.
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