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FURUTA INEQUALITY AND ITS RELATED TOPICS

MASATOSHI FUJII1

Communicated by M. S. Moslehian

Abstract. This article is devoted to a brief survey of Furuta inequality and
its related topics. It consists of 4 sections: 1. From Löwner-Heinz inequality
to Furuta inequality, 2. Ando–Hiai inequality, 3. Grand Furuta inequality, and
4. Chaotic order.

1. From Löwner-Heinz inequality to Furuta inequality.

The noncommutativity of operators appears in the fact that t2 is not order-
preserving. That is, there is a pair of positive operators A and B such that A ≥ B
and A2 6≥ B2. The following is a quite familiar example;

A =

(
2 1
1 1

)
, B =

(
1 0
0 0

)
.

This implies that tp is not order-preserving for p > 1 by assuming the following
fact, see [20, 23, 24]:

Theorem 1.1 (Löwner-Heinz inequality (LH)). The fuction tp is order-preserving
for 0 ≤ p ≤ 1, i.e.,

A ≥ B ≥ 0 =⇒ Ap ≥ Bp.

The essense of the Löwner-Heinz inequality is the case p = 1
2
:

A ≥ B ≥ 0 =⇒ A
1
2 ≥ B

1
2 .

It is rephrased as follows: For A, B ≥ 0,

AB2A ≤ 1 =⇒ A
1
2 BA

1
2 ≤ 1.
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The assumption AB2A ≤ 1 is equivalent to ‖AB‖ ≤ 1. Thus, noting the com-
mutativity of the spectral radius, r(XY ) = r(Y X), we have

‖A
1
2 BA

1
2‖ = r(A

1
2 BA

1
2 ) = r(AB) ≤ ‖AB‖ ≤ 1.

The above discussion goes to Pedersen’s proof of the Löwner-Heinz inequality.
As a matter of fact, the following statement is proved: Let I be the set of all
p ∈ [0, 1

2
] such that A ≥ B ≥ 0 implies A2p ≥ B2p. Then I is convex.

So suppose that ApB2pAp ≤ 1 and AqB2qAq ≤ 1, or equivalently ‖ApBp‖ ≤ 1
and ‖BqAq‖ ≤ 1. Then

‖A
p+q
2 Bp+qA

p+q
2 ‖ = r(A

p+q
2 Bp+qA

p+q
2 ) = r(Ap+qBp+q) = r(ApBpBqAq)

≤ ‖ApBp‖‖BqAq‖ ≤ 1.

This implies that if 2p, 2q ∈ I, then p + q ∈ I, that is, I is convex.
Related to the case p = 1

2
in the Löwner-Heinz inequality, Chan-Kwong [4]

conjectured that

A ≥ B ≥ 0 =⇒ (AB2A)
1
2 ≤ A2.

Moreover, if it is true, then the following inequality holds;

A ≥ B ≥ 0 =⇒ (BA2B)
1
2 ≥ B2.

Here we cite a useful lemma on exponent.

Lemma 1.2. For p ∈ R, (X∗A2X)p = X∗A(AXX∗A)p−1AX for A > 0 and
invertible X.

Proof. It is easily checked that Y ∗(Y Y ∗)nY = Y ∗Y (Y ∗Y )n for any n ∈ N. This
implies that Y ∗f(Y Y ∗)Y = Y ∗Y f(Y ∗Y ) for any polynomials f and so it holds
for continuous functions f on a suitable interval. Hence we have the conclusion
by applying it to f(x) = xp and Y = AX. �

Consequently, Chan-Kwong conjecture is modified in the following sense: If it
is true, then

A ≥ B ≥ 0 =⇒ (AB2A)
3
4 ≤ A3.

As a matter of fact, we have

(AB2A)
3
4 = AB(BA2B)−

1
4 BA = AB((BA2B)−

1
2 )

1
2 BA ≤ ABB−1BA = ABA ≤ A3.

Based on this consideration, the Furuta inequality was established as follows:

Theorem 1.3 (Furuta inequality (FI)). If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q

and

(ii) (B
r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with

(∗) (1 + r)q ≥ p + r.
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See [14, 15, 5, 21, 25, 19]
Professor Berberian said that the figuare determined by (*) is ”Rosetta Stone”

in (FI). Incidentally it is notable that the figuare (*) is expressed by qp-axix:
Berberian’s interesting comment might contain it.

Proof of (FI). It suffices to show that if A ≥ B > 0, then

(A
r
2 BpA

r
2 )

1+r
p+r ≤ A1+r.

It is proved for arbitrary p ≥ 1 by the induction on r. First of all, we take
r ∈ [0, 1].

(A
r
2 BpA

r
2 )

1+r
p+r = A

r
2 B

p
2 (B

p
2 ArB

p
2 )

1−p
p+r B

p
2 A

r
2

≤ A
r
2 B

p
2 (B

p
2 BrB

p
2 )

1−p
p+r B

p
2 A

r
2 = A

r
2 BA

r
2 ≤ A

r
2 AA

r
2 = A1+r.

Next we suppose that it is true for some r1 > 0, i.e.,

B1 = (A
r1
2 BpA

r1
2 )

1+r1
p+r1 ≤ A1+r1 = A1.

Then for r ∈ (0, 1]

(A
r
2
1 B

p+r1
1+r1
1 A

r
2
1 )

1+r
p1+r ≤ A1+r

1 ,

where p1 = p+r1

1+r1
. Putting s = r1 + (1 + r1)r = (1 + r1)(1 + r)− 1, we have

(A
s
2 BpA

s
2 )

1+s
p+s ≤ A1+s,

This means that it is true for s ∈ [r1, 1 + 2r1]. Hence the proof is complete. �

To make clear the structure of (FI), we give a mean theoretic approach to (FI).
The Löwner-Heinz inequality says that the function tα is operator monotone for
α ∈ [0, 1]. It induces the α-geometric operator mean defined for α ∈ [0, 1] as

A ]α B = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2

if A > 0, i.e., A is invertible, by the Kubo-Ando theory [22], see also [1].
For the sake of convenience, we cite a useful lemma which we will use frequently

in the below.

Lemma 1.4. For X, Y > 0 and a, b ∈ [0, 1],
(i) monotonicity: X ≤ X1 and Y ≤ Y1 =⇒ X ]a Y ≤ X1 ]a Y1,
(ii) transformer equality: T ∗XT ]a T ∗Y T = T ∗(X ]a Y )T for invertible T ,
(iii) transposition: X ]a Y = Y ]1−a X,
(iv) multiplicativity: X ]ab Y = X ]a (X ]b Y ).

Proof. First of all, (iii) follows from Lemma 1.2 and (iv) does from a direct com-
putation under the assumption of invertibility of operators.

To prove (i), we may assume that X, Y > 0. If Y ≤ Y1, then X ]a Y ≤ X ]a Y1

is assured by (LH) (and the formula of ]a). Moreover the monotonicity of the
other is shown by the use of (iii).
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Finally we prove (ii). We put Z = X
1
2 T = U |Z|, the polar decomposition of

Z, where U is unitary. Then it follows that

T ∗XT ]a T ∗Y T = Z∗Z ]a T ∗Y T

= |Z|(|Z|−1T ∗Y T |Z|−1)a|Z|

= |Z|(|Z|−1Z∗(X− 1
2 Y X− 1

2 )Z|Z|−1)a|Z|

= |Z|(U∗(X− 1
2 Y X− 1

2 )U)a|Z|

= |Z|U∗(X− 1
2 Y X− 1

2 )aU |Z|

= Z∗(X− 1
2 Y X− 1

2 )aZ

= T ∗X
1
2 (X− 1

2 Y X− 1
2 )aX

1
2 T

= T ∗(X ]a Y )T.

�

By using the mean theoretic notation, the Furuta inequality has the following
expression:

(FI) If A ≥ B > 0, then

A−r ] 1+r
p+r

Bp ≤ A for p ≥ 1 and r ≥ 0. (1.1)

Related to this, we have to mention the following more presice expression of it,
see [21]. We say it a satellite inequaqlity of (FI), simply (SF):

Theorem 1.5 (Satellite inequality (SF)). If A ≥ B > 0, then

A−r ] 1+r
p+r

Bp ≤ B ≤ A for p ≥ 1 and r ≥ 0. (1.2)

Proof. As the first stage, we assume that 0 ≤ r ≤ 1. Then the monotonicity of
]α (α ∈ [0, 1]) implies that

A−r ] 1+r
p+r

Bp ≤ B−r ] 1+r
p+r

Bp = B.

Next we assume that for some r > 0,

A ≥ B > 0 ⇒ A−r ] 1+r
p+r

Bp ≤ B ≤ A

holds for all p ≥ 1. So we prove that it is true for s = 1 + 2r. Since A ≥ B > 0
is assumed, we have

A−1 ] 2
p+1

Bp ≤ B,

so that
B1 = (A

1
2 BpA

1
2 )

2
p+1 ≤ A

1
2 BA

1
2 ≤ A2 = A1.

By the assumption, it follows that for p1 ≥ 1

A−r
1 ] 1+r

p1+r
Bp

1 ≤ B1 ≤ A
1
2 BA

1
2 .

Arranging this for p1 = p+1
2

, we have

A−2r ] 2(1+r)
p+1+2r

A
1
2 BpA

1
2 ≤ B1 ≤ A

1
2 BA

1
2 .
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Furthermore multiplying A− 1
2 on both sides, it follows that for s = 2r + 1

A−s ] 1+s
p+s

Bp ≤ B,

as desired. �

2. Ando–Hiai Inequality

Ando and Hiai [3] proposed a log-majorization inequality, whose essential part
is the following operator inequality. We say it the Ando–Hiai inequality, simply
(AH).

Theorem 2.1 (Ando–Hiai Inequality (AH)). If A ]α B ≤ I for A, B > 0, then
Ar ]α Br ≤ I for r ≥ 1.

Proof. It suffices to show that Ar ]α Br ≤ I for 1 ≤ r ≤ 2. Put p = r− 1 ∈ [0, 1]

and C = A− 1
2 BA− 1

2 . Then, since the assumption A ]α B ≤ I is equivalent to
Cα ≤ A−1 and so C−α ≥ A, it follows from Lemma 1.2 that

A− 1
2 BrA− 1

2 = A− 1
2 (A

1
2 CA

1
2 )rA− 1

2 = C
1
2 (C

1
2 AC

1
2 )pA− 1

2

≤ C
1
2 (C

1
2 C−αC

1
2 )pC

1
2 = C1+(1−α)p.

Hence we have

Ar ]α Br = A
1
2 (Ap ]α A− 1

2 BrA− 1
2 )A

1
2 ≤ A

1
2 (C−αp ]α C1+(1−α)p)A

1
2

= A
1
2 C(1+p)α−αpA

1
2 = A

1
2 CαA

1
2 ≤ A

1
2 A−1A

1
2 = I.

�

Based on an idea of Furuta inequality, we propose two variables version of
Ando–Hiai inequality, see [11, 12]:

Theorem 2.2 (Generalized Ando–Hiai inequality (GAH)). For A, B > 0 and
α ∈ [0, 1], if A ]α B ≤ I, then

Ar ] αr
αr+(1−α)s

Bs ≤ I for r, s ≥ 1.

It is obvious that the case r = s in Theorem 2.2 is just Ando–Hiai inequality.
Now we consider two one-sided versions of Theorem 2.2:

Proposition 2.3. For A, B > 0 and α ∈ [0, 1], if A ]α B ≤ I, then

Ar ] αr
αr+1−α

B ≤ I for r ≥ 1.

Proposition 2.4. For A, B > 0 and α ∈ [0, 1], if A ]α B ≤ I, then

A ] α
α+(1−α)s

Bs ≤ I for s ≥ 1.

Next we investigate relations among them and Theorem 2.2.

Theorem 2.5. (1) Propositions 2.3 and 2.4 are equivalent.
(2) Theorem 2.2 follows from Propositions 2.3 and 2.4
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Proof. (1) We first note the transposition formula X ]α Y = Y ]β X for β = 1−α.
Therefore Proposition 2.3 (for β) is rephrased as follows:

B ]β A ≤ I ⇒ Bs ] βs
βs+α

A ≤ I for s ≥ 1.

Using the transposition formula again, it coincides with Proposition 2.4 because

1− βs

βs + α
=

α

βs + α
=

α

(1− α)s + α
.

(2) Suppose that A ]α B ≤ I and r, s ≥ 1 are given. Then it follows from
Proposition 2.3 that Ar ]α1 B ≤ I for α1 = αr

αr+1−α
. We next apply Proposition 2.4

to it, so that we have

1 ≥ Ar ] α1
α1+(1−α1)s

Bs = Ar ] αr
αr+(1−α)s

Bs,

as desired. �

We now point out that Proposition 2.3 is an equivalent expression of Furuta
inequality of Ando–Hiai type:

Theorem 2.6. Proposition 2.3 is equivalent to the Furuta inequality.

Proof. For a given p ≥ 1, we put α = 1
p
. Then A ≥ B(≥ 0) if and only if

A−1 ]α B1 ≤ 1, for B1 = A− 1
2 BpA− 1

2 . (2.1)

If A ≥ B > 0, then (2.1) holds for A, B > 0, so that Proposition 2.3 implies that
for any r ≥ 0

1 ≥ A−(r+1) ] r+1
p

(1− 1
p )+ r+1

p

B1 = A−(r+1) ] 1+r
p+r

B1 = A−(r+1) ] 1+r
p+r

A− 1
2 BpA− 1

2 .

Hence we have (FI);
A−r ] 1+r

p+r
Bp ≤ A.

Conversely suppose that (FI) is assumed. If A−1 ]α B1 ≤ 1, then A ≥
(A

1
2 B1A

1
2 )α = B, where p = 1

α
. So (FI) implies that for r1 = r − 1 ≥ 0

A ≥ A−r1 ] 1+r1
p+r1

Bp = A−(r−1) ] r
p+r−1

A
1
2 B1A

1
2 .

Since r
p+r−1

= αr
1+αr−α

, we have Proposition 2.3. �

As in the discussion as above, Theorem 2.2 can be proved by showing Proposi-
tion 2.3. Finally we cite its proof. Since it is equivalent to the Furuta inequality,
we have an alternative proof of it. It is done by the usual induction, whose tech-
nical point is a multiplicative property of the index αr

(1−α)+αr
of ] as appeared

below.

Proof of Proposition 2.3. For convenience, we show that if A−1 ]α B ≤ I, then

A−r ] αr
(1−α)+αr

B ≤ I for r ≥ 1. (2.2)

Now the assumption says that

Cα = (A
1
2 BA

1
2 )α ≤ A.
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For any ε ∈ (0, 1], we have Cαε ≤ Aε by the Löwner-Heinz inequality and so

A−(1+ε) ] α(1+ε)
(1−α)+α(1+ε)

B = A− 1
2 (A−ε ]α(1+ε)

1+αε

A
1
2 BA

1
2 )A− 1

2

≤ A− 1
2 (C−αε ]α(1+ε)

1+αε

C)A− 1
2 = A− 1

2 CαA− 1
2 = A−1 ]α B ≤ I.

Hence we proved the conclusion (2.2) for 1 ≤ r ≤ 2. So we next assume that
(2.2) holds for 1 ≤ r ≤ 2n. Then the discussion of the first half ensures that

(A−r)r1 ] α1r1
(1−α1)+α1r1

B ≤ I for 1 ≤ r1 ≤ 2, where α1 =
αr

(1− α) + αr
.

Thus the multiplicative property of the index
α1r1

(1− α1) + α1r1

=
αrr1

(1− α) + αrr1

shows that (2.2) holds for all r ≥ 1. �

We here consider an expression of (AH)-type for satellite of (FI): Suppose that

A−1 ]α B ≤ I and put α = 1
p
. It is equivalent to C = (A

1
2 BA

1
2 )

1
p ≤ A. So (SF)

says that

A−r ] 1+r
p+r

Cp ≤ C, or A−(r+1) ] 1+r
p+r

B ≤ A− 1
2 CA− 1

2 = A−1 ] 1
p

B.

Namely (SF) has an (AH)-type representation as follows:

Theorem 2.7. Let A and B be positive invertible operators. Then

A ]α B ≤ I ⇒ Ar ] αr
αr+1−α

B ≤ A ]α B (≤ I) for r ≥ 1.

3. Grand Furuta Inequality

To compare with (AH) and (FI), (AH) is arranged as a Furuta type operator
inequality. As in the proof of (AH), its assumption is that

B1 = Cα = (A− 1
2 BA− 1

2 )α ≤ A−1 = A1.

Replacing p = α−1, it is reformulated that

A ≥ B > 0 =⇒ Ar ≥ (A
r
2 (A− 1

2 BpA− 1
2 )rA

r
2 )

1
p (†)

for r ≥ 1 and p ≥ 1.

Moreover, to make a simultaneous extension of both (FI) and (AH), Furuta

added variables as in the case of (FI). Actually he paid his attention to A− 1
2 in (†),

presicely, he replaced it to A− t
2 (t ∈ [0, 1]). Consequently he established so-called

grand Furuta inequality, simply (GFI). It is sometimes said to be generalized
Furuta inequality. We refer [17, 18, 10, 13, 26, 28].

Theorem 3.1 (Grand Furuta inequality (GFI)). If A ≥ B > 0 and t ∈ [0, 1],
then

[A
r
2 (A− t

2 BpA− t
2 )sA

r
2 ]

1−t+r
(p−t)s+r ≤ A1−t+r

holds for r ≥ t and p, s ≥ 1.
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It is easily seen that
(GFI) for t = 1, r = s ⇐⇒ (AH)
(GFI) for t = 0, (s = 1) ⇐⇒ (FI).

Proof of (GFI). We prove it by the induction on s. For this, we first prove it
for 1 ≤ s ≤ 2: Since (X∗C2X)s = X∗C(CXX∗C)s−1CX for arbitrary X, C ≥ 0
and 0 ≤ s− 1 ≤ 1, (LH) implies that

Ar/2(A−t/2BpA−t/2)sAr/2 = A
r−t
2 B

p
2 (B

p
2 A−tB

p
2 )s−1B

p
2 A

r−t
2

≤ A
r−t
2 B

p
2 (B

p
2 B−tB

p
2 )s−1B

p
2 A

r−t
2 = A

r−t
2 B(p−t)s+tA

r−t
2 .

Furthermore it follows from (LH) and (FI) that

{Ar/2(A−t/2BpA−t/2)sAr/2}
1−t+r

(p−t)s+r ≤ {A
r−t
2 B(p−t)s+tA

r−t
2 }

1−t+r
(p−t)s+r ≤ A1−t+r

by noting that (p − t)s + t + (r − t) = (p − t)s + r. Hence (GFI) is proved for
1 ≤ s ≤ 2.

Next, under the assumption (GFI) holds for some s ≥ 1, we now prove that
(GFI) holds for s + 1. Since (GFI) holds for s, we take r = t in it. Thus we have

A ≥ {At/2(A−t/2BpA−t/2)sAt/2}
1

(p−t)s+t .

Put C = {At/2(A−t/2BpA−t/2)sAt/2}
1

(p−t)s+t , that is, A ≥ C. By using that s ≥ 1
if and only if 1 ≤ s+1

s
≤ 2 and that (GFI) for 1 ≤ s ≤ 2 has been proved, we

obtain that

A1−t+r ≥ {Ar/2(A−t/2C(p−t)s+tA−t/2)
s+1

s Ar/2}
1−t+r

{(p−t)s+t−t}( s+1
s )+r

= {Ar/2(A−t/2C(p−t)s+tA−t/2)
s+1

s Ar/2}
1−t+r

(p−t)(s+1)+r

= {Ar/2(A−t/2{At/2(A−t/2BpA−t/2)sAt/2}A−t/2)
s+1

s Ar/2}
1−t+r

(p−t)(s+1)+r

= {Ar/2(A−t/2BpA−t/2)s+1Ar/2}
1−t+r

(p−t)(s+1)+r .

This means that (GFI) holds for s + 1, and so the proof is complete. �

Next we point out that (GFI) for t = 1 includes both Ando–Hiai and Furuta
inequalities.

Since Ando–Hiai inequality is just (GFI; t = 1) for r = s, it suffices to check
that Furuta inequality is contained in (GFI; t = 1). As a matter of fact, it is just
(GFI; t = 1) for s = 1.

Theorem 3.2. Furuta inequality (FI) is equivalent to (GFI) for t = s = 1.

Proof. We write down (GFI; t = 1) for s = 1: If A ≥ B > 0, then

[A
r
2 (A− 1

2 BpA− 1
2 )A

r
2 ]

r
p−1+r ≤ Ar

for p, r ≥ 1, or equivalently,

A−(r−1) ] r
p−1+r

Bp ≤ A



36 M. FUJII

for p, r ≥ 1. Replacing r− 1 by r1, (GFI; t = 1) for s = 1 is rephrased as follows:
If A ≥ B > 0, then

A−r1 ] 1+r1
p+r1

Bp ≤ A

for p ≥ 1 and r1 ≥ 0, which is nothing but Furuta inequality. �

Furthermore Theorem 2.2, generalized Ando–Hiai inequality, is understood as
the case t = 1 in (GFI):

Theorem 3.3. (GFI; t = 1) is equivalent to Theorem 2.2 (GAH).

Proof. (GFI; t = 1) is written as

A ≥ B > 0 ⇒ [A
r
2 (A− 1

2 BpA− 1
2 )sA

r
2 ]

r
(p−1)s+r ≤ Ar (p, r, s ≥ 1).

We here put

α =
1

p
, B1 = A− 1

2 BpA− 1
2 .

Then we have

A ≥ B > 0 ⇐⇒ A−1 ] 1
p

A− 1
2 BpA− 1

2 ≤ 1 ⇐⇒ A−1 ]α B1 ≤ 1

and for each p, r, s ≥ 1

[A
r
2 (A− 1

2 BpA− 1
2 )sA

r
2 ]

r
(p−1)s+r ≤ Ar

⇐⇒ A−r ] r
(p−1)s+r

(A− 1
2 BpA− 1

2 )s ≤ 1

⇐⇒ A−r ] αr
αr+(1−α)s

Bs
1 ≤ 1.

This shows the statement of Theorem 2.2 (GAH). �

Next we consider some variants of (GFI), which are useful in the discussion of
Kantorovich type inequalities, see [7].

Theorem 3.4. If A ≥ B ≥ 0, then

A
(p+t)s+r

q ≥ (A
r
2 (A

t
2 BpA

t
2 )sA

r
2 )

1
q

holds for all p, t, s, r ≥ 0 and q ≥ 1 with (p + t + r)q ≥ (p + t)s + r and
(1 + t + r)q ≥ (p + t)s + r.

Proof. First of all, we may assume p > 0. Now Furuta inequality says that

A1 = A
p+t
q1 ≥ B1 = (A

t
2 BpA

t
2 )

1
q1

holds for t ≥ 0, where q1 = max{1, p+t
1+t
}. Applying Furuta inequality again, we

have

A
p1+r1

q

1 ≥ (A
r1
2

1 Bp1

1 A
r1
2

1 )
1
q ,

that is,

A
(p+t)(p1+r1)

qq1 ≥ (A
(p+t)r1

2q1 (A
t
2 BpA

t
2 )

p1
q1 A

(p+t)r1
2q1 )

1
q ,
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for all p1, r1 ≥ 0 and q ≥ 1 with (1 + r1)q ≥ p1 + r1. So we take p1 = sq1

and r1 = rq1

p+t
. Since (1 + r1)q ≥ p1 + r1 is equivalent to the condition that

(p + t + r)q ≥ (p + t)s + r and (1 + t + r)q ≥ (p + t)s + r, the statement is
proved. �

In the remainder, we reconsider (GFI). For this, we cite it by the use of operator
means. For convenience, we use the notation \s for the binary operation

A \s B = A
1
2 (A− 1

2 BA− 1
2 )sA

1
2 for s 6∈ [0, 1],

whose formula is the same as ]s.

Grand Furuta inequality (GFI).

A ≥ B > 0, t ∈ [0, 1] ⇒ A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) ≤ A (r ≥ t; p, s ≥ 1)

This mean theoretic expression of (GFI) induces the following improvement of
it.

Satellite of Grand Furuta inequality (SGF).

A ≥ B > 0, t ∈ [0, 1] ⇒ A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) ≤ B (r ≥ t; p, s ≥ 1)

We here clarify that the case t = 1 is essential in (GFI), in which (SGF) is
quite meaningful. As a matter of fact, we prove that (SGF; t=1) implies (SGF)
for every t ∈ [0, 1].

For readers’ convenience, we prove (SGF). For this, the following lemma is
needed, which is a variational expression of (LH):

Lemma 3.5. If A ≥ B > 0, t ∈ [0, 1] and 1 ≤ s ≤ 2, then

At \s C ≤ Bt \s C

holds for arbitrary C > 0, in particular,

At \s Bp ≤ B(p−t)s+t

holds for p ≥ 1.

Proof. Since A−t ≤ B−t by (LH), we have

At \s C = C(C−1 #s−1 A−t)C ≤ C(C−1 #s−1 B−t)C = Bt \s C.

Similarly we have

At \s Bp = Bp(B−p #s−1 A−t)Bp ≤ Bp(B−p #s−1 B−t)Bp = B(p−t)s+t.

�

We here give a short comment on the first statement in the above lemma:
Suppose that if A ≥ B > 0 and t ∈ [0, 1], then

At \s C ≤ Bt \s C
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holds for arbitrary C > 0 and 1 ≤ s ≤ 2. Then taking C = Bt and s = 2, we
have

At \2 Bt ≤ Bt \2 Bt = Bt,

so that BtA−tBt ≤ Bt, or At ≥ Bt. That is, it is equivalent to (LH).

More generally, we know the following fact:

Lemma 3.6. If A ≥ B > 0 and t ∈ [0, 1], then

(At\sB
p)

1
(p−t)s+t ≤ B ≤ A

holds for p, s ≥ 1.

Proof. We fix p ≥ 1 and t ∈ [0, 1]. It follows from Lemma 3.5 and (LH) that

(†) A ≥ B > 0 ⇒ B1 = (At\sB
p)

1
(p−t)s+t ≤ B ≤ A

for s ∈ [1, 2]. So we assume that (†) holds for some s ≥ 1, and prove that

B2 = (At\2sB
p)

1
2(p−t)s+t ≤ B1 ≤ B.

Actually we apply (†) to B1 ≤ A. Then we have

(At\2B
p1

1 )
1

2(p1−t)+t ≤ B1 ≤ B, where p1 = (p− t)s + t,

and moreover

(At\2B
p1

1 )
1

2(p1−t)+t = [At\2(A
t\sB

p)]
1

(p−t)2s+t = (At\2sB
p)

1
(p−t)2s+t = B2,

which completes the proof. �

Under this preparation, we can easily prove (SGF) by virtue of (SF) in Theorem
1.5.

Proof of (SGF). For given p, t, s, we use the same notation as above; p1 =

(p − t)s + t and B1 = (At\sB
p)

1
p1 . Then Lemma 3.6 implies that B1 ≤ B ≤ A.

Hence it follows from (SF) for B1 ≤ A and r1 = r − t that

A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) = Ar1# 1+r1

p1+r1

Bp1

1 ≤ B1 ≤ B.

�

It is shown that (SGF; t = 1) is essential among (SGF; t ∈ [0, 1]), in which
(LH) completely works. That is,

Theorem 3.7. (SGF; t = 1) implies (SGF; t) for t ∈ [0, 1].

Proof. Suppose that for A ≥ B > 0,

A−r+1# r
(p−1)s+r

(A\sB
p) ≤ B

holds for r ≥ 1.
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We fix arbitrary t ∈ (0, 1). As At ≥ Bt by (LH), we have

(At)−
r
t
+1# r

t
(

p
t −1)s+ r

t

(At\sB
p) ≤ Bt

for r ≥ t. It is arranged as

A−r+t# r
(p−t)s+r

(At\sB
p) ≤ Bt,

or equivalently,
(At\sB

p)# (p−t)s
(p−t)s+r

A−r+t ≤ Bt.

Therefore it follows from Lemma 3.5 that for s ∈ [1, 2]

A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) = (At\sB

p)# (p−t)s−(1−t)
(p−t)s+r

A−r+t

= (At\sB
p)# (p−t)s−(1−t)

(p−t)s

{(At\sB
p)# (p−t)s

(p−t)s+r

A−r+t}

≤ (At\sB
p)# (p−t)s−(1−t)

(p−t)s

Bt

= Bt# 1−t
(p−t)s

(At\sB
p)

≤ Bt# 1−t
p−t

B(p−t)s+t = B.

Namely we have

(∗∗) A ≥ B > 0 ⇒ A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) ≤ B

for 1 ≤ s ≤ 2, r ≥ t and p ≥ 1.
Next we assume that (∗∗) holds for some s ≥ 1. Then taking r = t, we have

B ≥ (At\sB
p)

1
(p−t)s+t .

Put C = (At\sB
p)

1
(p−t)s+t , that is, (A ≥)B ≥ C. By (∗∗) for s+1

s
∈ [1, 2] and

p1 = (p− t)s + t, we obtain

C ≥ A−r+t# 1−t+r

((p−t)s+t−t)( s+1
s )+r

(At\ s+1
s

C(p−t)s+t)

= A−r+t# 1−t+r
(p−t)(s+1)+r

(At\ s+1
s

(At\sB
p))

= A−r+t# 1−t+r
(p−t)(s+1)+r

(At\s+1B
p).

Hence we have
A−r+t# 1−t+r

(p−t)(s+1)+r
(At\s+1B

p) ≤ C ≤ B.

�

Remark 3.8. (GFI; t=1) implies a variant of (GFI) that

A ≥ B > 0, t ∈ [0, 1]

⇒ A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) ≤ At# 1−t

p−t
Bp (r ≥ t; p, s ≥ 1)

We here note: (1) The case t = 0 and s = 1 is just

(SF ) A ≥ B > 0 ⇒ A−r# 1+r
p+r

Bp ≤ B (p ≥ 1, r ≥ 0).
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(2) The case t = 1 and r = s is Ando–Hiai inequality;

(AH) X#αY ≤ 1 ⇒ Xr#αY r ≤ 1 (r ≥ 1).

(Repalce X = A−1, Y = A− 1
2 BpA− 1

2 and α = 1
p
.)

However, it easily follows from (SGF) because

A−r+t# 1−t+r
(p−t)s+r

(At\sB
p) ≤ B = Bt# 1−t

p−t
Bp ≤ At# 1−t

p−t
Bp

under the same condition as in the above.

4. Chaotic order

We first remark that log x is operator monotone, i.e., A ≥ B > 0 implies
log A ≥ log B by (LH) and Xp−1

p
→ log X for X > 0. By this fact, we can

introduce the chaotic order as log A ≥ log B among positive invertible operators,
which is weaker than the usual order A ≥ B. In this section, we consider Furuta
inequality under the chaotic order. We refer [2, 6, 16, 27, 8, 9, 29].

Theorem 4.1. The following assertions are mutually equivalent for A, B > 0:

(i) A � B, i.e., log A ≥ log B,

(ii) Ap ≥ (A
p
2 BpA

p
2 )

1
2 for p ≥ 0,

(iii) Ar ≥ (A
r
2 BpA

r
2 )

r
p+r for p, r ≥ 0.

Proof. We prove the implications: (i) ⇒ (iii) ⇒ (ii) ⇒ (i).
(i) ⇒ (iii): First we note that (1 + log X

n
)n −→ X for X > 0. Since

An = 1 +
log A

n
≥ Bn = 1 +

log B

n
> 0

for sufficiently large n, Furuta inequality ensures that for given p, r > 0

An
1+nr ≥ (An

nr
2 Bn

npAn

nr
2 )

1+nr
n(p+r) ,

or equivalently

An
n( 1

n
+r) ≥ (An

n r
2 Bn

npAn
n r

2 )
1

n(p+r)
+ r

p+r .

Taking n →∞, we have the desired inequality (iii).
(iii) ⇒ (ii) is trivial by setting r = p.
(ii) ⇒ (i): Note that Xp−1

p
→ log X for X > 0. The assumption (ii) implies

that

Ap − 1

p
≥ (A

p
2 BpA

p
2 )

1
2 − 1

p
=

A
p
2 BpA

p
2 − 1

p((A
p
2 BpA

p
2 )

1
2 + 1)

=
A

p
2 (Bp − 1)A

p
2 + Ap − 1

p((A
p
2 BpA

p
2 )

1
2 + 1)

.

Taking p → +0, we have

log A ≥ log B + log A

2
, that is, log A ≥ log B.

So the proof is complete. �
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Remark 4.2. The order preserving operator inequality (i) ⇒ (iii) in above is
called chaotic Furuta inequality, simply (CFI). We here note that (iii) ⇒ (i) is
directly proved as follows:

Take the logarithm on both side of (iii), that is,

r log A ≥ r

p + r
log A

r
2 BpA

r
2

for p, r ≥ 0. Therefore we have

log A ≥ 1

p + r
log A

r
2 BpA

r
2 .

So we put r = 0 in above. Namely it implies that

log A ≥ 1

p
log Bp = log B.

As in chaotic Furuta inequality, Theorem 3.4 has the following chaotic order
version:

Theorem 4.3. If log A ≥ log B for A, B > 0, then

A
(p+t)s+r

q ≥ (A
r
2 (A

t
2 BpA

t
2 )sA

r
2 )

1
q

holds for all p, t, s, r ≥ 0 and q ≥ 1 with (t + r)q ≥ (p + t)s + r.

Proof. As in the proof of chaotic Furuta inequality (i) ⇒ (iii), we have

An = 1 +
log A

n
≥ Bn = 1 +

log B

n
> 0

for sufficiently large n. Thus Theorem implies that

An

(p1+t1)s+r1
q ≥ (An

r1
2 (An

t1
2 Bn

p1An

t1
2 )sAn

r1
2 )

1
q

holds for all p1, t1, s, r1 ≥ 0 and q ≥ 1 with (t1 + r1)q ≥ (p1 + t1)s + r1. Putting
p1 = np, t1 = nt and r1 = nr, we have

An

n((p+t)s+r
q ≥ (An

nr
2 (An

nt
2 Bn

npAn

nt
2 )sAn

nr
2 )

1
q

for all p, t, s, r ≥ 0 and q ≥ 1 with (t+r)q ≥ (p+t)s+r. Finally, since An
n −→ A

and Bn
n −→ B, we have the desired inequality by tending n →∞. �

The chaotic Furuta inequality (CFI), Theorem 4.1 (iii), is expressed in terms
of weighted geometric mean as well as Furuta inequality (FI) as follows:

A ≥ B > 0 =⇒ A−r ] r
p+r

Bp ≤ I (CFI)

holds for p ≥ 0 and r ≥ 0.
For the sake of convenience, we cite (AH): For α ∈ (0, 1)

A ]α B ≤ I =⇒ Ar ]α Br ≤ I (AH)

holds for r ≥ 1.
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Theorem 4.4. The operator inequalities (FI), (CFI) and (AH) are mutually
equivalent:

Proof. Suppose that (CFI) holds. Then we prove (FI), so that we assume A ≥
B > 0. We have

A−r ] 1+r
p+r

Bp = Bp ] p−1
p+r

A−r = Bp ] p−1
p

(Bp ] p
p+r

A−r)

=Bp ] p−1
p

(A−r ] r
p+r

Bp) ≤ Bp ] p−1
p

I = B ≤ A,

which means that (FI) is shown.
Next we suppose that (FI) holds. Then we prove (AH), so that we assume

A ]α B ≤ I and r ≥ 0. Then, putting C = A− 1
2 BA− 1

2 and p = 1
α

> 1, we have

B1 = (A− 1
2 BA− 1

2 )α = C
1
p ≤ A−1 = A1.

Applying (FI) to A1 ≥ B1, it follows that for p ≥ 1,

A−r
1 ] 1+r

p+r
Bp

1 ≤ B1 ≤ A1.

Summing up the above discussion, for each p > 1,

A ] 1
p

B ≤ I ⇒ Ar ] 1+r
p+r

A− 1
2 BA− 1

2 ≤ A−1, or Ar+1 ] 1+r
p+r

B ≤ I for r ≥ 0.

Note that
B ] p−1

p+r
Ar+1 = Ar+1 ] 1+r

p+r
B ≤ I

holds. That is, we can assume this and so apply it for q = p+r
p−1

≥ 1. Hence it

implies that
I ≥ Br+1 ] 1+r

q+r
Ar+1.

Since 1− 1+r
p1+r

= 1
p
,

I ≥ Br+1 ] 1+r
q+r

Ar+1 = Ar+1 ] 1
p

Br+1.

Namely we obtain (AH).
Finally we prove (AH) ⇒ (CFI). So we assume that A ≥ B > 0 and p, r > 1

because it holds for 0 ≤ p, r ≤ 1 by (LH). For given p, r > 1, we put α = r
p+r

and

r1 = r
p
. Then we have

A−r1 ] r1
1+r1

B ≤ A−r1 ] r1
1+r1

A = I.

We here apply (AH) to this and so we have

I ≥ A−r1p ] r1p
p+r1p

Bp = A−r ] r
p+r

Bp,

as desired. �

We here present an interesting characterization of chaotic order.

Theorem 4.5. The following assertions are equivalent for A, B > 0:
(i) log A ≥ log B,
(ii) For each δ > 0 there exists an α = αδ > 0 such that (eδA)α > Bα.

The proof of Theorem 4.5 is not written, but its essence is shown as follows:
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Theorem 4.6. If log A > log B for A, B > 0, then there exists an α > 0 such
that Aα > Bα.

Proof. Since log A − log B ≥ 2s > 0 for some s > 0, there exists an α > 0 such
that

‖x
h − 1

h
− log x‖I < s

for 0 < h ≤ α, where I is a bouded interval including the spectra of A and B.
Hence we have

0 ≤ Aα − 1

α
− log A ≤ s, 0 ≤ Bα − 1

α
− log B ≤ s,

so that

Aα −Bα

α
=

(
Aα − 1

α
− log A

)
+ log A− log B −

(
Bα − 1

α
− log B

)
≥ log A− log B −

(
Bα − 1

α
− log B

)
≥ log A− log B − ‖B

α − 1

α
− log B‖I

≥2s− s = s,

that is, Aα −Bα ≥ αs > 0 is shown. �

Related to this, there raises the problem: Does log A ≥ log B imply that there
exists an α > 0 such that Aα ≥ Bα?

Example 4.7. Take A and B as follows:

A = U

(
e4 0
0 e−1

)
U ; U =

1√
5

(√
3

√
2√

2 −
√

3

)
and B =

(
1 0
0 e−2

)
.

Then we have

log A =

(√
2
√

6√
6 1

)
and log B =

(
0 0
0 −2

)
,

so that log A ≥ log B is easily checked.
On the other hand, putting x = eα for α > 0,

det(Aα −Bα) = −x−3(x + 1)(x− 1)4(2x2 + x + 2) < 0

for all x > 1. Hence Aα ≥ Bα does not hold for any α > 0.

Concluding this section, we mention some operator inequalities related to
(CFI).

Theorem 4.8. Let A and B be positive invertible operators. Then the following
statements are mutually equivalent:

(1) log A ≤ log B,
(2) A−r ] r

p+r
Bp ≥ 1 for p, r ≥ 0.

(3) A−r ] δ+r
p+r

Bp ≥ Bδ for p, r ≥ 0 and 0 ≤ δ ≤ p.

(4) The operator function f(p) = A−r ] r
p+r

Bp is increasing on p.
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Proof. (1) ⇔ (2): It follows from (i) ⇔ (iii) in Theorem 4.1.
(2) ⇒ (3): By using Lemma 1.4, we have

A−r ] δ+r
p+r

Bp = Bp ] p−δ
p+r

A−r = Bp ] p−δ
p

(Bp ] p
p+r

A−r)

=Bp ] p−δ
p

(A−r ] r
p+r

Bp) ≤ Bp ] p−δ
p

I = Bδ.

(3) ⇒ (2): It is trivial by putting δ = 0.
(3) ⇒ (4): By using Lemma 1.4 (iv), we have

f(p + ε) = A−r ] r
p+ε+r

Bp+ε

= A−r ] r
p+r

(A−r ] p+r
p+ε+r

Bp+ε)

≥ A−r ] r
p+r

Bp = f(p).

(4) ⇒ (2): It is obtained by f(p) ≥ f(0) = 1. �
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