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Abstract. In this paper, we establish some new coupled fixed point theorems
in complete metric spaces, using a new concept of F -invariant set. We introduce
the notion of fixed point of N -order as natural extension of that of coupled
fixed point. As applications, we discuss and adapt the presented results to the
setting of partially ordered cone metric spaces. The presented results extend
and complement some known existence results from the literature.

1. Introduction

In the last decades, a wide discussion on coupled fixed point theorems aimed the
interest of many scientists because of their important role in the study of nonlinear
differential equations, nonlinear integral equations and differential inclusions. We
recall the following definition.

Definition 1.1. (see Bhaskar and Lakshmikantham [4].) Let X be a non-empty
set and F : X ×X → X be a given mapping. An element (x, y) ∈ X ×X is said
to be a coupled fixed point of the mapping F if F (x, y) = x and F (y, x) = y.

Now, going back in the literature on functional analysis (see [7] for some re-
marks), we encountered some interesting manuscripts on coupled fixed point the-
orems (see [4, 6, 8, 9, 11, 14, 19, 20] and the references cited therein). These works
testify that the interest for establishing new coupled fixed point theorems is re-
mained vivid until today. Motivated by these arguments, we would like to give
a contribution to this research inviting also the reader to reflect on the prospect
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of some recent evolutions of fixed point theory. To this end, we introduce a new
concept of F -invariant set, that is necessary to state and prove our main theorem.
The presented results essentially extend and complement some known existence
results from the literature, but at the same time consent us to focus the attention
on two questions concerning uniqueness and equality between components of the
coupled fixed point. We introduce also a new notion of fixed point of N -order as
natural extension of the notion of coupled fixed point. Consequently, we present
some results for fixed point of N -order.

Recently, there is also a trend to weaken the requirement on contractive condi-
tions by considering metric spaces and cone metric spaces endowed with partial
order [1, 2, 3, 5, 13, 15, 16, 17, 18]. In this paper, as applications, we derive
results involving partially ordered metric spaces and cone metric spaces. The last
argument is presented considering a recent paper of Du [10], destined to modify
the interest for fixed point theorems in cone metric spaces.

2. Main results

In this section, we first introduce the concept of F -invariant.

Definition 2.1. Let (X, d) be a metric space and F : X × X → X be a given
mapping. Let M be a non-empty subset of X4. We say that M is F -invariant
subset of X4 if and only if for all x, y, z, w ∈ X, we have

(a) (x, y, z, w) ∈ M ⇔ (w, z, y, x) ∈ M ;
(b) (x, y, z, w) ∈ M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈ M .

Clearly, M = X4 is trivially F -invariant.
The following example plays a key role in the proof of our results involving a
partially ordered set.

Example 2.2. Let (X, d) be a metric space endowed with a partial order ≤. Let
F : X ×X → X be a mapping satisfying the mixed monotone property, that is,
for all x, y ∈ X, we have

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y);

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y2) ≤ F (x, y1).

Define the subset M ⊆ X4 by

M = {(a, b, c, d) ∈ X4 | c ≤ a, b ≤ d}.

Then, M is F -invariant subset of X4.

The following new theorem is our main result and concerns the existence of a
coupled fixed point.

Theorem 2.3. Let (X, d) be a complete metric space, F : X × X → X be a
continuous mapping and M be a non-empty subset of X4. We assume that
(i) M is F -invariant;
(ii) there exists (x0, y0) ∈ X2 such that (F (x0, y0), F (y0, x0), x0, y0) ∈ M ;
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(iii) for all (x, y, u, v) ∈ M , we have

d(F (x, y), F (u, v)) ≤ α

2
[d(x, F (x, y)) + d(y, F (y, x))]

+
β

2
[d(u, F (u, v)) + d(v, F (v, u))] +

θ

2
[d(x, F (u, v)) + d(y, F (v, u))]

+
γ

2
[d(u, F (x, y)) + d(v, F (y, x))] +

δ

2
[d(x, u) + d(y, v)],

where α, β, θ, γ, δ are nonnegative constants such that α + β + θ + γ + δ < 1.
Then F has a coupled fixed point, i.e., there exists (x∗, y∗) ∈ X × X such that
F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.

Proof. Denote

x1 = F (x0, y0), y1 = F (y0, x0), x2 = F (x1, y1), y2 = F (y1, x1).

Since (x1, y1, x0, y0) ∈ M , using the contractive condition in (iii), we get

d(x2, x1) ≤ α

2
[d(x1, x2) + d(y1, y2)] +

β

2
[d(x0, x1) + d(y0, y1)]

+
γ

2
[d(x0, x2) + d(y0, y2)] +

δ

2
[d(x1, x0) + d(y1, y0)].

Now, by the triangular inequality, we obtain

d(x2, x1) ≤
α + γ

2
[d(x1, x2) + d(y1, y2)] +

β + γ + δ

2
[d(x0, x1) + d(y0, y1)]. (2.1)

Since (x1, y1, x0, y0) ∈ M , then (y0, x0, y1, x1) ∈ M . Again, using the contractive
condition, we get

d(y1, y2) ≤ α

2
[d(y0, y1) + d(x0, x1)] +

β

2
[d(y1, y2) + d(x1, x2)]

+
θ

2
[d(x0, x2) + d(y0, y2)] +

δ

2
[d(x1, x0) + d(y1, y0)].

By the triangular inequality, we obtain

d(y1, y2) ≤
β + θ

2
[d(x1, x2) + d(y1, y2)] +

α + θ + δ

2
[d(x0, x1) + d(y0, y1)]. (2.2)

Now, combining (2.1) and (2.2), we get

d(x1, x2) + d(y1, y2) ≤ r[d(x0, x1) + d(y0, y1)], (2.3)

where

r =
β + γ + α + θ + 2δ

2− (α + γ + β + θ)
< 1. (2.4)

Denote

x3 = F (x2, y2), y3 = F (y2, x2).

Since M is F -invariant and (x1, y1, x0, y0) ∈ M , then (x2, y2, x1, y1) ∈ M . Using
a similar argument to the one above, we get

d(x2, x3) + d(y2, y3) ≤ r[d(x1, x2) + d(y1, y2)].
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Then, from (2.3), it follows that

d(x2, x3) + d(y2, y3) ≤ r2[d(x0, x1) + d(y0, y1)].

Hence, we can construct sequences {xn} and {yn} in X such that for all n ∈ N,
we have

(xn+1, yn+1, xn, yn) ∈ M

and

d(xn, xn+1) + d(yn, yn+1) ≤ rn[d(x0, x1) + d(y0, y1)]. (2.5)

Now, if d(x0, x1) + d(y0, y1) = 0, then we get immediately that

x0 = x1 = F (x0, y0), y0 = y1 = F (y0, x0)

and (x0, y0) is a coupled fixed point of F . Then, we assume that

d(x0, x1) + d(y0, y1) > 0.

In this case, from (2.5) and since r < 1, {xn} and {yn} are Cauchy sequences in
the complete metric space (X, d). Hence, there exists (x∗, y∗) ∈ X ×X such that

lim
n→+∞

xn = x∗ and lim
n→+∞

yn = y∗. (2.6)

Now, we will prove that (x∗, y∗) is a coupled fixed point of F . First note that the
continuity of F implies that

lim
n→+∞

F (xn, yn) = F (x∗, y∗), lim
n→+∞

F (yn, xn) = F (y∗, x∗). (2.7)

By the triangular inequality, we have

d(F (x∗, y∗), x∗) ≤ d(F (x∗, y∗), F (xn, yn)) + d(xn+1, x
∗).

Taking n → +∞ and using again (2.6) and (2.7), we get

d(F (x∗, y∗), x∗) ≤ 0,

i.e., F (x∗, y∗) = x∗. Similarly,

d(F (y∗, x∗), y∗) ≤ d(F (y∗, x∗), F (yn, xn)) + d(yn+1, y
∗).

Taking n → +∞ and using (2.6) and (2.7), we get

d(F (y∗, x∗), y∗) ≤ 0,

i.e., F (y∗, x∗) = y∗. Then (x∗, y∗) is a coupled fixed point of F . This makes end
to the proof. �

Remark 2.4. From Theorem 2.3 we can derive corollaries involving specific con-
tractive conditions, by a suitable choice of the nonnegative constants α, β, θ, γ
and δ.

Now, reasoning on Theorem 2.3, some questions arise naturally. To be precise,
one can ask himself

(Q1) is possible to guarantee the uniqueness of the coupled fixed point of F?
(Q2) is possible to have the equality between the components of the couple?



50 B. SAMET, C. VETRO

Motivated by the interest in this research, we give positive answers to these
questions adding to Theorem 2.3 some hypotheses. We proceed with order. Then,
to have the uniqueness, we state and prove the following theorem.

Theorem 2.5. Adding to the hypotheses of Theorem 2.3 the following condition:

(H) ∀ (x, y), (x′, y′) ∈ X2, ∃ (u, v) ∈ X2 | (x, y, u, v) ∈ M and (x′, y′, u, v) ∈ M,

we obtain the uniqueness of the coupled fixed point of F .

Proof. Assume that (a, b) is another coupled fixed point of F , i.e., a = F (a, b)
and b = F (b, a). By (H), there exists (u, v) ∈ X2 such that

(x∗, y∗, u, v) ∈ M, (a, b, u, v) ∈ M. (2.8)

Now, for (x, y) ∈ X2, we denote

F n+1(x, y) = F (F n(x, y), F n(y, x)) for all n ∈ N,

where F 0 : X ×X → X is given by F 0(x, y) = x for all x, y ∈ X and F 1 = F .
Since M is F -invariant, from (2.8) and for all n ∈ N, we get

(x∗, y∗, F n(u, v), F n(v, u)) ∈ M, (a, b, F n(u, v), F n(v, u)) ∈ M.

Now, by (iii) of Theorem 2.3, we have

d(F (x∗, y∗), F (F n(u, v), F n(v, u))) ≤ α

2
[d(x∗, F (x∗, y∗)) + d(y∗, F (y∗, x∗))]

+
β

2
[d(F n(u, v), F (F n(u, v), F n(v, u))) + d(F n(v, u), F (F n(v, u), F n(u, v)))]

+
θ

2
[d(x∗, F (F n(u, v), F n(v, u))) + d(y∗, F (F n(v, u), F n(u, v)))]

+
γ

2
[d(F n(u, v), F (x∗, y∗)) + d(F n(v, u), F (y∗, x∗))]

+
δ

2
[d(x∗, F n(u, v)) + d(y∗, F n(v, u))],

that is

d(x∗, F n+1(u, v)) ≤ α

2
[d(x∗, x∗) + d(y∗, y∗)] +

β

2
[d(F n(u, v), x∗) + d(x∗, F n+1(u, v))

+ d(F n(v, u), y∗) + d(y∗, F n+1(v, u))] +
θ

2
[d(x∗, F n+1(u, v)) + d(y∗, F n+1(v, u))]

+
γ

2
[d(F n(u, v), x∗) + d(F n(v, u), y∗)] +

δ

2
[d(x∗, F n(u, v)) + d(y∗, F n(v, u))].

(2.9)

Analogously, as (F n(v, u), F n(u, v), y∗, x∗) ∈ M , we obtain

d(F n+1(v, u), y∗) ≤ α

2
[d(F n(v, u), y∗) + d(y∗, F n+1(v, u)) + d(F n(u, v), x∗)

+ d(x∗, F n+1(u, v))] +
β

2
[d(y∗, y∗) + d(x∗, x∗)] +

θ

2
[d(F n(v, u), y∗) + d(F n(u, v), x∗)]

+
γ

2
[d(y∗, F n+1(v, u)) + d(x∗, F n+1(u, v))] +

δ

2
[d(F n(v, u), y∗) + d(F n(u, v), x∗)].

(2.10)
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Now, combining (2.9) and (2.10), we get

d(x∗, F n+1(u, v)) + d(F n+1(v, u), y∗) ≤ r[d(F n(u, v), x∗) + d(F n(v, u), y∗)],

where r is given by (2.4).
Proceeding thus, we obtain

d(x∗, F n+1(u, v)) + d(F n+1(v, u), y∗) ≤ rn[d(F (u, v), x∗) + d(F (v, u), y∗)].

Now as r < 1, taking n → +∞, we get

d(x∗, F n+1(u, v)) + d(F n+1(v, u), y∗) → 0.

Therefore, it follows

lim
n→+∞

F n+1(u, v) = x∗ = F (x∗, y∗), lim
n→+∞

F n+1(v, u) = y∗ = F (y∗, x∗).

Now, as (a, b) is another coupled fixed point of F , reasoning as above, we obtain

lim
n→+∞

F n+1(u, v) = a = F (a, b) and lim
n→+∞

F n+1(v, u) = b = F (b, a).

By the uniqueness of the limit, we conclude that (x∗, y∗) = (a, b) is the unique
coupled fixed point of F . �

Now, to have the equality between the components of the coupled fixed point,
we state and prove the following theorem.

Theorem 2.6. Adding to the hypotheses of Theorem 2.3 the following condition:

(E) ∀ (x, y, x′, y′) ∈ X4, ∃ (u, v) ∈ X2 | (x, y, u, v) ∈ M and (x′, y′, u, v) ∈ M,

we obtain the equality between the components of the coupled fixed point of F .

Proof. The proof is straightforward, following the same lines of the proof of The-
orem 2.5. Then, in order to avoid repetition, the details are omitted. �

Now, to stimulate the interest in this study, we are ready to extend naturally
the concepts of coupled fixed point and F -invariant subset with the following
definitions.

Definition 2.7. Let X be a non-empty set and F : XN → X be a given mapping
(N ≥ 2). An element (x1, x2, · · · , xN) ∈ XN is said to be a fixed point of N -order
of the mapping F if 

F (x1, x2, · · · , xN) = x1,
F (x2, x3, · · · , xN , x1) = x2,
...
F (xN , x1, · · · , xN−1) = xN .

Definition 2.8. Let (X, d) be a metric space and F : XN → X be a given
mapping. Let M be a non-empty subset of X2N . We say that M is F -invariant
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subset of X2N if and only if for all x1, x2, · · · , x2N ∈ X, we have
(A)

(x1, x2, · · · , x2N) ∈ M ⇔


(x2, x3, · · · , x2N , x1) ∈ M,
(x3, x4, · · · , x2N , x1, x2) ∈ M,
...
(x2N , x1, · · · , x2N−1) ∈ M ;

(B) (F (x1, x2, · · · , xN), . . . , F (xN , x1, · · · , xN−1), F (xN+1, xN+2, · · · , x2N), . . . ,
F (x2N , xN+1, · · · , x2N−1)) ∈ M whenever (x1, x2, · · · , x2N) ∈ M .

Finally, in virtue of the results obtained in the previous section, we can state
analogous results for fixed point of N -order in complete metric spaces and in
partially ordered sets. Here, we give the equivalent of Theorem 2.3, Theorem 2.5
and Theorem 2.6.

Theorem 2.9. Let (X, d) be a complete metric space, F : XN → X be a contin-
uous mapping and M be a non-empty subset of X2N . We assume that
(i) M is F -invariant;
(ii) there exists (x1, x2, · · · , xN) ∈ XN such that

(F (x1, x2, · · · , xN), · · · , F (xN , x1, · · · , xN−1), x1, x2, · · · , xN) ∈ M ;

(iii) for all (x1, x2, · · · , xN , xi1, xi2, · · · , xiN) ∈ M , we have

d(F (x1, x2, · · · , xN), F (xi1, xi2, · · · , xiN)) ≤ α

N
[d(x1, F (x1, x2, · · · , xN)) + · · ·

+ d(xN , F (xN , x1, x2, · · · , xN−1))] +
β

N
[d(xi1, F (xi1, xi2, · · · , xiN)) + · · ·

+ d(xiN , F (xiN , xi1, · · · , xi(N−1)))] +
θ

N
[d(x1, F (xi1, xi2, · · · , xiN)) + · · ·

+ d(xN , F (xiN , xi1, xi2, · · · , xi(N−1)))] +
γ

N
[d(xi1, F (x1, x2, · · · , xN)) + · · ·

+ d(xiN , F (xN , x1, x2, · · · , xN−1))] +
δ

N
[d(x1, xi1) + · · ·+ d(xN , xiN)],

where α, β, θ, γ, δ are nonnegative constants such that α+β +θ+γ +δ < 1. Then
F has a fixed point of N-order.

Theorem 2.10. Adding to the hypotheses of Theorem 2.9 the following condition:

(HN) ∀ (x1, x2, · · · , xN), (xi1, xi2, · · · , xiN) ∈ XN , ∃ (xj1, xj2, · · · , xjN) ∈ XN |

(x1, · · · , xN , xj1, xj2, · · · , xjN) ∈ M and (xi1, · · · , xiN , xj1, xj2, · · · , xjN) ∈ M,

we obtain the uniqueness of the fixed point of N-order of the mapping F .

Theorem 2.11. Adding to the hypotheses of Theorem 2.9 the following condition:

(EN) ∀ (x1, x2, · · · , xN , xi1, xi2, · · · , xiN) ∈ X2N , ∃ (xj1, xj2, · · · , xjN) ∈ XN |

(x1, · · · , xN , xj1, xj2, · · · , xjN) ∈ M and (xi1, · · · , xiN , xj1, xj2, · · · , xjN) ∈ M,

we obtain the equality between the components of the fixed point of N-order of the
mapping F .
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Example 2.12. Let X = R endowed with the usual metric d(u, v) = |u− v| for
all u, v ∈ X. Let N ≥ 2 and F : XN → X be the mapping defined by

F (x1, x2, · · · , xN) =
x1 + x2 + · · ·+ xN + 5N

N + 2
, ∀x = (x1, x2, · · · , xN) ∈ XN .

For all x = (x1, x2, · · · , xN), y = (y1, y2, · · · , yN) ∈ XN , we have

d(F (x), F (y)) ≤ δ

N
[d(x1, y1) + d(x2, y2) + · · ·+ d(xN , yN)],

where δ =
N

N + 2
. Applying Theorem 2.9 and Theorem 2.10 with M = X2N , we

obtain that F has a unique fixed point of N -order, that is

x∗ = (5N/2, 5N/2, · · · , 5N/2).

3. Applications

We start this section giving a simple application of our results. To be precise,
we deduce theorems in partially ordered cone metric spaces. At first, we recall
some definitions and preliminaries.

3.1. Preliminaries. We always assume that (E, P ) is a real ordered Banach
space, P is a cone in E and the partial order ≤ in E is defined by P . We denote
by θE the zero vector of E. Concerning the definitions and properties of cone
metric spaces, the reader can refer to Huang and Zhang [12]. We need also the
following concepts and theorem of [10].

Definition 3.1. (see Du [10].) Let X be a nonempty set. A vector-valued
function ρ : X × X → E is said to be a topological vector cone metric, if the
following conditions hold:

(C1) θE ≤ ρ(x, y) for all x, y ∈ X and ρ(x, y) = θE if and only if x = y;
(C2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(C3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

The pair (X, ρ) is then called a topological vector cone metric space.

In the following, the notation x � y will stand for y−x ∈ int(P ), where int(P )
denotes the interior of P .

Definition 3.2. (see Du [10].) Let (X, ρ) be a topological vector cone metric
space, x ∈ X and {xn}n∈N a sequence in X.
(i) {xn} topological vector cone converges to x whenever for every c ∈ E with
θE � c there is a natural number N0 such that ρ(xn, x) � c for all n ≥ N0;
(ii) {xn} is a topological vector cone Cauchy sequence whenever for every c ∈ E
with θE � c there is a natural number N0 such that ρ(xn, xm) � c for all
n,m ≥ N0;
(iii) (X, ρ) is topological vector complete cone space if every topological vector
cone Cauchy sequence in X is topological vector cone convergent.
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Theorem 3.3. (see Du [10].) Let (X, ρ) be a topological vector cone metric space,
x ∈ X and {xn}n∈N a sequence in X. Let dρ : X × X → [0, +∞) be defined as
dρ = ξe ◦ ρ, where ξe(y) = inf{r ∈ R : y ∈ re− P} for all y ∈ E and e ∈ int(P ).
Then the following statements hold:
(i) if {xn} topological vector cone converges to x, then dρ(xn, x) → 0 as n → +∞;
(ii) if {xn} is a topological vector cone Cauchy sequence in (X, ρ), then {xn} is a
Cauchy sequence (in usual sense) in (X, dρ);
(iii) if (X, ρ) is topological vector complete cone space, then (X, dρ) is a complete
metric space.

Remark 3.4. Note that the conditions (i), (ii) and (iii) of Theorem 3.3, should be
correctly presented in the form of necessary and sufficient conditions as follows:

(i) {xn} topological vector cone converges to x if and only if dρ(xn, x) → 0
as n → +∞;

(ii) {xn} is a topological vector cone Cauchy sequence in (X, ρ) if and only if
{xn} is a Cauchy sequence (in usual sense) in (X, dρ);

(iii) (X, ρ) is topological vector complete cone space if and only if (X, dρ) is a
complete metric space.

In fact in [10], the proof of the above Theorem 3.3 deals with necessary and
sufficient conditions.

3.2. Coupled fixed point results in a partially ordered cone metric
space. As a consequence of Theorem 2.3, we obtain the following result.

Corollary 3.5. Let (X, ρ) be a topological vector complete cone metric space
endowed with a partial order ≤. Let F : X × X → X be a continuous mapping
having the mixed monotone property on X. We assume that the mapping F
satisfies, for all (x, y, u, v) ∈ X4 with u ≤ x and y ≤ v, the following contractive
condition:

ρ(F (x, y), F (u, v)) ≤ α

2
[ρ(x, F (x, y)) + ρ(y, F (y, x))] (3.1)

+
β

2
[ρ(u, F (u, v)) + ρ(v, F (v, u))] +

θ

2
[ρ(x, F (u, v)) + ρ(y, F (v, u))]

+
γ

2
[ρ(u, F (x, y)) + ρ(v, F (y, x))] +

δ

2
[ρ(x, u) + ρ(y, v)],

where α, β, θ, γ, δ are nonnegative constants such that α + β + θ + γ + δ < 1. If
there exist x0, y0 ∈ X such that x0 ≤ F (x0, y0) and F (y0, x0) ≤ y0, then F has
a coupled fixed point, i.e., there exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and
F (y∗, x∗) = y∗.
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Proof. Define dρ := ξe ◦ ρ. By Theorem 3.3, it follows that (X, dρ) is a complete
metric space. Now condition (3.1) implies that

dρ(F (x, y), F (u, v)) ≤ α

2
[dρ(x, F (x, y)) + dρ(y, F (y, x))]

+
β

2
[dρ(u, F (u, v)) + dρ(v, F (v, u))] +

θ

2
[dρ(x, F (u, v)) + dρ(y, F (v, u))]

+
γ

2
[dρ(u, F (x, y)) + dρ(v, F (y, x))] +

δ

2
[dρ(x, u) + dρ(y, v)],

for all (x, y, u, v) ∈ X4 with u ≤ x and y ≤ v. Now, defining M ⊆ X4 as

M = {(a, b, c, d) ∈ X4 | c ≤ a, b ≤ d},
we check easily that all hypotheses of Theorem 2.3 are satisfied. Then, we get
the desired result. �

Remark 3.6. Corollary 3.5 generalizes Theorem 2.1 of Bhaskar and Lakshmikan-
tham in [4].

As a consequence of Theorem 2.5, we have the following result.

Corollary 3.7. Adding to the hypotheses of Corollary 3.5 the following condition:

(H1) ∀ (x, y), (x′, y′) ∈ X2,∃(u, v) ∈ X2 that is comparable to (x, y) and (x′, y′),

we obtain the uniqueness of the coupled fixed point of F . Here, X2 is endowed
with the partial order

(x, y) ≤ (x′, y′) ⇔ x ≤ x′, y′ ≤ y.

Proof. The proof follows easily by Theorem 2.5 defining again M ⊆ X4 as

M = {(a, b, c, d) ∈ X4 | c ≤ a, b ≤ d}.
�

Remark 3.8. Corollary 3.7 is a generalization of Theorem 2.4 of Bhaskar and
Lakshmikantham in [4].

As a consequence of Theorem 2.6, we obtain the following result.

Corollary 3.9. Adding to the hypotheses of Corollary 3.5 the following condition:

(E1) every pair of elements of X has an upper bound or a lower bound in X.

Then x = y, i.e., x = F (x, x).

Proof. The proof follows easily by Theorem 2.6 defining, once again, M ⊆ X4 as

M = {(a, b, c, d) ∈ X4 | c ≤ a, b ≤ d}.
�

Remark 3.10. Corollary 3.9 is a generalization of Theorem 2.5 of Bhaskar and
Lakshmikantham in [4].

Remark 3.11. Denoting

f(x) = F (x, x), ∀x ∈ X,

Corollary 3.9 can be considered also as a generalization of results in [2].



56 B. SAMET, C. VETRO

References

1. I. Altun, M. Abbas and H. Simsek, A fixed point theorem on cone metric spaces with new
type contractivity, Banach J. Math. Anal. 5 (2011), no. 2, 15–24.

2. I. Altun and G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend.
Circ. Mat. Palermo 58 (2009), 319–325.
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14. V. Lakshmikantham and L.B. Ćirić, Coupled fixed point theorems for nonlinear contractions
in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341–4349.
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nis, Département de Mathématiques, 5, avenue Taha Hussein-Tunis, B.P.:56, bab
menara-1008, tunisie.

E-mail address: bessem.samet@gmail.com

2 Department of Mathematics and Informatics, University of Palermo, Via
Archirafi 34, 90123 Palermo, Italy.

E-mail address: cvetro@math.unipa.it


	1. Introduction
	2. Main results
	3. Applications
	3.1. Preliminaries
	3.2. Coupled fixed point results in a partially ordered cone metric space

	References

