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Abstract. In the peresent paper, by using generalized weighted mean and
difference matrix of order m, we introduce the sequence spaces X(u, v, ∆(m)),
where X is one of the spaces `∞, c or c0. Also, we determine the α-, β- and
γ-duals of those spaces and construct their Schauder bases for X ∈ {c, c0}.
Morever, we give the characterization of the matrix mappings on the spaces
X(u, v, ∆m) for X ∈ {`∞, c, c0}. Finally, we characterize some classes of
compact operators on the spaces `∞(u, v, ∆m) and c0(u, v, ∆m) by using the
Hausdorff measure of noncompactness.

1. Introduction

Let w be the space of real sequences. Any vector subspace of w is called as a
sequence space. By `∞, c, c0 and `p(1 < p < ∞), we denote the sequence spaces
of all bounded, convergent, null sequences and p-absolutely convergent series,
respectively. Also, we shall write φ for the set of all finite sequences that terminate
in zeros, e = (1, 1, 1, · · · ) and e(n) for the sequence whose only non-zero term 1
is at the nth place for each n ∈ N, where N = {0, 1, 2, · · · } . Let A = (ank) be an
infinite matrix of real numbers ank (n, k ∈ N) and An denote the sequence in the
nth row of A, that is An = (ank)

∞
k=0 for every n ∈ N. In addition, if x = (xk) ∈ w

then we define the A-transform of x as the sequence Ax = {(Ax)n} , where

(Ax)n =
∑

k

ankxk; (n ∈ N) , (1.1)

provided the series on the right converges for each n ∈ N.
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Let X and Y be two sequence spaces. By (X, Y ), we denote the class
of all matrices A such that A : X → Y . Thus, A ∈ (X, Y ) if and only if
Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. Morever, the matrix domain XA of an
infinite matrix A in sequence space X is defined by

XA = {x = (xk) ∈ w : Ax ∈ X} . (1.2)

The approach constructing a new sequence space by means of the matrix do-
main of a particular limitation method has recently been employed by several
authors, see for instance [1]-[6],[8],[11]-[15],[19],[20],[26]-[29]. Also in the liter-
ature, there are many papers concerning the new sequence spaces derived by
the domain of generalized weighted mean or the difference matrix order m(see
[1, 2, 6, 12, 13, 15, 20, 22, 23, 28, 29]).

In the present paper, we define the new sequence spaces by using generalized
weighted mean and difference matrix order m. Further, we determine the α-,
β- and γ-duals of these spaces and construct their Schauder bases. Morever, we
characterize some related matrix classes. Finally, by using the Hausdorff mea-
sure of noncompactness, we give the characterization of some classes of compact
operators on these spaces.

2. The Sequence Spaces X(u, v, ∆(m)) for X ∈ {`∞, c, c0}

In this section, we define the sequence spaces `∞(u, v, ∆(m)), c(u, v, ∆(m)) and
c0(u, v, ∆(m)) derived by the composition of the generalized weighted mean and
difference matrix order m, and show that these spaces are the BK-spaces which
are linearly isomorphic to the spaces `∞, c, c0, respectively. Furthermore, we give
the bases for the spaces c(u, v, ∆(m)) and c0(u, v, ∆(m)).

If a normed space λ contains a sequence (bn) with the property that for every
x ∈ λ, there is a unique of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + · · ·+ αnbn)‖ = 0,

then (bn) is called a Schauder basis for λ. The series
∑

αkbk which has the sum x
is then called the expansion of x with respect to (bn) and written as x =

∑
αkbk.

A sequence space X is called FK space if it is a complete linear metric space
with continuous coordinates pn : X → R (n ∈ N), where R denotes the real field
and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N. A BK space is a normed
FK space, that is, a BK space is a Banach space with continuous coordinates.

The space `p (1 ≤ p < ∞) is BK space with ‖x‖p = (
∑∞

k=0 |xk|p)1/p
and c0, c and

`∞ are BK spaces with ‖x‖∞ = supk |xk| .
Let m denote a positive integer throughout and the operator ∆(m) : w → w be

defined by

(∆(1)x)k = xk − xk−1, (k = 0, 1, 2, · · · ),

∆(m) = ∆(1) o ∆(m−1)(m ≥ 2).

We shall write ∆ = ∆(1) for short and use the convention that any term with a
negative subscript is equal to naught.
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By U, we denote for the set of all sequences u = (un) such that un 6= 0 for
all n ∈ N. For u ∈ U, let 1/u = (1/un). Let u, v ∈ U and define the matrix
G(u, v) = (gnk) by

gnk =

{
unvk, (0 ≤ k ≤ n)

0, (k > n)

for all k, n ∈ N, where un depends only on n and vk only on k. The matrix G(u, v),
defined above, is called as generalized weighted mean or factorable matrix [2].

Malkowsky and Savaş[20] have defined the sequence spaces Z(u, v, X) which
consists of all sequences such that G(u, v)-transforms of them are in X ∈ {`∞, c, c0,
`p } . Başar and Altay[2] have examined the paranormed sequence spaces λ(u, v; p)
which are derived by the generalized weighted mean and proved that the spaces
λ(u, v; p) and λ(p) are linearly isomorphic, where λ(p) denotes the one of the
sequence spaces `∞(p), c(p) and c0(p) defined by Maddox[14]. Recently, Polat,
Karakaya and Şimsek [29] have studied the sequence spaces λ(u, v, ∆) which con-
sists of all sequences such that G(u, v, ∆)-forms of them are in λ ∈ {`∞, c, c0} ,
where G(u, v, ∆) = G(u, v).∆.

Following[20, 2, 29], we define the sequence spaces X(u, v, ∆(m)) for X ∈
{`∞, c, c0} by

X(u, v, ∆(m)) =
{
x = (xk) ∈ w : y =

(
(G(m)x)k

)
∈ X

}
,

where the sequence y = (yk) is the G(m) = G(u, v).∆m-transform of a sequence
x = (xk), that is,

yk = (G(m)x)k = uk

k∑
j=0

[
k∑

i=j

(
m

i− j

)
(−1)i−jvi

]
xj; (k ∈ N). (2.2)

With the notation of (1.2), we can redefine the spaces X(u, v, ∆(m)) for X ∈
{`∞, c, c0} as the matrix domains of the triangle G(m) in the spaces X ∈
{`∞, c, c0}, that is

X(u, v, ∆(m)) = XG(m) . (2.3)

The definition in (2.3) includes the following special cases:
(i) If m = 1, then X(u, v, ∆(m)) = λ(u, v, ∆) (cf[29, 22]).
(ii) If v = (λk − λk−1), u = (1/λn), m = 1 and X = c, c0, then X(u, v, ∆(m)) =

cλ
0(∆), cλ(∆) (cf[26]).
(iii) If v = (1 + rk), u = (1/(n + 1)), m = 1 and X = c, c0, `∞, then

X(u, v, ∆(m)) = ar
0(∆), ar

c(∆), ar
∞(∆) (cf[3, 9, 10]).

Throughout we shall assume that the sequences x = (xk) and y = (yk) are
connected by the relation (2.2), that is, y is the G(m)-transform of x. Then, the
sequence x is in any of the spaces c0(u, v, ∆(m)), c(u, v, ∆(m)) or `∞(u, v, ∆(m)) if
and only if y is in the respective one of the spaces c0, c or `∞. In addition, one
can easily derive that

xk =
k∑

j=0

j+1∑
i=j

(
m + k − i− 1

k − i

)
(−1)i−j

ukvi

yj; (k ∈ N). (2.4)

Now, we may begin with the following result which is essential in the text.
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Theorem 2.1. The sequence spaces X(u, v, ∆(m)) for X ∈ {`∞, c, c0} are Banach
spaces with the norm given by

‖x‖X(u,v,∆(m)) = ‖y‖∞ = sup
k

∣∣∣∣∣uk

k∑
j=0

[
k∑

i=j

(
m

i− j

)
(−1)i−jvi

]
xj

∣∣∣∣∣ . (2.5)

Proof. Let X be any of the spaces c0, c or `∞. Since it is a routine verification
to show that X(u, v, ∆(m)) is a linear space with respect to coordinate-wise ad-
dition and scalar multiplication and is a normed space with the norm defined
by (2.5) we omit the details. To prove the theorem, we show that every Cauchy
sequence in X(u, v, ∆(m)) is convergent . Suppose (x(n))∞n=0 is a Cauchy sequence
in X(u, v, ∆(m)). Thus, (∀ε > 0)(∃N ∈ N)(∀r, s ≥ N);

(
∥∥G(m)x(r) −G(m)x(s)

∥∥
X

=
∥∥x(r) − x(s)

∥∥
X(u,v,∆(m))

< ε).

So the sequence (G(m)x(n))∞n=0 in X is Cauchy and since X is Banach, there exsits
x ∈ X such that ∥∥G(m)x(n) − x

∥∥
X
→ 0 as n →∞.

But x = (G(m)) (G(m))−1x, so∥∥G(m)x(n) − (G(m))(G(m))−1x
∥∥

X
=
∥∥x(n) − (G(m))−1x

∥∥
X(u,v,∆(m))

→ 0 asn →∞.

Now, since (G(m))−1x ∈ X(u, v, ∆(m)) this completes the proof. �

Theorem 2.2. Let X is any of the spaces c0, c or `∞. Then the sequence space
X(u, v, ∆(m)) is linearly isomorphic to the space X, that is X(u, v, ∆(m)) ∼= X.

Proof. Let

L : X(u, v, ∆(m)) → X

defined by L(x) = G(m)x. Since L is linear, bijective and norm preserving, we are
done. �

Theorem 2.3. Define the sequences c(k) =
{

c
(k)
n

}
n∈N

and c(−1) =
{

c
(−1)
n

}
by

c(k)
n =


0, (n < k)

k+1∑
j=k

(
m+n−j−1

n−j

)
(−1)j−k

ukvj
(n ≥ k)

; (n ∈ N) (2.6)

and

c(−1)
n =

n∑
j=0

j+1∑
i=j

(
m + n− i− 1

n− i

)
(−1)i−j

ujvi

; (n ∈ N).

a) Then, the sequence
(
c(k)
)∞

k=0
is a basis for the space c0(u, v, ∆(m)) and every

x ∈ c0(u, v, ∆(m)) has a unique repsentation of the form

x =
∑

k

(G(m)x)kc
(k).
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b) Then
(
c(k)
)∞

k=−1
is a Schauder basis for c(u, v, ∆(m)) and every x ∈ c(u, v, ∆(m)

) has a unique representation of the form

x = lc(−1) +
∑

k

[
(G(m)x)k − l

]
c(k),

where l = limk→∞(G(m)x)k.

Proof. This is an immediate consequence of [12, Lemma 2.3]. �

3. The α−, β− and γ−duals of the spaces X(u, v, ∆(m)) for
X ∈ {`∞, c, c0}

In the present section, we determine the α−, β− and γ−duals of the spaces
`∞(u, v, ∆(m)), c(u, v, ∆(m)) and c0(u, v, ∆(m)).

For the sequence spaces λ and µ, the set S(λ, µ) defined by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} (3.1)

is called the multiplier space of λ and µ. With the notation (3.1), the α−, β−
and γ− duals of a sequence space λ, which are respectively denoted by λα, λβ

and λγ are, defined by

λα = S(λ, `1) , λβ = S(λ, cs) and λγ = S(λ, bs),

where `1, cs and bs are the spaces of all absolutely, convergent and bounded
series, respectively.

Throughout, let F denote the collection of all nonempty and finite subsets of
N.

Now, we give the following lemmas (see [31]) which are needed in proving
Theorems 3.3 - 3.5.

Lemma 3.1. A ∈ (c0, `1) = (c, `1) = (`∞, `1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ < ∞.

Lemma 3.2. A ∈ (c0, `∞) = (c, `∞) = (`∞, `∞) if and only if

sup
n∈N

∑
k

|ank| < ∞. (3.2)

Now we prove the following results:

Theorem 3.3. The α-dual of the spaces X(u, v, ∆(m)) for X ∈ {`∞, c, c0} is the
set

d1 =

{
a = (an) ∈ w : sup

K∈F

∑
n

∣∣∣∣∣∑
k∈K

cnk

∣∣∣∣∣ < ∞

}
,

where the matrix C = (cnk) is defined via the sequence a = (an) by

cnk =


k+1∑
j=k

(
m+n−j−1

n−j

) (−1)j−k

ukvj
an (0 ≤ k ≤ n)

0 (k > n)

; (n, k ∈ N).
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Proof. Let X ∈ {`∞, c, c0} and a = (an) ∈ w. Then, by bearing in mind the
relation (2.2) and (2.4), we immediately derive that

anxn =
n∑

k=0

[
k+1∑
j=k

(
m + n− j − 1

n− j

)
(−1)j−k

ukvj

an

]
yk; (n ∈ N). (3.3)

Thus, we observe by (3.3) that ax = (anxn) ∈ `1 whenever x = (xk) ∈ X(u, v, ∆(m))
if and only if Cy ∈ `1 whenever y = (yk) ∈ X. This means that the sequence
a = (an) is in the α-dual of the spaces X(u, v, ∆(m)) if and only if C ∈ (X, `1). We
therefore obtain by Lemma 3.1 with C instead of A that a ∈

{
X(u, v, ∆(m))

}α
if

and only if

sup
K∈F

∑
n

∣∣∣∣∣∑
k∈K

cnk

∣∣∣∣∣ < ∞

which leads us to the consequence that
{
X(u, v, ∆(m))

}α
= d1. This concludes

the proof. �

Now, let x, y ∈ w be connected by the relation (2.2). Then, by using (2.4), we
can easily derive that

n∑
k=0

akxk =
n∑

k=0

[
k∑

j=0

j+1∑
i=j

(
m + k − i− 1

k − i

)
(−1)i−j

ujvi

yj

]
ak (3.4)

=
n∑

k=0

[
n∑

j=k

(
k+1∑
i=k

(
m + j − i− 1

j − i

)
(−1)i−k

ukvi

)
aj

]
yk

=
n∑

k=0

[
n∑

j=k

∇(m)(j, k)aj

]
yk; (n ∈ N),

where

∇(m)(j, k) =
k+1∑
i=k

(
m + j − i− 1

j − i

)
(−1)i−k

ukvi

. (3.5)

This leads us to the following result:

Theorem 3.4. Define the sets d2, d3, d4 and d5 as follows:

d2 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=0

∣∣∣∣∣
n∑

j=k

∇(m)(j, k)aj

∣∣∣∣∣ < ∞

}
,

d3 =

{
a = (ak) ∈ w :

∞∑
j=k

∇(m)(j, k)aj exists for each k ∈ N

}
,

d4 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=0

n∑
j=k

∇(m)(j, k)aj exists

}
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and

d5 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

∣∣∣∣∣
n∑

j=k

∇(m)(j, k)aj

∣∣∣∣∣ =
∑

k

∣∣∣∣∣
∞∑

j=k

∇(m)(j, k)aj

∣∣∣∣∣
}

.

Then
{
c0(u, v, ∆(m))

}β
= d2∩d3,

{
c(u, v, ∆(m))

}β
= d2∩d3∩d4and

{
`∞(u, v, ∆(m)

)}β = d3 ∩ d5.

Theorem 3.5. The γ-dual of the spaces X(u, v, ∆(m)) for X ∈ {`∞, c, c0} is the
set d2.

Proof. This result can be obtained from (3.2) in Lemma 3.2 by using (3.4). �

4. Certain matrix mappings on the spaces X(u, v, ∆(m)) for
X ∈ {`∞, c, c0}

In this section, we state some results which characterize various matrix map-
pings on the spaces c0(u, v, ∆(m)), c(u, v, ∆(m)) and `∞(u, v, ∆(m)) and between
them.

For an infinite matrix A = (ank), we shall write for brevity that

ā`
nk =

∑̀
j=k

∇(m)(j, k)anj; (k < m)

and

ānk =
∞∑

j=k

∇(m)(j, k)anj (4.1)

for all n, k, ` ∈ N provided the series on the right hand to be convergent. Further,
let x, y ∈ w be connected by the relation (2.2). Then, we have by (2.4) that∑̀

k=0

ankxk =
∑̀
k=0

ā`
nkyk; (n, ` ∈ N). (4.2)

In particular, let x ∈ c(u, v, ∆(m)) and An = (ank)
∞
k=0 ∈

{
c(u, v, ∆(m))

}β
for all

n ∈ N. Then, we obtain, by passing to limit in (4.2) as ` →∞ and using Theorem
3.4, that

∞∑
k=0

ankxk =
∞∑

k=0

ānkyk; (n ∈ N)

which gives the equality
∞∑

k=0

ankxk =
∞∑

k=0

ānk(yk − l) + l

∞∑
k=0

ānk; (n ∈ N), (4.3)

where l = limk→∞ yk.
Now, let us consider the following conditions:

sup
n

(
∞∑

k=0

|ānk|

)
< ∞, (4.4)
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lim
`→∞

∞∑
k=0

∣∣ā`
nk

∣∣ =
∞∑

k=0

|ānk| ; (n ∈ N), (4.5)

ānk exists for all k, n ∈ N, (4.6)

sup
`∈N

∑̀
k=0

∣∣ā`
nk

∣∣ < ∞; (n ∈ N), (4.7)

lim
n→∞

ānk = ᾱk; (k ∈ N), (4.8)

lim
n→∞

∞∑
k=0

|ānk − ᾱk| = 0, (4.9)

lim
n→∞

∞∑
k=0

ānk = α, (4.10)

∞∑
k=0

ānk converges for all n ∈ N, (4.11)

lim
n→∞

∞∑
k=0

|ānk| = 0, (4.12)

lim
n→∞

ānk = 0 for all k ∈ N, (4.13)

sup
K∈F

(
∞∑

n=0

∣∣∣∣∣∑
k∈K

ānk

∣∣∣∣∣
p)

< ∞; (1 ≤ p < ∞), (4.14)

lim
n→∞

∞∑
k=0

ānk = 0. (4.15)

Then, by combining Theorem 3.4 with the results of Stieglitz and Tietz[31], we
immediately derive the following results by using (4.3).

Theorem 4.1. We have
(a) A ∈ (`∞(u, v, ∆(m)), `∞) if and only if (4.4), (4.5) and (4.6) hold.
(b) A ∈ (c(u, v, ∆(m)), `∞) if and only if (4.4), (4.6) and (4.7) hold.
(c) A ∈ (c0(u, v, ∆(m)), `∞) if and only if (4.4), (4.6) and (4.7) hold.

Theorem 4.2. We have
(a) A ∈ (`∞(u, v, ∆(m)), c) if and only if (4.5), (4.6), (4.8) and (4.9) hold.
(b) A ∈ (c(u, v, ∆(m)), c) if and only if (4.4), (4.6), (4.7), (4.8) and (4.10) hold.
(c) A ∈ (c0(u, v, ∆(m)), c) if and only if (4.4), (4.6), (4.7) and (4.8) hold.

Theorem 4.3. We have
(a) A ∈ (`∞(u, v, ∆(m)), c0) if and only if (4.5), (4.6) and (4.12) hold.
(b) A ∈ (c(u, v, ∆(m)), c0) if and only if (4.4), (4.6), (4.7), (4.13) and (4.15) hold.
(c) A ∈ (c0(u, v, ∆(m)), c0) if and only if (4.4), (4.6), (4.7) and (4.13) hold.



122 M. BAŞARIR, E.E. KARA

Theorem 4.4. Let 1 ≤ p < ∞. Then, we have
(a) A ∈ (`∞(u, v, ∆(m)), `p) if and only if (4.5), (4.6) and (4.14) hold.
(b) A ∈ (c(u, v, ∆(m)), `p) if and only if (4.6), (4.7), (4.11) and (4.14) hold.
(c) A ∈ (c0(u, v, ∆(m)), `p) if and only if (4.6), (4.7) and (4.14) hold.

Now, we may present the lemma given by Başar and Altay [4, Lemma 5.3]
which is useful for obtaining the characterization of some new matrix classes
from Theorems 4.1-4.3.

Lemma 4.5. Let λ, µ be any two sequence spaces, A be an infinite matrix and B
a triangle matrix. Then, A ∈ (λ, µB) if and only if T = BA ∈ (λ, µ).

We should finally note that, if ank is replaced by tnk = un

∑n
j=0

[∑n
i=j

(
m

i−j

)
(−1

)i−jvi] ajk for all k, n ∈ N in Theorems 4.1-4.3, then one can derive the char-
acterization of the classes (λ((u, v, ∆(m)), µ(u, v, ∆(m))) from Lemma 4.5 with
B = G(m), where λ, µ ∈ {c0, c, `∞}.

5. Meausure of noncompactness of matrix operators on the
sequence spaces c0(u, v, ∆(m)) and `∞(u, v, ∆(m))

In this section, we characterize some classes of compact operators on the spaces
c0(u, v, ∆(m)) and `∞(u, v, ∆(m)) by using the Hausdorff measure of noncompact-
ness.

It is quite natural to find conditions for a matrix map between BK-spaces to
define a compact operator since a matrix transformation between BK-spaces are
continuous. This can be achieved by applying the Hausdorff measure of non-
compactness. In past, several authors characterized classes of compact operators
given by infinite matrices on the some sequence spaces by using this method. For
example see [5],[7]-[10],[12],[13],[18],[19],[21]-[23],[25],[30]. Recently, Malkowsky
and Rakočević [17], Djolović and Malkowsky [11] and Mursaleen and Noman [24]
established some identities or estimates for the operator norms and Hausdorff
measures of noncompactness of linear operators given by infinite matrices that
map an arbitrary BK-space or the matrix domains of triangles in arbitrary BK-
spaces.

Let X be a normed space. Then, we write SX for the unit sphere in X, that is,
SX = {x ∈ X : ‖x‖ = 1}. If X and Y be Banach spaces then B(X, Y ) is the set
of all continuous linear operators L : X → Y ; B(X, Y ) is a Banach space with
the operator norm defined by ‖L‖ = sup {‖Lx‖ : ‖x‖ ≤ 1} for all L ∈ B(X,Y ).

If (X, ‖.‖) is a normed sequence space, then we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ (5.1)

for a ∈ w provided the expression on the right hand side exists and is finite which
is the case whenever X is a BK space and a ∈ Xβ [32, p.107].

We recall that if X and Y are Banach spaces and L is a linear operator from
X to Y , then L is said to be compact if its domain is all of X and for every
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bounded sequence (xn) in X, the sequence ((Lx)n) has a convergent subsequence
in Y . We denote the class of such operators by K(X,Y ).

If (X, d) is a metric space, we write MX for the class of all bounded subsets
of X. By B(x, r) = {y ∈ X : d(x, y) < r} we denote the open ball of radius
r > 0 with centre in x. Then the Hausdorff measure of noncompactness of the
set Q ∈ MX , denoted by χ(Q), is given by

χ(Q) = inf

{
ε > 0 : Q ⊂

n⋃
i=0

B(xi, ri), xi ∈ X, ri < ε(i = 0, 1, · · · , n), n ∈ N

}
.

The function χ : MX → [0,∞) is called the Hausdorff measure of noncompact-
ness.

The basic properties of the Hausdorff measure of noncompactness can be found
in [16], for example if Q, Q1 and Q2 are bounded subsets of a metric space (X, d),
then

χ(Q) = 0 if and only if Q is totally bounded,

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2).

Further if X is a normed space, the function χ has some additional properties
connected with the linear structure, e.g.

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(αQ) = |α|χ(Q) for all α ∈ C,

where C is the complex field.
We shall need the following known results for our investigation.

Lemma 5.1. [22, Lemma 3.1]. Let X denotes any of the spaces c0 and `∞. If
A ∈ (X, c), then we have

αk = lim
n→∞

ank exists for every k ∈ N,

α = (αk) ∈ `1,

sup
n

(
∞∑

k=0

|ank − αk|

)
< ∞,

lim
n→∞

(Ax)n =
∞∑

k=0

αkxk for all x = (xk) ∈ X.

Lemma 5.2. [22, Lemma 1.1]. Let X denotes any of the spaces c0, c or `∞.
Then, we have Xβ = `1 and ‖a‖∗X = ‖a‖`1

for all a ∈ `1.

Lemma 5.3. [32, Theorem 4.2.8]. Let X and Y be BK-spaces. Then we have
(X, Y ) ⊂ B(X, Y ), that is, every A ∈ (X,Y ) defines a linear operator LA ∈
B(X, Y ), where LA(x) = Ax for all x ∈ X.

Lemma 5.4. [12, Lemma 5.2]. Let X ⊃ φ be BK-space and Y be any of the
spaces c0, c or `∞. If A ∈ (X, Y ), then

‖LA‖ = ‖A‖(X,`∞) = sup
n
‖An‖∗X < ∞.
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Lemma 5.5. [22, Lemma 1.5]. Let Q ∈ Mc0 and Pr : c0 → c0 (r ∈ N) be the
operator defined by Pr(x) = (x0, x1, · · · , xr, 0, 0, · · · ) for all x = (xk) ∈ c0. Then,
we have

χ(Q) = lim
r→∞

(
sup
x∈Q

‖(I − Pr)(x)‖`∞

)
,

where I is the identity operator on c0.

Further, we know by [16, Theorem 1.10] that every z = (zn) ∈ c has a unique
repsentation z = z̄e +

∑∞
n=0(zn − z̄)e(n), where z̄ = limn→∞ zn. Thus, we define

the projectors Pr : c → c (r ∈ N) by

Pr(z) = z̄e +
r∑

n=0

(zn − z̄)e(n); (r ∈ N) (5.2)

for all z = (zn) ∈ c with z̄ = limn→∞ zn. In this sitation, the following result gives
an estimate for the Hausdorff measure of noncompactness in the BK space c.

Lemma 5.6. [22, Lemma 1.6]. Let Q ∈ Mc and Pr : c → c (r ∈ N) be the
projector onto the linear span of

{
e, e(0), e(1), · · · , e(r)

}
. Then, we have

1

2
. lim
r→∞

(
sup
x∈Q

‖(I − Pr)(x)‖`∞

)
≤ χ(Q) ≤ lim

r→∞

(
sup
x∈Q

‖(I − Pr)(x)‖`∞

)
,

where I is the identity operator on c.

The next lemma is related to the Hausdorff measure of noncompactness of a
bounded linear operator.

Lemma 5.7. [16, Thereom 2.25, Corollary 2.26]. Let X and Y be Banach spaces
and L ∈ B(X, Y ). Then we have

‖L‖χ = χ(L(SX)) (5.3)

and

L ∈ K(X, Y ) if and only if ‖L‖χ = 0. (5.4)

The following results will be needed in establishing our results.

Lemma 5.8. Let X denotes any of the spaces c0(u, v, ∆(m)) or `∞(u, v, ∆(m)). If
a = (ak) ∈ Xβ then ā = (āk) ∈ `1 and the equality

∞∑
k=0

akxk =
∞∑

k=0

ākyk (5.5)

holds for every x = (xk) ∈ X, where y = G(m)x is the associated sequence defined
by (2.2) and

āk =
∞∑

j=k

O(m)(j, k)aj; (k ∈ N).

Proof. This follows immediately by [26, Theorem 5.6]. �
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Lemma 5.9. Let X denotes any of the spaces c0(u, v, ∆(m)) or `∞(u, v, ∆(m)).
Then, we have

‖a‖∗X = ‖ā‖`1
=

∞∑
k=0

|āk| < ∞

for all a = (ak) ∈ Xβ, where ā = (āk) is as in Lemma 5.8.

Proof. Let Y be the respective one of the spaces c0 or `∞, and take any a = (ak) ∈
Xβ. Then, we have by Lemma 5.8 that ā = (āk) ∈ `1 and the equality (5.5) holds
for all sequences x = (xk) ∈ X and y = (yk) ∈ Y which are connected by the
relation (2.2). Further, it follows by (2.5) that x ∈ SX if and only if y ∈ SY .
Thefore, we derive from (5.1) and (5.5) that

‖a‖∗X = sup
x∈SX

∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣ = sup
y∈SY

∣∣∣∣∣
∞∑

k=0

ākyk

∣∣∣∣∣ = ‖ā‖∗Y

and since ā ∈ `1, we obtain from Lemma 5.2 that

‖a‖∗X = ‖ā‖∗Y = ‖ā‖`1
< ∞

which concludes the proof. �

Lemma 5.10. Let X be any of the spaces c0(u, v, ∆(m)) or `∞(u, v, ∆(m)), Y
the respective one of the spaces c0 or `∞, Z a sequence space and A = (ank)
an infinite matrix. If A ∈ (X,Z), then Ā ∈ (Y, Z) such that Ax = Āy for all
sequences x ∈ X and y ∈ Y which are connected by the relation (2.2), where
Ā = (ānk) is the associated matrix defined as in (4.1).

Proof. This is immediate by [22, Lelmma 2.3]. �

Now, let A = (ank) be an infinite matrix and Ā = (ānk) the associated matrix
defined by (4.1). Then, we have the following result.

Theorem 5.11. Let X denotes any of the spaces c0(u, v, ∆(m)) or `∞(u, v, ∆(m)).
Then, we have

(a) If A ∈ (X, c0), then

‖LA‖χ = lim sup
n→∞

∞∑
k=0

|ank| . (5.6)

(b) If A ∈ (X, c), then

1

2
.lim sup

n→∞

∞∑
k=0

|ank − ak| ≤ ‖LA‖χ ≤ lim sup
n→∞

∞∑
k=0

|ank − αk| , (5.7)

where ak is defined as in (4.8) for all k ∈ N.
(c) If A ∈ (X, `∞), then

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

∞∑
k=0

|ank| . (5.8)
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Proof. Let us remark that the expressions in (5.6) and (5.8) exist by Theorems 4.3
and 4.1. Also, by combining Lemmas 5.1 and 5.10, we deduce that the expression
in (5.7) exists.

We write S = SX , for short. Then, we obtain by (5.3) and Lemma 5.3 that

‖LA‖χ = χ(AS). (5.9)

For (a), we have AS ∈ Mc0 . Thus, it follows by applying Lemma 5.5 that

χ(AS) = lim
r→∞

(
sup
x∈S

‖(I − Pr)(Ax)‖`∞

)
, (5.10)

where Pr : c0 → c0 (r ∈ N) is the operator defined by Pr(x) = (x0, x1, · · · , xr, 0, 0, · · · )
for all x = (xk) ∈ c0. This yields that ‖(I − Pr)(Ax)‖`∞

= supn>r |(Ax)n| for all
x ∈ X and every r ∈ N. Therefore, by using (1.1), (5.1) and Lemma 5.9, we have
for every r ∈ N that

sup
x∈S

‖(I − Pr)(Ax)‖`∞
= sup

n>r
‖An‖∗X = sup

n>r

∥∥Ān

∥∥
`1

.

This and (5.10) imply that

χ(AS) = lim
r→∞

(
sup
n>r

∥∥Ān

∥∥
`1

)
= lim sup

n→∞

∥∥Ān

∥∥
`1

.

Hence, we obtain that (5.6) from (5.9).
To prove (b), we have AS ∈ Mc. Thus, we are going to apply Lemma 5.6

to get an estimate for the value of χ(AS) in (5.9). For this, let Pr : c → c
(r ∈ N) be the projectors defined by (5.2). Then, we have for every r ∈ N that
(I − Pr)(z) =

∑∞
n=r+1(zn − z̄)e(n) and hence,

‖(I − Pr)(z)‖`∞
= sup

n>r
|zn − z̄| (5.11)

for all z = (zn) ∈ c and every r ∈ N, where z̄ = limn→∞ zn and I is identity
operatoron c.

Now, by using (5.9) we obtain by applying Lemma 5.6 that

1

2
. lim
r→∞

(
sup
x∈S

‖(I − Pr)(Ax)‖`∞

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
x∈S

‖(I − Pr)(Ax)‖`∞

)
.

(5.12)
On the other hand, it is given that X = c0(u, v, ∆(m)) or `∞(u, v, ∆(m)), and

let Y be the respective one of the spaces c0 or `∞. Also, for every given x ∈ X,
let y ∈ Y be the associated sequence defined by (2.2). Since, A ∈ (X, c), we
have by Lemma 5.10 that Ā ∈ (Y, c) and Ax = Āy. Further, it follows from
Lemma 5.1 that the limits αk = limn→∞ ank exists for all k, (αk) ∈ `1 = Y β and
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limn→∞(Āy)n =
∑∞

k=0 αkyk. Consequently, we derive from (5.11) that

‖(I − Pr)(Ax)‖`∞
=
∥∥(I − Pr)(Āy)

∥∥
`∞

= sup
n>r

∣∣∣∣∣(Āy)n −
∞∑

k=0

αkyk

∣∣∣∣∣
= sup

n>r

∣∣∣∣∣
∞∑

k=0

(ank − αk)yk

∣∣∣∣∣
for all r ∈ N. Moreover, since x ∈ S = SX if and only if y ∈ SY we obtain by
(5.1) and Lemma 5.2 that

‖(I − Pr)(Ax)‖`∞
= sup

n>r

(
sup
y∈SY

∣∣∣∣∣
∞∑

k=0

(ank − αk)yk

∣∣∣∣∣
)

= sup
n>r

∥∥Ān − ᾱ
∥∥∗

Y

= sup
n>r

∥∥Ān − ᾱ
∥∥

`1

for all r ∈ N. Thus, we get (5.7) from (5.12).
Finally, to prove (c) we define the projectors Pr : `∞ → `∞ (r ∈ N) as in the

proof of part (a) for all x = (xk) ∈ `∞. Then, we have

AS ⊂ Pr(AS) + (I − Pr)(AS); (r ∈ N).

Thus, it follows by the elementary properties of the function χ that

0 ≤ χ(AS) ≤ χ(Pr(AS)) + χ((I − Pr)(AS))

= χ((I − Pr)(AS)) ≤ sup
x∈S

‖(I − Pr)(Ax)‖`∞

= sup
n>r

∥∥Ān

∥∥
`1

for all r ∈ N and hence,

0 ≤ χ(AS) ≤ lim
r→∞

(
sup
n>r

∥∥Ān

∥∥
`1

)
= lim sup

r→∞

∥∥Ān

∥∥
`1

.

This and (5.9) together imply (5.8) and complete the proof. �

Corollary 5.12. Let X denotes any of the spaces c0(u, v, ∆(m)) or `∞(u, v, ∆(m)).
Then, we have

(a) If A ∈ (X, c0), then

LA is compact if and only if lim
n→∞

∞∑
k=0

|ank| = 0.

(b) If A ∈ (X, c), then

LA is compact if and only if lim
n→∞

∞∑
k=0

|ank − αk| = 0.
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(c) If A ∈ (X, `∞), then

LA is compact if lim
n→∞

∞∑
k=0

|ank| = 0.

Proof. This result follows from Theorem 5.11 by using (5.4). �

Finally, we have the following observation.

Corollary 5.13. For every matrix A ∈ (`∞(u, v, ∆(m)), c0) or A ∈ (`∞(u, v, ∆(m)),
c), the operator LA is compact.

Proof. Let A ∈ (`∞(u, v, ∆(m)), c0). Then we have by Theorem 4.3(a) that
limn→∞ (

∑∞
k=0 |ank|) = 0. This leads us with Corollary 5.12(a) to the conse-

quence that LA is compact. Similarly, If A ∈ (`∞(u, v, ∆(m)), c) then, from Theo-
rem 4.2(a), we have that limn→∞ (

∑∞
k=0 |ank − αk|) = 0, where αk = limn→∞ ank

for all k. Hence, we deduce from Corollary 5.12(b) that LA is compact. �
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13. E.E. Kara and M. Başarır, On some Euler B(m)difference sequence spaces and compact
operators, J. Math. Anal. Appl. 379(2011), 499–511.

14. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc.Camb. Phil.
Soc., 64(1968), 335–340.

15. E. Malkowsky and S.D. Parashar, Matrix transformations in scpace of bounded and con-
vergent difference sequence of order m, Analysis 17(1997), 87–97.



ON SOME DIFFERENCE SEQUENCE SPACES 129
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