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INVARIANT APPROXIMATION RESULTS IN CONE METRIC
SPACES

MUJAHID ABBAS1 AND PASQUALE VETRO2∗

Communicated by G. L. Acedo

Abstract. Some sufficient conditions for the existence of fixed point of map-
pings satisfying generalized weak contractive conditions is obtained. A fixed
point theorem for nonexpansive mappings is also obtained. As an application,
some invariant approximation results are derived in cone metric spaces.

1. Introduction and preliminaries

Recently, Huang and Zhang [9] introduced the concept of a cone metric space,
replacing the set of positive real numbers by an ordered Banach space. They
obtained some fixed point theorems in cone metric spaces using the normality of
cone which induces an order in Banach spaces. Rezapour and Hamlbarani [15]
showed the existence of a non normal cone metric space and obtained some fixed
point results in cone metric spaces (see also, [3, 10], [16] and [17]). Subsequently,
Abbas and Rhoades [1], Abbas and Jungck [2] and Vetro [18] studied common
fixed point theorems in cone metric spaces (see also, [3], [6]). The aim of this paper
is to establish a generalized Banach contraction principle in cone metric spaces.
Study of sufficient conditions for the existence of fixed point of nonexpansive
mappings in cone metric spaces is also initiated. It is worth mentioning that our
results do not require the assumption of normal cone. Our results extend and
unify various comparable results in the literature ([4, 5, 8, 11, 12, 13, 14]).
Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non empty and P 6= {0};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
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(c) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P , while x� y stands for y − x ∈ intP (interior of P ). A
cone P is said to be normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal
constant of P . In [15], it was proved that there is no normal cones with normal
constants K < 1 and for each k > 1 there are cones with normal constants K > k.
A cone P is called regular if every increasing sequence which is order bounded from
above is convergent. That is, if {xn} is a sequence such that x1 ≤ x2 ≤ · · · ≤ x
for some x ∈ E, then there exists some z ∈ E such that lim

n→∞
‖xn − z‖ = 0.

Equivalently the cone P is regular if and only if every decreasing sequence which
is order bounded from below is convergent. Note that every regular cone is
normal. For examples of a regular cone metric space we refer to [10].

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X ×
X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The
concept of a cone metric space is more general than that of a metric space.

Definition 1.2. Let (X, d) be a cone metric space, {xn} a sequence in X and
x ∈ X. For every c ∈ E with 0 � c, we say that {xn} is

(i) a Cauchy sequence if there is an n0 ∈ N such that, for all n,m ≥ n0,
d(xn, xm) � c.

(ii) a convergent sequence if there is an n0 ∈ N such that, for all n ≥ n0,
d(xn, x) � c for some x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is
convergent in X. It is known that {xn} converges to x ∈ X if d(xn, x) → 0 as
n → ∞. Further, if P is a normal cone then xn → x if and only if d(xn, x) → 0
and {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 as n,m → ∞, e.g.,
see ( [9], Lemma 3 and Lemma 4). A set A in a cone metric space X is closed if
for every sequence {xn} in A which converges to some x in X implies that x ∈ A.
For every A ⊂ X, we define

A := {x ∈ X : ∃ {xn} ⊂ A with xn → x}.

A set A in a cone metric space X is compact if for every sequence {xn} in A
there exist a subsequence {xnk

} of {xn} and a point x ∈ A such that xnk
→ x.

Remark 1.3. If E is a real Banach space with a cone P and if a ≤ ha where a ∈ P
and h ∈ (0, 1) , then a = 0.

Definition 1.4. Let X be a cone metric space. A map f : X → X is called:
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(i) contraction if there exists h ∈ [0, 1) such that

d(fx, fy) ≤ h d(x, y) for all x, y ∈ X.
(ii) Banach operator if there exists k ∈ [0, 1) such that

d(fx, f2x) ≤ k d(x, fx) for all x ∈ X.
(iii) g−nonexpansive if d(fx, fy) ≤ d(gx, gy), for each x, y ∈ X, where g is a

self map on X.
(iv) (ψ, φ)-contraction if there exist two mappings ψ, φ : P → P continuous,

with ψ(t) = φ(t) = 0 if and only if t = 0, and ψ monotone increasing such
that

ψ (d(fx, fy)) ≤ ψ (d (x, y))− φ (d (x, y)) (1.1)

for each x, y ∈ X.

Definition 1.5. Let f be a selfmap on a cone metric space X. An orbit of f at
the point x in X is the set

O(x, f) = {x, fx, f2x, ...}.
The orbit O(x, f) of f at the point x is said to complete if any Cauchy subsequence
{fnix} in orbit O(x, f) converges in X. f is said to be f -orbitally complete if the
orbit O(x, f) is complete for every x ∈ X. We denote with LO(x, f) the set of
points z of X that are the limit of a subsequence {fnix} in orbit O(x, f).
f is said to be continuous at p ∈ X with respect to the orbit O(x, f) if fnix→ p
implies f(fnix) → fp as i→∞. f is said to be orbitally continuous at p ∈ X if
fnix→ p implies f(fnix) → fp as i→∞ for every x ∈ X.

Definition 1.6. Let C be a nonempty subset of a cone metric space X. For
x ∈ X, z0 ∈ C is a best approximation of x whenever

d(x, z0) ≤ d(x, z)

for all z ∈ C ( see also [17]). The set of all best approximations of x in C is
denoted by PC(x).

Definition 1.7. Let X be a cone metric space, C be a subset of X and F = {fα :
α ∈ C} a family of functions from [0, 1] into C, having property that fα(1) = α,
for each α ∈ C. Such a family F is said to be contractive if there exits a mapping
ϕ : (0, 1) → (0, 1) such that for all α,β ∈ C, t ∈ (0, 1), we have

d(fα(t), fβ(t)) ≤ ϕ(t)d(α, β).

A family F is said to be jointly continuous if α → α0 in C and t → t0 in (0, 1)
imply fα(t) → fα0(t0) in C.

Lemma 1.8. Let (X, d) be a cone metric space with respect to a cone P . Let {xn}
be a sequence in X and {an} be a sequence in P converging to 0. If d(xn, xm) ≤ an

for every n ∈ N with m > n, then {xn} is a Cauchy sequence.

Proof. Fix 0 � c and choose I(0, δ) = {x ∈ E : ‖x‖ < δ} such that c+ I(0, δ) ⊂
intP . Since an → 0, there exists n0 ∈ N be such that an ∈ I(0, δ) for every
n ≥ n0. From c− an ∈ intP , we deduce d(xn, xm) ≤ an � c for every m,n ≥ n0

and hence {xn} is a Cauchy sequence. �
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Lemma 1.9. Let (X, d) be a cone metric space with respect to a cone P . Let
{xn} be a sequence in X. If for every real number ε > 0, there exists n(ε) ∈ N
such that ‖d(xn, xm)‖ < ε for all m,n ≥ n(ε), then {xn} is a Cauchy sequence.

Proof. Fix 0 � c and choose ε > 0 such that c+ I(0, ε) ⊂ intP . Let n(ε) ∈ N be
such that ‖d(xn, xm)‖ < ε for all m,n ≥ n(ε), then c− d(xn, xm) ∈ intP and so
d(xn, xm) � c for all m,n ≥ n(ε). �

2. Fixed Point Theorems

In this section, a generalized Banach contraction principle in cone metric space
is obtained.

Following theorem extends Theorem 2 of [13] to cone metric spaces, improve
Theorem 2.3 of [15] and consequently correspondent results mentioned therein.

Let X be a cone metric space and f be a selfmap on X, for every x, y ∈ X we
define

M(x, y) :={d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
,
d(x, fx) + d(y, fy)

2
}.

Theorem 2.1. Let X be a cone metric space and f be a selfmap on X. Assume
that there exist a point u ∈ X and k ∈ [0, 1) such that

d(fx, fy) ≤ kw, (2.1)

where w ∈ M(x, y), holds for any x, y = fx in O(u, f). Then {fnu} converges
to some v in X provided O(u, f) is complete.

Further, if f is continuous at v with respect to the orbit O(u, f) or if (2.1)
holds for any x in O(u, f) and y ∈ LO(u, f), then v is a fixed point of f. v is a
unique fixed point for f if ∩+∞

n=1f
n(X) is a singleton set.

Proof. We show that {fnu} is a Cauchy sequence inO(u, f). Let dn = d(fn−1u, fnu),
we have

M(fn−1u, fnu) := {dn, dn+1,
d(fn−1u, fn+1u)

2
,
dn + dn+1

2
}.

From (2.1), for x = fn−1u, if w = dn+1, we deduce that fnu = fn+1u and so
fmu = fnu for every m ≥ n. This implies that {fnu} is a Cauchy sequence in
O(u, f).

If w = d(fn−1u,fn+1u)
2

or w = (dn + dn+1)/2, by(2.1) we deduce that

dn+1 ≤ k
d(fn−1u, fn+1u)

2
≤ k

dn + dn+1

2
,

and we get

dn+1 ≤
k

2− k
dn.

If w = dn, then

dn+1 ≤ kdn.
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This implies that for every n ∈ N

dn+1 ≤ kdn ≤ · · · ≤ knd1.

Moreover for any n,m ∈ N, we deduce

d(fnu, fn+mu) ≤ dn+1 + · · ·+ dn+m

≤ (1 + k + k2 + · · ·+ km−1)dn+1

≤ 1

1− k
dn+1 ≤

kn

1− k
d1.

Since kn(1 − k)−1d1 → 0 in P as n → ∞, by Lemma 1.8 we deduce that {fnu}
is a Cauchy sequence in O(u, f) and hence converges to a point v ∈ LO(u, f).

Suppose f is continuous at v with respect to the orbit O(u, f). Then fnu→ v
implies fn+1u→ fv as n→∞. This shows that v = fv.

Now assume that (2.1) holds for any x ∈ O(u, f) and y ∈ LO(u, f). Fix 0 � c
and choose nm ∈ N such that d(v, fn+nmu) � c/m, from

d(fnu, v) ≤ d(fnu, fn+nmu) + d(fn+nmu, v) ≤ kn

1− k
d1 +

c

m
,

as m→∞ we deduce that

d(fnu, v) ≤ kn

1− k
d(u, fu) for n = 1, 2, . . . .

Now, we prove that

d(fn+1u, fv) ≤ kn+1

(1− k)2
d(u, fu) for n = 1, 2, . . . . (2.2)

We have

M(fnu, v) ={d(fnu, v), dn+1, d(v, fv),

d(fnu, fv) + d(v, fn+1u)

2
,
dn+1 + d(v, fv)

2
}.

From (2.1), for x = fnu and y = v, if w = d(fnu, v), then (2.2) holds. If
w = dn+1, then d(fn+1u, fv) ≤ k dn+1 ≤ kn+1d1 and (2.2) holds.
If w = d(v, fv), then

d(fn+1u, fv) ≤ kd(v, fv) ≤ kd(fn+1u, fv) + kd(fn+1u, v)

≤ kd(fn+1u, fv) +
kn+2

1− k
d1,

and so

d(fn+1u, fv) ≤ kn+2

(1− k)2
d1
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and (2.2) holds.

If w = d(fnu,fv)+d(v,fn+1u)
2

, then

2d(fn+1u, fv) ≤ k[d(fnu, fv) + d(v, fn+1u)]

≤ kd(fn+1u, fv) + kd(fn+1u, fnu) + kd(v, fn+1u)

≤ kd(fn+1u, fv) +
kn+1

1− k
d1,

and (2.2) holds.

If w = dn+1+d(v,fv)
2

, then

2d(fn+1u, fv) ≤ k[dn+1 + d(v, fv)]

≤ kn+1d1 + kd(fn+1u, fv) + kd(v, fn+1u)

≤ kd(fn+1u, fv) +
kn+1

1− k
d1,

and (2.2) holds.

Now,

d(fv, v) ≤ d(fv, fn+1u) + d(fn+1u, v)

≤ (2− k)
kn+1

(1− k)2
d(u, fu) → 0,

implies d(v, fv) = 0. Therefore fv = v.
If ∩+∞

n=1f
n(X) = {z}, since v is a fixed point for f , we deduce that v = z and

so f has a unique fixed point. Hence the result follows. �

Example 2.2. Let X = [0, 1], E = R2 be a Banach space and P = {(x, y) ∈ E :
x, y ≥ 0}. Let d : X ×X → E be defined by

d(x, y) = (|x− y| , h |x− y|)

where h ≥ 0. Define f : X → X as fx = 1 − x. Take u = 1/2, then O(u, f) =
{u} and d(fx, fy) ≤ kd(x, y) for each x, y = fx ∈ O(u, f), where k ∈ [0, 1).
Obviously {fnu} converges to u and f is continuous at u with respect to the
orbit O(u, f). Moreover, u is a fixed point of f.

Note that Theorem 1 of [9] is not applicable in this case.

Corollary 2.3. Let X be a cone metric space and C be a subset of X. If f :
C → C is a continuous Banach operator. Then f has a fixed point in C provided
f(C) is a complete subset of C.

Proof. It follows by Theorem 2.1. �

Example 2.4. Let a ∈ (1/2, (
√

5 − 1)/2) and X = [0, a], E = R2 be a Banach
space and P = {(x, y) ∈ E : x, y ≥ 0}. Let d : X ×X → E be defined by

d(x, y) = (|x− y| , h |x− y|)
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where h ≥ 0. Define f : X → X as fx = x2. Then for each x ∈ X

d(fx, f 2x) = (x2 − x4, h(x2 − x4))

≤ a(1 + a)(x− x2, h(x− x2))

= a(1 + a)d(x, fx).

Since a(1 + a) < 1, the map f is a continuous Banach operator. Moreover,
f(0) = 0. We note that f is not nonexpansive.

Corollary 2.5. Let X be a cone metric space and f be a selfmap on X. Assume
that there exists a point u ∈ X such that

d(fx, fy) ≤ kd(x, y) + ad(x, fx) + bd(y, fy) + cd(y, fx) + ed(x, fy) (2.3)

holds for any x, y = fx in O(u, f), where k, a, b, c, e are non negative real numbers
satisfying c > e and k + a + b + c + e = 1 or c ≥ e and k + a + b + c + e < 1.
Then {fnu} converges to some v in X provided O(u, f) is complete.

Further, if f is continuous at v with respect to the orbit O(u, f) or if (2.3)
holds for any x in O(u, f) and y ∈ LO(u, f) and k+a > 0, then v is a fixed point
of f. v is a unique fixed point for f if ∩+∞

n=1f
n(X) is a singleton set.

Proof. In (2.3) set y = fx with x ∈ O(u, f) to deduce

d(fx, f 2x) ≤ (k + a+ e)d(x, fx) + (b+ e)d(fx, f2x),

which implies

d(fx, f2x) ≤ hd(x, fx)

where h = (k + a+ e)/(1− b− e) < 1. The result follows by Theorem 2.1. �

Corollary 2.5 improves comparable results in the literature. Following theorem
extends Theorem 2.1 of [8] and Theorem 1.4 of [14].

Theorem 2.6. Let (X, d) be a complete regular cone metric space with respect to
cone P and f : X → X be a (ψ, φ)-contraction. Assume that for each 0 � c we
have d(x, y) � c or d(x, y) ≥ c for all x, y ∈ X. Then f has a unique fixed point.

Proof. For any x0 ∈ X, we construct the sequence {xn} such that xn = fxn−1,
then we have

ψ (d(xn, xn+1)) ≤ ψ (d (xn−1, xn))− φ (d (xn−1, xn)) .

By monotone property of ψ we obtain

d(xn, xn+1) ≤ d (xn−1, xn) .

It follows that the sequence {d (xn, xn+1)} is monotone decreasing, then there
exists z in E such that d(xn, xn+1) → z as n → ∞, which further implies that
ψ(z) ≤ ψ(z) − φ(z), consequently z = 0. We now prove that {xn} is a Cauchy
sequence. If not, there exists c � 0 in E for which we can find subsequences
{xmk

} and {xnk
} of {xn} with nk > mk > k such that

d (xmk
, xnk

) ≥ c. (2.4)
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Further, corresponding to mk, we can choose nk in such a way that it is the
smallest integer with nk > mk such that d (xmk

, xnk−1) � c and d (xmk
, xnk

) ≥ c.
From

c ≤ d (xmk
, xnk

)

≤ d (xmk
, xnk−1) + d(xnk−1, xnk

) < c+ d (xnk−1, xnk
) ,

it follows

lim
k→∞

d (xmk
, xnk

) = c.

Now

d(xnk
, xmk

)− d(xnk−1, xnk
)− d(xmk

, xmk−1)

≤ d(xnk−1, xmk−1)

≤ d(xnk−1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk−1),

gives

d (xnk−1, xmk−1) → c as k →∞.

Setting x = xmk−1 and y = xnk−1 in (1.1) and using (2.4), we obtain

ψ(c) ≤ ψ (d(xmk
, xnk

))

≤ ψ (d(xmk−1, xnk−1))− φ (d(xmk−1, xnk−1)).

Therefore

ψ(c) ≤ ψ (c)− φ (c) ,

a contradiction which shows that {xn} is a Cauchy sequence in X, and so xn → u,
for some u in X. Take x = xn−1 and y = u in (1.1), then

ψ(d(xn, fu)) ≤ ψ(d(xn−1, u))− φ(d (xn−1, u)),

and consequently

ψ(d(u, fu)) ≤ ψ (0)− φ (0) = 0.

This implies that ψ(d(u, fu)) = 0, and fu = u. For uniqueness of the fixed point,
suppose that v is another fixed point of f , then by taking x = u, and y = v in
(1.1), we have

ψ(d(u, v)) = ψ(d(fu, fv)) ≤ ψ (d(u, v))− φ (d (u, v))

which is possible only if u = v. �

Remark 2.7. Theorem 2.6 holds, also, if we assume that for each 0 � c we have
d(x, y) < c or d(x, y) ≥ c for all x, y ∈ X. In fact, if for every 0 � c there exists
n0 ∈ N such that d(xm, xn) < c for all m,n ≥ n0, then d(xm, xn) � 2c and so
{xn} is a Cauchy sequence.

Theorem 2.8. Let (X, d) be a complete regular cone metric space with respect
to cone P and f : X → X be a (ψ, φ)-contraction. Assume that every bounded
sequence {an} ⊂ P has a subsequence convergent to a point of P . Then f has a
unique fixed point.
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Proof. For any x0 ∈ X, we construct the sequence {xn} such that xn = fxn−1.
As in the proof of Theorem 2.6 we deduce that d(xn, xn+1) → 0. We now prove
that {xn} is a Cauchy sequence, that is, d(xn, xm) → 0 as n,m→∞. If not, by
Lemma 1.9, there exists a real number ε > 0 for which we can find subsequences
{xmk

} and {xnk
} of {xn} with nk > mk > k such that

‖d (xmk
, xnk

) ‖ ≥ ε.

Further, corresponding to mk, we can choose nk in such a way that it is the small-
est integer with nk > mk such that ‖d (xmk

, xnk−1) ‖ < ε and ‖d (xmk
, xnk

) ‖ ≥ ε.
Let K be the normal constant of P . From

ε ≤ ‖d (xmk
, xnk

) ‖ ≤ K‖d(xmk
, xnk−1) + d(xnk−1, xnk

)‖
≤ K‖d (xmk

, xnk−1) ‖+K‖d(xnk−1, xnk
)‖

< Kε+K‖d (xnk−1, xnk
) ‖,

it follows
lim sup

k→∞
‖d (xmk

, xnk
) ‖ ≤ Kε.

It implies that the sequence {d (xmk
, xnk

)} is bounded. Consequently, there exists
a subsequence of {d (xmk

, xnk
)} that converges to a point c ∈ P \ {0} and that

we denote also by {d (xmk
, xnk

)}.
Now

d(xnk
, xmk

)− d(xnk−1, xnk
)− d(xmk

, xmk−1)

≤ d(xnk−1, xmk−1)

≤ d(xnk−1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk−1),

gives
d (xnk−1, xmk−1) → c as k →∞.

From

ψ (d(xmk
, xnk

)) ≤ ψ (d(xmk−1, xnk−1))− φ (d(xmk−1, xnk−1)),

as k →∞, we obtain
ψ(c) ≤ ψ (c)− φ (c) ,

a contradiction which shows that {xn} is a Cauchy sequence in X, and so xn → u,
for some u in X. Proceeding as in Theorem 2.6 we deduce that u is the unique
fixed point for f . �

Example 2.9. Let X = [0, 1], E = R2 be a real Banach space and P = {(x, y) ∈
E : x, y ≥ 0}. Let d : X ×X → E be defined by

d(x, y) = (|x− y| , h |x− y|)
where h > 0. Define f : X → X as

fx =
x

1 + x

for every x ∈ X. Let ψ, φ : P → P, such that

ψ(x, y) = (x, y) and φ(x, h y) = (
x2

1 + x
, h

y2

1 + y
) for all (x, y) ∈ P .



110 M. ABBAS, P. VETRO

Clearly ψ, φ both are continuous and monotone increasing mappings with ψ (x, y) =
φ(x, y) = (0, 0) if and only if (x, y) = (0, 0).
For each x, y ∈ X

d(fx, fy) = (

∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣ , h ∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣)
= (

|x− y|
(1 + x)(1 + y)

, h
|x− y|

(1 + x)(1 + y)
)

≤ (
|x− y|

1 + |x− y|
, h

|x− y|
1 + |x− y|

)

= (|x− y|, h|x− y|)− (
|x− y|2

1 + |x− y|
, h

|x− y|2

1 + |x− y|
).

Now

ψ (d(fx, fy)) = d(fx, fy)

≤ ψ(d(x, y))− φ(d(x, y)).

Hence (1.1) is satisfied and by Theorem 2.8 f has a unique fixed point x = 0.

As an application of Theorem 2.8, we prove a result of existence of a solution
of a Urysohn integral equation.
Let X = C([a, b], Rn), space of all continuous functions from [a, b] ⊂ R to Rn,
P = {(u, v) ∈ R2 : u, v ≥ 0} and

d(x, y) = ( sup
t∈[a,b]

‖x(t)− y(t)‖ , h sup
t∈[a,b]

‖x(t)− y(t)‖)

for every x, y ∈ X, where h ≥ 0 is a constant. (X, d) is a complete cone metric
space. Consider the Urysohn integral equation

x(t) =

b∫
a

K(t, s, x(s))ds+ g(t) (2.5)

where t, s ∈ [a, b], K : [a, b]× [a, b]×Rn → Rn and g : [a, b] → Rn are continuous.
Suppose that
(i) there exists a continuous function p : [a, b] × [a, b] → R+ and a (ψ, φ)-
contraction σ : P → P such that

(‖K(t, s, u)−K(t, s, v)‖ , h ‖K(t, s, u)−K(t, s, v)‖)
≤ p(t, s)σ(d(u, v))

for t, s ∈ [a, b], and u, v ∈ X,

(ii) sup
t∈[a,b]

b∫
a

p(t, s)ds ≤ 1,

then the integral equation (2.5) has a unique solution x∗ in C([a, b],Rn).
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Proof. Define f : (C[a, b],Rn) → C([a, b],Rn) by

fx(t) =

b∫
a

K(t, s, x(s))ds+ g(t), t ∈ [a, b]

and put Ht(x(s), y(s)) = K(t, s, x(s))−K(t, s, y(s)). For every x, y ∈ X, we have

ψ(d(fx, fy))

= ψ(( sup
t∈[a,b]

‖
b∫

a

Ht(x(s), y(s))ds‖, h sup
t∈[a,b]

‖
b∫

a

Ht(x(s), y(s))ds‖))

≤ ψ(( sup
t∈[a,b]

b∫
a

‖Ht(x(s), y(s))‖ds, h sup
t∈[a,b]

b∫
a

‖Ht(x(s), y(s))‖ds))

≤ ψ( sup
t∈[a,b]

b∫
a

p(t, s)σ(d(x, y))ds)

= ψ(σ(d(x, y)) sup
t∈[a,b]

b∫
a

p(t, s)ds)

≤ ψ(σ(d(x, y)))

≤ ψ(d(x, y))− φ(d(x, y)).

That is f is a (ψ, φ)-contraction and conclusion follows from Theorem 2.8. �

3. Invariant Approximation Results

In this section, existence of fixed points of nonexpansive mappings defined on
cone metric spaces is proved and as an application invariant approximation results
are obtained.

Theorem 3.1. Let (X, d) be a cone metric space and C be a subset of X. Let
g : C → C be a nonexpansive mapping and F = {fα : α ∈ g(C)} a family of

contractive jointly continuous maps from [0, 1] into g(C). If g(C) is a compact
subset of C. Then g has a fixed point in C.

Proof. For each n ∈ N , let λn =
n

n+ 1
. Define gn : C → C such that gnx =

fgx(λn). Now,

d(gnx, g
2
nx) = d(fgx(λn), fg(fgx(λn))(λn))

≤ ϕ(λn)d(gx, g(fgx(λn))

≤ ϕ(λn)d(x, gnx)

implies that each gn is a continuous Banach operator. Moreover the orbits
O(u, gn) are complete for all u ∈ C and n ∈ N, since O(u, gn) ⊂ g(C). Us-
ing Corollary 2.3, we obtain a sequence {pn} in g(C) such that gn(pn) = pn for
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each n, so there exists a subsequence {pnk
} such that pnk

→ q ∈ C and gpnk
→ gq.

Since

q = lim
k→∞

pnk
= lim

k→∞
gnk

(pnk
)

= lim
k→∞

fgpnk
(λnk

) = fgq(1) = gq,

it follows the result. �

Note that above Theorem extends results of [7] to cone metric spaces.

Theorem 3.2. Let X be a cone metric space and g : X → X be a map. Assume
that C and {x} are g-invariant subsets of X. If PC(x) is a nonempty compact set
with a contractive jointly continuous family of mappings from [0, 1] into PC(x)
and g is nonexpansive on PC(x) ∪ {x}, then PC(x) contains a g-invariant point.

Proof. Note that g(PC(x)) ⊆ PC(x), in fact if y ∈ PC(x) then

d(x, gy) = d(gx, gy) ≤ d(x, y),

and so gy ∈ PC(x). Let {λn} be a sequence of real numbers in (0, 1) such that
λn → 1. Define gn : PC(x) → PC(x) such that gnz = fgz(λn). For y, z ∈ PC(x),
we have

d(gny, gnz) = d(fgy(λn), fgz(λn))

≤ ϕ(λn)d(gy, gz)

≤ ϕ(λn)d(y, z).

Thus for each n, gn is a contraction mapping on a complete space PC(x). We
obtain a sequence {xn} in PC(x) such that gn(xn) = xn. Since PC(x) is compact
there is a subsequence {xnk

} of {xn} such that xnk
→ x0 ∈ PC(x). Now, we show

that gx0 = x0. For this, consider

x0 = lim
k→∞

xnk
= lim

k→∞
gnk

(xnk
)

= lim
k→∞

fgxnk
(λnk

) = fgx0(1) = gx0.

Hence x0 ∈ PC(x) is a g-invariant point. �

Theorem 3.3. Let X be a cone metric space, f and g commuting mappings on
X. The following are equivalent:

(i) x0 is a unique invariant point of fg,
(ii) x0 is a unique invariant point of f and g,
(iii) x0 is a unique invariant point of f or g.

Proof. (i) ⇒ (ii). Suppose that x0 is a unique invariant point for fg. Then
fgx0 = x0, which implies that gfgx0 = gx0. Since f and g commute, gfgx0 =
fggx0 = gx0 and gx0 is an invariant point of fg which implies gx0 = x0. The
same holds for f .

(ii) ⇒ (i) and (ii) ⇒ (iii). Obvious.
(iii) ⇒ (ii). Suppose that x0 is a unique invariant point for f . Then gx0 =

gfx0. Since f and g commute, gx0 = gfx0 = fgx0, and gx0 is now an invariant
point for f . This implies that gx0 = x0. �
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