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ON A FORMULA OF LE MERDY FOR THE COMPLEX
INTERPOLATION OF TENSOR PRODUCTS
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Abstract. C. Le Merdy in [Proc. Amer. Math. Soc. 126 (1998), 715–
719] proved the following complex interpolation formula for injective tensor
products: [`2⊗̃ε`1, `2⊗̃ε`∞] 1

2
= S4. We investigate whether related formulas

hold when considering arbitrary 0 < θ < 1 instead of 1
2 , and give a partially

positive answer for θ < 1
2 and a negative answer for θ > 1

2 . Furthermore, we
briefly discuss the more general case when `2 is replaced by `q, 1 < q < 2, and
`1 and `∞ by `p0 and `p1 , respectively.

1. Introduction

Let (X0, X1) and (Y0, Y1) be regular Banach couples. In [8], O. Kouba inves-
tigated under which geometric assumptions on the spaces involved the complex
interpolation formula

[X0⊗̃εY0, X1⊗̃εY1]θ = [X0, X1]θ⊗̃ε[Y0, Y1]θ

for injective tensor products holds for all 0 < θ < 1. For couples of `p-spaces with
indices all less than or equal to 2, he gave an affirmative answer:

[`p0⊗̃ε`q0 , `p1⊗̃ε`q1 ]θ = `pθ
⊗̃ε`qθ

(1.1)

for all 0 < θ < 1, 1 ≤ p0, p1, q0, q1 ≤ 2 and pθ, qθ such that 1
pθ

= 1−θ
p0

+ θ
p1

and
1
qθ

= 1−θ
q0

+ θ
q1

. Moreover, he showed that the formula above does not hold for

p0 = p1 = 2 and q0 = 2, q1 = ∞. Further counterexamples were given recently in
[13]. However, in the literature so far there seem to be only few counterexamples
where actually a description of the resulting complex interpolation space is given.
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G. Pisier in [17] gave one in terms of regular operators for p0 = q1 = 1 and
p1 = q0 = ∞ and, more generally, for q0 = p′0 and q1 = p′1 in [18]. For p0 = p1 = 2,
q0 = `1, q1 = ∞ and θ = 1

2
, C. Le Merdy in [10] proved the following in order to

show that the Schatten class S4 (and subsequently Sp for all 2 ≤ p ≤ 4) endowed
with the Schur product is a so-called Q-algebra (that is, isomorphic to a quotient
C/I, where C is a uniform algebra and I a closed ideal):

[`2⊗̃ε`1, `2⊗̃ε`∞] 1
2

= S4. (1.2)

In this note, we discuss the question whether there are suitable generalizations

of this formula for arbitrary 0 < θ < 1. Since S4 = L(a)
4 (`2, `2), the class of all

operators T on `2 with sequence (an(T )) of approximation numbers contained in
`4, it seems to be natural to look for connections to components of the operator

ideals L(a)
r,w. We will show that for θ < 1

2
there is indeed a close connection,

whereas the answer for θ > 1
2

is negative. A more general discussion follows.
For a given interpolation couple (X0, X1) of Banach spaces and 0 < θ < 1 we

denote by Xθ = [X0, X1]θ the complex interpolation space with respect to the
given couple and theta. For all information needed on complex interpolation of
Banach spaces, we refer to [1]. However, we need the following particular case of
the reiteration theorem with no density assumptions stated in [4, Lemma 2]:

Lemma 1.1. Let X = (X0, X1) be a Banach couple and θ0, θ1, η ∈ [0, 1]. Then
[Xθ0 , X1]η = X(1−η)θ0+η and [X0, Xθ1 ]η = Xηθ1.

Also, we will frequently use the fact that the complex interpolation functor is
of power type θ, that is, ‖x‖[X0,X1]θ ≤ ‖x‖1−θ

X0
‖x‖θ

X1
for all x ∈ X0∩X1. Moreover,

for all 1 ≤ p0, p1 ≤ ∞ it holds [`p0 , `p1 ]θ = `pθ
(isometrically), where 1

pθ
= 1−θ

p0
+ θ

p1
.

This formula will be used without further reference throughout the paper, and if
it is not mentioned in a given formulation, pθ is always defined as in the above.

For an s-scale s in the sense of [16, 2.2.1], an operator T ∈ L(X, Y ) (the space
of all linear and bounded operators between Banach spaces X and Y ) is said to
be of s-type `r,w if (sn(T )) is contained in the Lorentz sequence space `r,w. The

set of these operators is denoted by L(s)
r,w(X, Y ). Together with the quasi-norm

‖T‖L(s)
r,w

:= ‖(sn(T ))‖`r,w , this gives the quasi-Banach operator ideal L(s)
r,w (see,

e.g., [16, 2.2.5]). In this article, we will only consider the scale of approximation
numbers

an(T ) := inf{‖T − S‖ : S ∈ L(X, Y ) with rank(S) < n}.

All s-scales coincide for operators acting between Hilbert spaces (see, e.g., [16,

2.11.9]). Thus, L(s)
r,w(`2, `2) = Sr,w, the quasi-Banach space of all compact oper-

ators on `2 with singular numbers contained in `r,w, endowed with the natural
norm, for any s-scale s.

Throughout the paper we use the following notation: Given two sequences (an)
and (bn) of nonnegative real numbers we write an ≺ bn, if there is a constant c > 0
such that an ≤ c bn for all n ∈ N, while an � bn stands for bn ≺ an and an � bn
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means that an ≺ bn and an � bn holds. Also, for 1 ≤ p ≤ ∞ we denote by p′ its
conjugate number satisfying 1

p
+ 1

p′
= 1.

2. Inclusions into and from spaces of operators of approximation
type

A crucial tool will be the notion of absolutely summing norms. If X and Y are
Banach spaces and 1 ≤ s ≤ r ≤ ∞, then for every operator T : X → Y and each
m ∈ N we define

π(m)
r,s (T ) := sup

{∥∥∥ m∑
k=1

‖Txk‖Y ek

∥∥∥
`r

; sup
‖x′‖X′≤1

( m∑
k=1

|x′(xk)|s
)1/s

≤ 1
}

,

where ek denotes the scalar sequence with 1 as its kth entry and 0 else. If

πr,s(T ) := supm∈N π
(m)
r,s (T ) < ∞, then T is called absolutely (r, s)-summing. In

this case, we write T ∈ Πr,s, and T ∈ Πr if r = s. It is easy to see (see, e.g., [7])
that

π(m)
r,s (T ) = ‖T̂ : `m

s ⊗ε X → `m
r (Y )‖, T̂ (x1, . . . , xm) := (Tx1, . . . , Txm).

Here, for two Banach spaces X and Y , we denote by X ⊗ε Y the algebraic
tensor product of X and Y equipped with the injective norm and by X⊗̃εY its
completion (see, e.g., [5]). Also, `m

r (Y ) stands for the vector space of m-tuples
with entries from Y equipped with the Bochner r-norm.

The following interpolation result is a somewhat specialized and combined ver-
sion of various known results on interpolation of summing norms, see e.g. [13,
Lemma 2] for (i) and (ii). For 1 ≤ q0, q1, p0, p1 ≤ ∞ and 0 < θ < 1 we define

dm,n
θ (q0, q1, p0, p1) := ‖id : `m

qθ
⊗ε `n

pθ
→ [`m

q0
⊗ε `n

p0
, `m

q1
⊗ε `n

p1
]θ‖.

To shorten the formulas, we denote the identity map id : `n
p → `n

q by idn
pq. Also,

if ‖ · ‖n is any fixed norm on the vector space of all linear operators from Cn into
Cn (in what follows, the norm induced by [`n

q0
⊗ε `n

p0
, `n

q1
⊗ε `n

p1
]θ will be crucial),

then ‖id‖n stands for the respective norm of the identity map id : Cn → Cn.

Lemma 2.1. Let 1 ≤ si ≤ ri ≤ ∞, i = 0, 1, 1 ≤ p0, p1, q0, q1 ≤ ∞, and
0 < θ < 1. Then for sθ, rθ and pθ defined by 1

sθ
= 1−θ

s0
+ θ

s1
, 1

rθ
= 1−θ

r0
+ θ

r1
and

1
pθ

= 1−θ
p0

+ θ
p1

, respectively, we have the following:

(i) π
(m)
rθ,sθ(id

n
pθqθ

) ≤ dm,n
θ (s0, s1, p0, p1) π

(m)
r0,s0(id

n
p0q0

)1−θπ
(m)
r1,s1(id

n
p1q1

)θ;

(ii) πrθ,sθ
(idn

pθqθ
) ≤ supm dm,n

θ (s0, s1, p0, p1) πr0,s0(id
n
p0q0

)1−θπr1,s1(id
n
p1q1

)θ;
(iii) [Πr0,s(X, `p0), Πr1,s(X, `p1)]θ ⊆ Πrθ,s(X, `pθ

), provided that r0, r1 ≥ s ≥ 1, for
any Banach space X.

Lemma 2.2. Let 1
2

< θ < 1. Then:

(i) ‖id‖[`n
2⊗ε`n

1 ,`n
2⊗ε`n

∞]θ ≤ n
1−θ
2 ;

(ii) ‖id : `2 ⊗ε `n
1

1−θ

→ [`2 ⊗ε `n
1 , `2 ⊗ε `n

∞]θ‖ � nθ(1−θ).

Proof. (i) Since ‖id‖`n
2⊗ε`n

1
= n

1
2 and ‖id‖`n

2⊗ε`n
∞ = 1, this is a simple consequence

of the fact that the complex interpolation functor is of power type θ. (ii) It is
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π∞,2(id : `n
1 → `n

1 ) = ‖id : `n
1 → `n

1‖ = n0 and π2,2(id : `n
∞ → `n

1 ) = n1. Hence, by
Lemma 2.1 (ii) it follows

π 2
θ
,2(id : `n

1
1−θ

→ `n
1 ) ≺ ‖id : `2 ⊗ε `n

1
1−θ

→ [`2 ⊗ε `n
1 , `2 ⊗ε `n

∞]θ‖nθ,

whereas by [3] π 2
θ
,2(id : `n

1
1−θ

→ `n
1 ) � nθ+θ(1−θ), which gives the lower estimate.

�

For the following let us introduce for 0 < r < ∞ the so-called (r, 2, 2)-nuclear
operators according to the characterization given in [15, 18.1.3] (rather than stat-
ing the original definition which we will not use here).

An operator T ∈ L(X, Y ) between Banach spaces X and Y is said to be (r, 2, 2)-
nuclear if T = RDσS with S ∈ L(X, `2), R ∈ L(`2, Y ) and Dσ ∈ L(`2, `2)
a diagonal operator of the form Dσ(ξi) = (σiξi) with (σi) ∈ `r. In this case,
νr,2,2(T ) := inf ‖R‖ ‖σ‖`r ‖S‖, where the infimum is taken over all possible fac-
torizations, defines a quasi-norm, and with this quasi-norm, the collection of all
(r, 2, 2)-nuclear operators, denoted by Nr,2,2, becomes a quasi-Banach operator
ideal (see, e.g., [15, 18.1]).

Lemma 2.3. Let 0 < r < ∞. Then

L(a)
r, r

r+1
(`2, Y ) ⊆ Nr,2,2(`2, Y ) ⊆ L(a)

r (`2, Y )

for any Banach space Y .

Proof. It is easily verified that ‖id : L(`n
2 , Y ) → Nr,2,2(`

n
2 , Y )‖ ≤ n

1
r for any

Banach space Y . Hence, using projections in the Hilbert space `2, it follows by
factorization that

νr,2,2(T ) ≤ n
1
r ‖T‖ (2.1)

for every operator T : `2 → Y with rank(T ) ≤ n. Then the first inclusion follows
exactly as in the proof of [16, 2.3.10], since Nr,2,2 is an r

r+1
-normed ideal (cf. [15,

18.1.2]). The second inclusion is true by [15, 18.6.2] (even for any Banach space
X replacing `2). �

Now we are ready to prove the following counterpart of Le Merdy’s result for
θ = 1

2
:

Theorem 2.4. Let 0 < θ < 1.

(i) If θ < 1
2
, then

L(a)
2
θ
, 2
2+θ

(`2, ` 1
1−θ

) ⊆ [`2⊗̃ε`1, `2⊗̃ε`∞]θ ⊆ L(a)
2
θ

(`2, ` 1
1−θ

).

(ii) If θ > 1
2

and L(a)
r0,w0(`2, ` 1

1−θ
) ⊆ [`2⊗̃ε`1, `2⊗̃ε`∞]θ ⊆ L(a)

r1,w1(`2, ` 1
1−θ

) holds for

some 1 ≤ r0 ≤ r1 < ∞ and 0 < w0, w1 ≤ ∞, then r0 < r1.

Proof. (i) We first prove the second inclusion. Since Π 2
θ
,2(`2, ` 1

1−θ
) = L(a)

2
θ

(`2, ` 1
1−θ

),

(see, e.g., [16, 2.7.6]), it is sufficient to consider the corresponding ideals of sum-
ming operators, which behave nicely with respect to complex interpolation in the
range.
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Let A := (`2⊗̃ε`1, `2⊗̃ε`∞). Then for η = 2θ, by Le Merdy’s result (1.2),
reiteration (Lemma 1.1) and Lemma 2.1 (iii),

Aθ = [A0, A 1
2
]η ⊆ [Π∞,2(`2, `1), Π4,2(`2, `2)]η ⊆ Π 2

θ
,2(`2, ` 1

1−θ
).

To prove the first inclusion, fix R ∈ L(`2, `2). Note that by Pitt’s theorem (see,
e.g., [11, 2.c.3]) A0 = `2⊗̃ε`1 = L(`2, `1). Then for Φ(µ, U) := U Dµ R we have
that the operators

Φ : `∞ × L(`2, `1) → L(`2, `1) = A0

and
Φ : `4 × L(`2, `2) → N4,2,2(`2, `2) = S4 = A 1

2

have norm less than or equal to ‖R‖. Hence, by complex interpolation with the
parameter η = 2θ and reiteration we have that

Φ : ` 2
θ
× [L(`2, `1),L(`2, `2)]η → [A0, A 1

2
]η = Aθ

is defined and continuous. Once again by Pitt’s theorem and by (1.1) it is

L(`2, ` 1
1−θ

) = `2⊗̃ε` 1
1−θ

⊆ [`2⊗̃ε`1, `2⊗̃ε`2]η ⊆ [L(`2, `1),L(`2, `2)]η,

it follows that
Φ : ` 2

θ
× L(`2, ` 1

1−θ
) → Aθ

is defined and continuous with norm less than or equal to C ‖R‖, for some constant
C > 0. Now since by definition every operator in N 2

θ
,2,2 is of the form U Dµ R for

some R ∈ L(`2, `2), µ ∈ ` 2
θ

and U ∈ L(`2, ` 1
1−θ

), the claim follows by Lemma 2.3.

(ii) Assume that L(a)
r0,w0(`2, ` 1

1−θ
) ⊆ [`2⊗̃ε`1, `2, ⊗̃ε`∞]θ. Then for any s < r0 it

would hold L(a)
s (`2, ` 1

1−θ
) ⊆ [`2⊗̃ε`1, `2, ⊗̃ε`∞]θ, and subsequently, by the above

lemma, Ns,2,2(`2, ` 1
1−θ

) ⊆ [`2⊗̃ε`1, `2, ⊗̃ε`∞]θ. Hence, by (2.1) we would have

‖id : `2 ⊗ε [`n
1 , `

n
∞]θ → [`2 ⊗ε `n

1 , `2 ⊗ε `n
∞]θ‖

≤ C ‖id : L(`2, `
n

1
1−θ

) → Ns,2,2(`2, `
n

1
1−θ

)‖ ≤ C n
1
s

for some constant C > 0 not depending on n. Comparing with the results from
Lemma 2.2 (ii), this implies 1

s
≥ θ(1 − θ), hence, since s < r0 was arbitrary,

1
r0
≥ θ(1− θ).

Now assume that [`2⊗̃ε`1, `2, ⊗̃ε`∞]θ ⊆ L(a)
r1,w1(`2, ` 1

1−θ
). Then for all s >

max(r1, 2), it would follow that

[`2⊗̃ε`1, `2, ⊗̃ε`∞]θ ⊆ L(a)
s (`2, ` 1

1−θ
) = Πs,2(`2, ` 1

1−θ
).

By [3] πs,2(id : `n
2 → `n

1
1−θ

) � n
1
s , whereas by Lemma 2.2 (i) we have

‖id‖[`n
2⊗ε`n

1 ,`n
2⊗ε`n

∞]θ ≤ n
1−θ
2 .

This implies that 1
s
≤ 1−θ

2
< 1

2
, hence, r1 > 2 and 1

r1
≤ 1−θ

2
. Now (ii) follows since

clearly θ(1− θ) > 1−θ
2

by the assumption on θ. �
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Remark 2.5. The theorem above is also valid for the scales c of Gelfand num-
bers and x of Weyl numbers, respectively, since these numbers coincide with the
approximation numbers for operators starting from a Hilbert space. Moreover,
(i) is also valid for the scales d of Kolmogorov numbers and e of (dyadic) en-
tropy numbers, respectively. This follows from the fact that for s ∈ {a, c, d, e} all

L(s)
r,s(X, Y ) coincide whenever X and Y ′ are of type 2 (see [2, Proposition 5]).
We do not know whether the second inclusion in (i) actually is an equality (as

it is for θ = 1
2
). There is no hope that our present proof, which involves (r, 2, 2)-

nuclear operators, can be used to prove such an equality. This follows from the

strict inclusion Nr,2,2(`2, `p) $ L(a)
r (`2, `p) for all 2 ≤ r < ∞ and 1 ≤ p < 2.

Indeed, by [16, 2.9.10], a diagonal operator Dλ is contained in L(a)
r (`2, `p) if and

only if λ ∈ `s,r, where 1
s

= 1
r
− 1

2
+ 1

p
> 1

r
. On the other hand, Dλ ∈ Nr,2,2(`2, `p)

if and only if λ ∈ `s.

3. A more general discussion on necessities and impossibilities

In this concluding section, we generalize the idea used in the proof of Theo-
rem 2.4 (ii) and provide a more general scheme to obtain necessary conditions
for certain inclusions to happen. The main tool will be asymptotically optimal
estimates of dm,n

θ (q, q, p0, p1) for a fixed 1 ≤ q ≤ 2.
For 1 ≤ q0, q1, p0, p1 ≤ ∞ and 0 < θ < 1 recall the following definition from

the beginning:

dm,n
θ (q0, q1, p0, p1) := ‖id : `m

qθ
⊗ε `n

pθ
→ [`m

q0
⊗ε `n

p0
, `m

q1
⊗ε `n

p1
]θ‖.

Now for α > 0, we define

λd
θ,α(q0, q1, p0, p1) := inf{λ > 0 : ∃ ρ > 0 : d

[nα],n
θ (q0, q1, p0, p1) ≤ ρ nλ}.

Moreover, we set

cn
θ (q0, q1, p0, p1) := ‖id‖[`n

q0
⊗ε`n

p0
,`n

q1
⊗ε`n

p1
]θ

and
λc

θ(q0, q1, p0, p1) := inf{λ > 0 : ∃ ρ > 0 : cn
θ (q0, q1, p0, p1) ≤ ρ nλ}.

All this is motivated by the definition of the limit order of a quasi-Banach operator
ideal (A, A) (see, e.g., [15, 14.4]):

λ(A, q, p) := inf{λ > 0 : ∃ ρ > 0 : A(id : `n
q → `n

p ) ≤ ρ nλ}.
For the definiton of a quasi-Banach operator ideal and the basic theory we refer
to [15]. In the following we will use the (metric) ideal property of a quasi-Banach
operator ideal (A, A), that is, A(RST ) ≤ ‖R‖A(S)‖T‖ whenever the composition
RST is well-defined, R and T are bounded operators and S ∈ A.

Lemma 3.1. Let 1 ≤ p0, p1, q0, q1 ≤ ∞, 0 < θ < 1 and (A, A), (B, B) be quasi-
Banach operator ideals.

(i) If A(`q′θ
, `pθ

) ⊆ [`q0⊗̃ε`p0 , `q1⊗̃ε`p1 ]θ, then λ(A, q′θ, pθ) ≥ λc
θ(q0, q1, p0, p1) and

min(α λ(A, q′θ, q
′
θ), λ(A, pθ, pθ)) ≥ λd

θ,α(q0, q1, p0, p1) for all α > 0.

(ii) If [`q0⊗̃ε`p0 , `q1⊗̃ε`p1 ]θ ⊆ B(`q′θ
, `pθ

), then λ(B, q′θ, pθ) ≤ λc
θ(q0, q1, p0, p1).
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Proof. (i) Since the k-th section `k
r of `r is always 1-complemented, the ideal prop-

erty of quasi-Banach operator ideals and the mapping properties of the injective
tensor product and the complex interpolation functor give that the assumption
implies that

c := sup
m,n

‖id : A(`m
q′θ

, `n
pθ

) → [`m
q0
⊗ε `n

p0
, `m

q1
⊗ε `n

p1
]θ‖ < ∞.

Hence, cn
θ (q0, q1, p0, p1) ≤ c A(id : `n

q′θ
→ `n

pθ
). Furthermore, by factorization

through A(`m
q′θ

, `n
pθ

),

dm,n
θ (q0, q1, p0, p1) ≤ c ‖id : L(`m

q′θ
, `n

pθ
) → A(`m

q′θ
, `n

pθ
)‖

≤ c min(A(id : `m
q′θ
→ `m

q′θ
), A(id : `n

pθ
→ `n

pθ
)),

which, by the definition of the various limit orders, gives the conclusion in (i).
Clearly, (ii) goes the same way. �

Motivated by the above, we start with estimating dm,n
θ (q, q, p0, p1) for 1 ≤ q ≤ 2.

For pθ > 2, the proof is based on calculating summing norms of identity maps
between n-dimensional spaces with less than n vectors.

Proposition 3.2. Let 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q ≤ 2, 0 < θ < 1, and αpθ
:=

min( 2
pθ

, 1). Then for all m ≥ nαpθ

dm,n
θ (q, q, p0, p1) �


1 if 1 ≤ p0, p1 ≤ 2,

n
θ( 1

2
− 1

p1
)

if pθ ≤ 2 < p1,

n
θ(1−θ)( 1

p0
− 1

p1
)

if pθ > 2.

Proof. The case 1 ≤ p0, p1 ≤ 2 is clear by the results of [8]. In the case pθ ≤ 2 <
p1, the upper estimate can be shown by a careful analysis of [6] (roughly speaking:
in Lemma 5, one may replace `2 by `q′ , see also [13]), whereas the lower estimate
is more or less already stated within the proof of [13, Example 3 (i)]—a slight
modification similar to the one made for the upcoming remaining case has to be
made, we leave this to the reader. If pθ > 2, the upper estimate is a consequence
of factorization through `n

pθ
and again the fact that the complex interpolation

functor [·, ·]θ is of power type θ:

‖T‖[`m
q ⊗ε`n

p0
,`m

q ⊗ε`n
p1

]θ ≤ ‖T : `m
q′ → `n

p0
‖1−θ‖T : `m

q′ → `n
p1
‖θ

≤ n
(1−θ)( 1

p0
− 1

pθ
)‖T : `m

q′ → `n
pθ
‖.

The lower estimate is somehow a copy of the proof of [13, Example 3 (ii)], but

we have to modify it slightly in order to get the estimate for m ≥ n
2

pθ . By [15]
we know that

π(m)
q,q (id : `n

p1
↪→ `n

1 ) ≤ πq,q(id : `n
p1

↪→ `n
1 ) = πq(id : `n

p1
↪→ `n

1 ) � n1,

and that for r defined by 1
r

= 1
q
− 1

2

π(m)
r,q (id : `n

p0
↪→ `n

1 ) ≤ πr,q(id : `n
p0

↪→ `n
1 ) � ‖id : `n

p0
↪→ `n

1‖ � n
1− 1

p0 .
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Thus, Lemma 2.1 (i) with rθ defined by 1
rθ

= 1−θ
r

+ θ
q

gives

π(m)
rθ,q(id : `n

pθ
↪→ `n

1 ) ≺ dm,n
θ (q, q, p0, p1) n

1− 1−θ
p0 .

However, the proof of [3, Satz 3] and some elementary calculations show that

π(m)
rθ,q(id : `n

pθ
↪→ `n

1 ) � n
1− 1−θ

p0
+θ(1−θ)( 1

p0
− 1

p1
)
,

as long as m ≥ n
2

pθ , which gives dm,n
θ (q, q, p0, p1) � n

θ(1−θ)( 1
p0
− 1

p1
)
. �

As a by-product, the preceding proof gives the following quantitative informa-
tion about the deviation of the upper estimate in the usual interpolation theorem
from the norm of the operator acting between the interpolation spaces:

Corollary 3.3. Let 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q ≤ 2 and 0 < θ < 1 such that pθ ≥ 2.

Then for all m ≥ n
2

pθ

max
T 6=0

‖T : `m
q′ → `n

p0
‖1−θ‖T : `m

q′ → `n
p1
‖θ

‖T : `m
q′ → `n

pθ
‖

� n
θ(1−θ)( 1

p0
− 1

p1
)
.

We continue with determining the asymptotic values of cn
θ (q, q, p0, p1):

Proposition 3.4. Let 1 ≤ p0, p1 ≤ ∞, 1 ≤ q ≤ 2 and 0 < θ < 1. Then

cn
θ (q, q, p0, p1) �


n

1
pθ
− 1

q′ if 1 ≤ p0, p1 ≤ q′

n
(1−θ)( 1

p0
− 1

q′ ) if p0 < q′ < p1,

1 if p0, p1 ≥ q′.

Proof. The upper estimates follow again from the fact that the complex interpo-
lation functor [·, ·]θ is of power type θ. The lower ones are not essential for the
theory within this section and we omit the proofs. �

After these preparations, we start with a quite general result which is much in
contrast to the case q = 2:

Theorem 3.5. Let 1 < q < 2, 1 ≤ p0 < q′ < p1 ≤ ∞ and 0 < θ < 1 such
that 1

q′
= 1−θ

p0
+ θ

p1
. Let A0,A1 be two quasi-Banach operator ideals, and as-

sume that A0(`q′ , `q′) ⊆ [`q⊗̃ε`p0 , `q⊗̃ε`p1 ]θ ⊆ A1(`q′ , `q′). Then λ(A0, q
′, q′) >

λ(A1, q
′, q′). In particular, [`q⊗̃ε`p0 , `q⊗̃ε`p1 ]θ is not a component A(`q′ , `q′) of

any quasi-Banach operator ideal A.

Proof. Assume that A0 and A1 satisfy a chain of inclusions as in the above.
Lemma 3.1 (i) and Proposition 3.2 imply that

λ(A0, q
′, q′) ≥ q′

2
θ(

1

pθ

− 1

p1

) =
q′

2
(1− θ)(

1

p0

− 1

q′
).

whenever pθ ≥ 2. On the other hand, Lemma 3.1 (ii) and Proposition 3.4 imply
that

λ(A1, q
′, q′) ≤ (1− θ)(

1

p0

− 1

q′
).

Hence, λ(A0, q
′, q′) > λ(A1, q

′, q′). �
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Note that a slight modification of the above proof even gives a whole interval
around q′ so that for all θ with pθ lying in this interval a similar result holds—we
leave the details to the interested reader. For the special combination p0 = q′ and
p1 = ∞, it even turns out that the whole scale of resulting interpolation spaces
is far from any component of a quasi-Banach operator ideal:

Theorem 3.6. Let 1 < q < 2 and 0 < θ < 1. Let A0,A1 be two quasi-Banach
operator ideals such that A0(`q′ , ` q′

1−θ

) ⊆ [`q⊗̃ε`q′ , `q⊗̃ε`∞]θ ⊆ A1(`q′ , ` q′
1−θ

). Then

λ(A0, q
′, q′) > λ(A1, q

′, q′) and λ(A0, q
′, q′

1−θ
) > λ(A1, q

′, q′

1−θ
). In particular,

[`q⊗̃ε`q′ , `q⊗̃ε`∞]θ is not a component A(`q′ , ` q′
1−θ

) of any quasi-Banach operator

ideal A.

Proof. Assume that A0 and A1 satisfy a chain of inclusions as in the above.
Lemma 3.1 (i) and Proposition 3.2 imply that λ(A0, q

′, q′) ≥ θ
2
. By factorization

through `n
q′

1−θ

, Lemma 3.1 (ii) and Proposition 3.4 imply that λ(A1, q
′, q′) ≤ θ

q′
.

Hence, λ(A0, q
′, q′) > λ(A1, q

′, q′). The proof that λ(A0, q
′, q′

1−θ
) > λ(A1, q

′, q′

1−θ
)

is similar. �

As a more concrete example, we will show that formulas of Le Merdy type for
the ideals generated by approximation numbers definitely fail if `2 is replaced by
`q, 1 < q < 2. To see this, we will first list what is know about the respective
limit orders of these ideals (see, e.g., [15, 14.4.9]).

Lemma 3.7. Let 1 ≤ q ≤ 2, 1 ≤ p ≤ ∞, 2 ≤ r < ∞ and 0 < w ≤ ∞. Then

λ(L(a)
r,w, q′, p) =

1

r
+ max(0,

1

p
− 1

q′
).

Theorem 3.8. Let 1 < q < 2, 1 ≤ p0 < p1 ≤ ∞, 0 < θ < 1. If the chain

of inclusions L(a)
r0,w0(`q′ , `pθ

) ⊆ [`q⊗̃ε`p0 , `q⊗̃ε`p1 ]θ ⊆ L(a)
r1,w1(`q′ , `pθ

) holds for some
1 ≤ r0 ≤ r1 < ∞ and 0 < w0, w1 ≤ ∞, then it follows r0 < r1.

Proof. Since by the above lemma and Proposition 3.4

λ(L(a)
2,w, q′, pθ) ≥

1

pθ

> λc
θ(q, q, p0, p1),

it follows by Lemma 3.1 (ii) that r1 > 2 provided that the second inclusion in the
above holds. Then for r0 ≤ 2 the above statement would be clear, whence we are
only left to deal with r0, r1 > 2.

If 1 ≤ p0, p1 ≤ q′, then we have

λ(L(a)
r1,w1

, q′, pθ) =
1

r1

+
1

pθ

− 1

q′
>

1

pθ

− 1

q′
= λc

θ(q, q, p0, p1),

thus, by Lemma 3.1 (ii), the second inclusion in the above can never hold in this
case.

If 2 < q′ ≤ p0, p1 ≤ ∞ and the second inclusion holds, then by Lemma 3.1 (ii)

and Proposition 3.4 we would have λ(L(a)
r1,w1 , q

′, pθ) = λc
θ(q, q, p0, p1) = 0, whereas

λ(L(a)
r1,w1 , q

′, pθ) = 1
r1

> 0, a contradiction.
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Now let 1 ≤ p0 < q′ < p1 ≤ ∞, and assume that a chain of inclusions as in the
above holds. Consider three cases:
(i) If pθ ≤ 2, then by Lemma 3.1 (ii) it would follow that

1

r1

+
1

pθ

− 1

q′
= λ(L(a)

r1,w1
, q′, pθ) ≤ λc

θ(q, q, p0, p1) = (1− θ)(
1

p0

− 1

q′
),

thus 1
r1
≤ θ( 1

q′
− 1

p1
). Lemma 3.1 (i) would imply

1

r0

= λ(L(a)
r0,w0

, q′, q′) ≥ λd
θ,1(q, q, p0, p1) = θ(

1

2
− 1

p1

).

Since q′ > 2, it follows r0 < r1.
(ii) If 2 ≤ pθ < q′, then it would again follow that 1

r1
≤ θ( 1

q′
− 1

p1
), whereas

1

r0

= λ(L(a)
r0,w0

, q′, q′) ≥ λd
θ,1(q, q, p0, p1) = θ(

1

pθ

− 1

p1

).

Since q′ > pθ, it follows r0 < r1.
(iii) If q′ ≤ pθ, then it would follow that

1

r1

= λ(L(a)
r1,w1

, q′, pθ) ≤ λc
θ(q, q, p0, p1) = (1− θ)(

1

p0

− 1

q′
).

On the other hand,

1

r0

= λ(L(a)
r0,w0

, q′, q′) ≥ pθ

2
λd

θ, 2
pθ

(q, q, p0, p1) =
pθ

2
(1− θ)(

1

p0

− 1

pθ

)

> (1− θ)(
1

p0

− 1

q′
),

since 2 < q′ ≤ pθ. This implies r0 < r1. �

Remark 3.9. In this article, we did not treat the case of different spaces on each
side of the tensor product, a more general case which we did not want to pursue
here for reasons of clarity and comprehensibility. In a forthcoming paper [14] we
show by using Kouba’s formulas and a result of Kwapień [9] that for 1 ≤ p, q ≤ 2,
1 < s < ∞ and 0 < θ < 1

sup
n
‖id : [L(`n

q , `
n
p ),L(`n

1 , `
n
s )]θ → Πmax(s,s′)

θ
,2
(`n

u, `
n
v )‖ < ∞,

where 1
u

= 1−θ
q

+ θ
1

and 1
v

= 1−θ
p

+ θ
s
. Choosing θ so that u = v (which is possible if

one additionally assumes p < q), this yields interesting estimates for eigenvalues
of matrices.
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