Ann. Funct. Anal. 2 (2011), no. 2, 22-33
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

SOME GEOMETRIC CONSTANTS OF ABSOLUTE NORMALIZED NORMS ON \mathbb{R}^{2}

HIROYASU MIZUGUCHI AND KICHI-SUKE SAITO*

Communicated by J. I. Fujii

Abstract. We consider the Banach space $X=\left(\mathbb{R}^{2},\|\cdot\|\right)$ with a normalized, absolute norm. Our aim in this paper is to calculate the modified NeumannJordan constant $C_{N J}^{\prime}(X)$ and the Zbăganu constant $C_{Z}(X)$.

1. Introduction and preliminaries

Let X be a Banach space with the unit ball $B_{X}=\{x \in X:\|x\| \leq 1\}$ and the unit sphere $S_{X}=\{x \in X:\|x\|=1\}$. Many geometric constants for a Banach space X have been investigated. In this paper we shall consider the following constants;

$$
\begin{gathered}
C_{N J}(X)=\sup \left\{\left.\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \right\rvert\,(x, y) \neq(0,0)\right\}, \\
C_{N J}^{\prime}(X)=\sup \left\{\left.\frac{\|x+y\|^{2}+\|x-y\|^{2}}{4} \right\rvert\, x, y \in S_{X}\right\}, \\
C_{Z}(X)=\sup \left\{\left.\frac{\|x+y\|\|x-y\|}{\|x\|^{2}+\|y\|^{2}} \right\rvert\, x, y \in X,(x, y) \neq(0,0)\right\} .
\end{gathered}
$$

The constant $C_{N J}(X)$, called the von Neumann-Jordan constant (hereafter referred to as NJ constant) have been considered in many papers ([3, 8, 10, 12] and so on). The constant $C_{N J}^{\prime}(X)$, called the modified von Neumann-Jordan constant (shortly, modified NJ constant) was introduced by Gao in [5] and does not necessarily coincide with $C_{N J}(X)$ (cf. [1, 4, 7]). The constant $C_{Z}(X)$ was introduced by Zbăganu ([15]) and was conjectured that $C_{Z}(X)$ coincides with

[^0]the von Neumann-Jordan constant $C_{N J}(X)$, but Alonso and Martin [2] gave an example that $C_{N J}(X) \neq C_{Z}(X)$ (cf.[6, 9]).

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(a, b)\|=\|(|a|,|b|)\|$ for any $(a, b) \in \mathbb{R}^{2}$, and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Let $A N_{2}$ denote the family of all absolute normalized norm on \mathbb{R}^{2}, and Ψ_{2} denote the family of all continuous convex function ψ on $[0,1]$ such that $\psi(0)=\psi(1)=1$ and $\max \{1-t, t\} \leq \psi(t) \leq$ 1 for all $0 \leq t \leq 1$. As in [11], it is well known that $A N_{2}$ and Ψ_{2} are in a one-toone correspondence under the equation $\psi(t)=\|(1-t, t)\|(0 \leq t \leq 1)$. Denote $\|\cdot\|_{\psi}$ be an absolute normalized norm associated with a convex function $\psi \in \Psi_{2}$.

For $\psi, \varphi \in \Psi_{2}$, we denote $\psi \leq \varphi$ if $\psi(t) \leq \varphi(t)$ for any t in $[0,1]$. Let

$$
M_{1}=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\psi_{2}(t)} \text { and } M_{2}=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi(t)}
$$

where $\psi_{2}(t)=\|(1-t, t)\|_{2}=\sqrt{(1-t)^{2}+t^{2}}$ corresponds to the l_{2}-norm. In [11], Saito, Kato and Takahashi proved that, if $\psi \geq \psi_{2}$ (resp. $\psi \leq \psi_{2}$), then $C_{N J}\left(\mathbb{C}^{2},\|\cdot\|_{\psi}\right)=M_{1}^{2}\left(\right.$ resp. $\left.M_{2}^{2}\right)$.

We put $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ for $\psi \in \Psi_{2}$. Our aim in this paper is to consider the conditions of ψ that $C_{N J}(X)=C_{Z}(X)$ or $C_{N J}(X)=C_{N J}^{\prime}(X)$.

In $\S 2$, we consider the modified von Neumann-Jordan constant. We prove that if $\psi \leq \psi_{2}$, then $C_{N J}^{\prime}(X)=C_{N J}(X)=M_{2}^{2}$. If $\psi \geq \psi_{2}$, then we present the necessarily and sufficient condition that $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=M_{1}^{2}$. Further, we consider the conditions that $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=$ $M_{1}^{2} M_{2}^{2}$. In $\S 3$, we study the Zb ganu constant. First, we show that, if $\psi \geq \psi_{2}$, then $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=M_{1}^{2}$. If $\psi \leq \psi_{2}$, then we give the necessarily and sufficient condition for that $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=$ M_{2}^{2}. Further we study the conditions that $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=$ $M_{1}^{2} M_{2}^{2}$. In $\S 4$, we calculate the modified NJ-constant $C_{N J}^{\prime}(X)$ and the Zbăganu constant $C_{Z}(X)$ for some normed liner spaces.

2. The modified NJ constant of R^{2}

In this section, we consider the Banach space $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$. From the definition of the modified NJ constant, it is clear that $C_{N J}^{\prime}(X) \leq C_{N J}(X)$. In this section, we consider the condition that $C_{N J}^{\prime}(X)=C_{N J}(X)$.
Proposition 2.1. Let $\psi \in \Psi_{2}$. If $\psi \leq \psi_{2}$, then $C_{N J}^{\prime}(X)=C_{N J}(X)=M_{2}^{2}$.
Proof. For any $x, y \in S_{X}$, by [11, Lemma 3],

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2} \\
& =2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{2}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)=4 M_{2}^{2} .
\end{aligned}
$$

Now let ψ_{2} / ψ attain the maximum at $t=t_{0}\left(0 \leq t_{0} \leq 1\right)$, and put

$$
x=\frac{1}{\psi\left(t_{0}\right)}\left(1-t_{0}, t_{0}\right), y=\frac{1}{\psi\left(t_{0}\right)}\left(1-t_{0},-t_{0}\right) .
$$

Then $x, y \in S_{X}$ and

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & =\frac{4\left(1-t_{0}\right)^{2}+4 t_{0}^{2}}{\psi\left(t_{0}\right)^{2}} \\
& =4 \frac{\psi_{2}\left(t_{0}\right)^{2}}{\psi\left(t_{0}\right)^{2}}=4 M_{2}^{2}
\end{aligned}
$$

which implies that $C_{N J}^{\prime}(X)=M_{2}^{2}$. By [11, Theorem 1], we have this proposition.

If $\psi \geq \psi_{2}$, by [11, Theorem 1], then $C_{N J}(X)=M_{1}^{2}$. We now give the necessarily and sufficient condition of $C_{N J}^{\prime}(X)=M_{1}^{2}$.
Theorem 2.2. Let $\psi \in \Psi_{2}$ such that $\psi \geq \psi_{2}$. Then $C_{N J}^{\prime}(X)=M_{1}^{2}$ if and only if there exist $s, t \in[0,1](s<t)$ satisfying one of the following conditions:
(1) $\psi(s)=\psi_{2}(s), \psi(t)=\psi_{2}(t)$ and, if we put $r=\frac{\psi(s) t+\psi(t) s}{\psi(s)+\psi(t)}$, then $\frac{\psi(r)}{\psi_{2}(r)}=$ $\frac{\psi(1-r)}{\psi_{2}(1-r)}=M_{1}$.
(2) $\psi(s)=\psi_{2}(s), \psi(t)=\psi_{2}(t)$ and, if we put $r=\frac{\psi(t) s+\psi(s) t}{\psi(t)+\psi(s)(2 t-1)}$, then $\frac{\psi(r)}{\psi_{2}(r)}=$ $\frac{\psi(1-r)}{\psi_{2}(1-r)}=M_{1}$.

Proof. (\Longrightarrow) Suppose that $C_{N J}^{\prime}(X)=M_{1}^{2}$. First, for any $x, y \in S_{X}$, by [11, Lemma 3], we have

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq M_{1}^{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)=4 M_{1}^{2} .
\end{aligned}
$$

Since $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ is finite dimensional,

$$
C_{N J}^{\prime}(X)=\max \left\{\left.\frac{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}{4} \right\rvert\, x, y \in S_{X}\right\} .
$$

Therefore, $C_{N J}^{\prime}(X)=M_{1}^{2}$ if and only if there exist $x, y \in S_{X}(x \neq y)$ such that

$$
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}=4 M_{1}^{2} .
$$

From the above inequality, the elements $x, y \in S_{X}(x \neq y)$ satisfy $\|x\|_{\psi}=\|x\|_{2}=$ $1,\|y\|_{\psi}=\|y\|_{2}=1$ and

$$
\frac{\|x+y\|_{\psi}}{\|x+y\|_{2}}=\frac{\|x-y\|_{\psi}}{\|x-y\|_{2}}=M_{1} .
$$

Since $\|\cdot\|_{\psi}$ is absolute and $x, y \in S_{X}(x \neq y)$ satisfy $\|x\|_{2}=\|y\|_{2}=1$, it is sufficient to consider the following three cases:
(i) There exist $s, t \in[0,1](s \neq t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(1-t, t)$.
(ii) There exist $s, t \in[0,1](s<t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(-1+t, t)$.
(iii) There exist $s, t \in[0,1](s>t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(-1+t, t)$.
Case (i). We may suppose that $s<t$. Then there exist $\alpha, \beta \in\left[0, \frac{\pi}{2}\right](\alpha<\beta)$ such that

$$
x=\frac{1}{\psi_{2}(s)}(1-s, s)=(\cos \alpha, \sin \alpha), y=\frac{1}{\psi_{2}(t)}(1-t, t)=(\cos \beta, \sin \beta) .
$$

Since $\|x\|_{2}=\|y\|_{2}=1$, we have

$$
x+y=\left(\frac{1-s}{\psi_{2}(s)}+\frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)}+\frac{t}{\psi_{2}(t)}\right)=\|x+y\|_{2}\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right) .
$$

By [13, Propositions 2a and 2b], we remark that

$$
\frac{1-s}{\psi_{2}(s)} \geq \frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)} \leq \frac{t}{\psi_{2}(t)}
$$

Since $x-y$ is orthogonal to $x+y$ in the Euclidean space $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$, we have

$$
\begin{aligned}
x-y & =\left(\frac{1-s}{\psi_{2}(s)}-\frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)}-\frac{t}{\psi_{2}(t)}\right) \\
& =\|x-y\|_{2}\left(\cos \frac{\alpha+\beta-\pi}{2}, \sin \frac{\alpha+\beta-\pi}{2}\right) \\
& =\|x-y\|_{2}\left(\sin \frac{\alpha+\beta}{2},-\cos \frac{\alpha+\beta}{2}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\|x+y\|_{\psi} & =\|x+y\|_{2}\left\|\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right)\right\|_{\psi} \\
& =\|x+y\|_{2}\left(\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right)
\end{aligned}
$$

Since $\|x+y\|_{\psi}=M_{1}\|x+y\|_{2}$, we have

$$
M_{1}=\left(\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right)
$$

Putting $r=\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}$, then it is clear that $r=\frac{\psi(s) t+\psi(t) s}{\psi(s)+\psi(t)}$ and $M_{1}=\frac{\psi(r)}{\psi_{2}(r)}$. We also have

$$
\|x-y\|_{\psi}=\|x-y\|_{2}\left(\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\cos \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right) .
$$

Since $\|x-y\|_{\psi}=M_{1}\|x-y\|_{2}$, we similarly have

$$
M_{1}=\left(\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\cos \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}}\right)=\frac{\psi(1-r)}{\psi_{2}(1-r)}
$$

Case (ii). Then there exist $\alpha \in\left[0, \frac{\pi}{2}\right]$ and $\beta \in\left[\frac{\pi}{2}, \pi\right]$ such that

$$
x=\frac{1}{\psi_{2}(s)}(1-s, s)=(\cos \alpha, \sin \alpha), y=\frac{1}{\psi_{2}(t)}(-1+t, t)=(\cos \beta, \sin \beta) .
$$

Since $\|x\|_{2}=\|y\|_{2}=1$, we have

$$
x+y=\left(\frac{1-s}{\psi_{2}(s)}-\frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)}+\frac{t}{\psi_{2}(t)}\right)=\|x+y\|_{2}\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right) .
$$

By [13, Propositions 2a and 2b], we remark that

$$
\frac{1-s}{\psi_{2}(s)} \geq \frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)} \leq \frac{t}{\psi_{2}(t)} .
$$

Since $x-y$ is orthogonal to $x+y$ in the Euclidean space $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$, we have

$$
\begin{aligned}
x-y & =\left(\frac{1-s}{\psi_{2}(s)}+\frac{1-t}{\psi_{2}(t)}, \frac{s}{\psi_{2}(s)}-\frac{t}{\psi_{2}(t)}\right) \\
& =\|x-y\|_{2}\left(\cos \frac{\alpha+\beta-\pi}{2}, \sin \frac{\alpha+\beta-\pi}{2}\right) \\
& =\|x-y\|_{2}\left(\sin \frac{\alpha+\beta}{2},-\cos \frac{\alpha+\beta}{2}\right) .
\end{aligned}
$$

Since $\cos \frac{\alpha+\beta}{2} \geq 0$ and $\sin \frac{\alpha+\beta}{2} \geq 0$, we have

$$
\begin{aligned}
\|x+y\|_{\psi} & =\|x+y\|_{2}\left\|\left(\cos \frac{\alpha+\beta}{2}, \sin \frac{\alpha+\beta}{2}\right)\right\|_{\psi} \\
& =\|x+y\|_{2}\left(\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right) .
\end{aligned}
$$

Since $\|x+y\|_{\psi}=M_{1}\|x+y\|_{2}$, we have

$$
M_{1}=\left(\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right) .
$$

Putting $r=\frac{\sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}$, then it is clear that $r=\frac{\psi(t) s+\psi(s) t}{\psi(t)+\psi(s)(2 t-1)}$ and $M_{1}=\frac{\psi(r)}{\psi_{2}(r)}$. We also have

$$
\|x-y\|_{\psi}=\|x-y\|_{2}\left(\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\cos \frac{\alpha+\beta}{2}}{\cos \frac{\alpha+\beta}{2}+\sin \frac{\alpha+\beta}{2}}\right)
$$

Since $\|x-y\|_{\psi}=M_{1}\|x-y\|_{2}$, we similarly have

$$
M_{1}=\left(\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}\right) \psi\left(\frac{\cos \frac{\alpha+\beta}{2}}{\sin \frac{\alpha+\beta}{2}+\cos \frac{\alpha+\beta}{2}}\right)=\frac{\psi(1-r)}{\psi_{2}(1-r)} .
$$

Case (iii). There exist $s, t \in[0,1](s>t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=\frac{1}{\psi_{2}(t)}(-1+t, t)$. Then, we put $s_{0}=t$ and $t_{0}=s$. We define x_{0}, y_{0} in S_{X} by

$$
x_{0}=\frac{1}{\psi\left(s_{0}\right)}\left(1-s_{0}, s_{0}\right), y_{0}=\frac{1}{\psi\left(t_{0}\right)}\left(-1+t_{0}, t_{0}\right) .
$$

Then we can reduce Case (ii).
(\Longleftarrow). If we suppose (1) (resp. (2)), then we put $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ (resp. $\left.x=\frac{1}{\psi_{2}(s)}(1-s, s)\right)$ and $y=\frac{1}{\psi_{2}(t)}(1-t, t)$ (resp. $\left.y=\frac{1}{\psi_{2}(t)}(-1+t, t)\right)$. Then we have $\|x\|_{\psi}=\|x\|_{2}=1,\|y\|_{\psi}=\|y\|_{2}=1,\|x+y\|_{\psi}=M_{1}\|x+y\|_{2}$ and
$\|x-y\|_{\psi}=M_{1}\|x-y\|_{2}$. Hence it is clear to prove that $C_{N J}^{\prime}(X)=M_{1}^{2}$. This completes the proof.

We next study the modified NJ constant in the general case. If $\psi \in \Psi$, then by [11, Therem 3], we have

$$
\max \left\{M_{1}^{2}, M_{2}^{2}\right\} \leq C_{N J}(X) \leq M_{1}^{2} M_{2}^{2}
$$

However, by Theorem 2.2, there exist many $\psi \in \Psi$ satisfying $\psi \geq \psi_{2}$ such that

$$
C_{N J}^{\prime}(X)<\max \left\{M_{1}^{2}, M_{2}^{2}\right\}=C_{N J}(X)
$$

From [11, Theorem 3], $C_{N J}(X)=M_{1}^{2} M_{2}^{2}$ if either ψ / ψ_{2} or ψ_{2} / ψ attains a maximum at $t=1 / 2$. Then, we have the following

Proposition 2.3. Let $\psi \in \Psi_{2}$ and let $\psi(t)=\psi(1-t)$ for all $t \in[0,1]$. If ψ / ψ_{2} attains a maximum at $t=1 / 2$, then $C_{N J}^{\prime}(X)=C_{N J}(X)=M_{1}^{2} M_{2}^{2}$.
Proof. Suppose first $M_{1}=\psi(1 / 2) / \psi_{2}(1 / 2)$. Take an arbitrary $t \in[0,1]$ and put

$$
x=\frac{1}{\psi(t)}(t, 1-t), y=\frac{1}{\psi(t)}(1-t, t) .
$$

Then $x, y \in S_{X}$ and

$$
\|x+y\|_{\psi}=\frac{2}{\psi(t)} \psi\left(\frac{1}{2}\right),\|x-y\|_{\psi}=\frac{2|2 t-1|}{\psi(t)} \psi\left(\frac{1}{2}\right) .
$$

Therefore we have

$$
\begin{aligned}
\frac{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}{4} & =\left\{(2 t-1)^{2}+1\right\} \frac{\psi(1 / 2)^{2}}{\psi(t)^{2}} \\
& =2 \psi_{2}(t)^{2} \frac{\psi(1 / 2)^{2}}{\psi(t)^{2}} \\
& =\frac{\psi_{2}(t)^{2}}{\psi(t)^{2}} \frac{\psi(1 / 2)^{2}}{\psi_{2}(1 / 2)^{2}}=M_{1}^{2} \frac{\psi_{2}(t)^{2}}{\psi(t)^{2}} .
\end{aligned}
$$

Since t is arbitrary, we have $C_{N J}^{\prime}(X) \geq M_{1}^{2} M_{2}^{2}$ which prove that $C_{N J}^{\prime}(X)=$ $M_{1}^{2} M_{2}^{2}$.

In the case that $M_{2}=\psi_{2}(1 / 2) / \psi(1 / 2), C_{N J}^{\prime}(X)$ does not necessarily coincide with $M_{1}^{2} M_{2}^{2}$. However, we have the following

Theorem 2.4. Let $\psi \in \Psi_{2}$ and let $\psi(t)=\psi(1-t)$ for all $t \in[0,1]$. Assume that $M_{2}=\psi_{2}(1 / 2) / \psi(1 / 2)$ and $M_{1}>1$. Then $C_{N J}^{\prime}(X)=M_{1}^{2} M_{2}^{2}$ if and only if there exist $s, t \in[0,1](s<t)$ satisfying one of the following conditions:
(1) $\psi_{2}(s)=M_{2} \psi(s), \psi_{2}(t)=M_{2} \psi(t)$ and, if we put $r=\frac{\psi(s) t+\psi(t) s}{\psi(s)+\psi(t)}$, then $\psi(r)=M_{1} \psi_{2}(r)$.
(2) $\psi_{2}(s)=M_{2} \psi(s), \psi_{2}(t)=M_{2} \psi(t)$ and, if we put $r=\frac{\psi(t) s+\psi(s) t}{\psi(t)+\psi(s)(2 t-1)}$, then $\psi(r)=M_{1} \psi_{2}(r)$.

Proof. (\Longrightarrow). For all $x, y \in S_{X}$, we have

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & \leq M_{1}^{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2} M_{2}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)=4 M_{1}^{2} M_{2}^{2}
\end{aligned}
$$

From this inequality, $C_{N J}^{\prime}(X)=M_{1}^{2} M_{2}^{2}$ if and only if there exist $x, y \in S_{X}(x \neq$ $y)$ such that

$$
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}=4 M_{1}^{2} M_{2}^{2} .
$$

Suppose that $C_{N J}^{\prime}(X)=M_{1}^{2} M_{2}^{2}$. Then, the elements $x, y \in S_{X}(x \neq y)$ satisfy

$$
\|x\|_{2}=\|y\|_{2}=M_{2},\|x+y\|_{\psi}=M_{1}\|x+y\|_{2},\|x-y\|_{\psi}=M_{1}\|x-y\|_{2} .
$$

Since $\|\cdot\|_{\psi}$ is absolute, it is sufficient to consider the following three cases:
(i) There exist $s, t \in[0,1](s \neq t)$ satisfying $x=\frac{1}{\psi(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi(t)}(1-t, t)$.
(ii) There exist $s, t \in[0,1](s<t)$ satisfying $x=\frac{1}{\psi(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi(t)}(-1+t, t)$.
(iii) There exist $s, t \in[0,1](s>t)$ satisfying $x=\frac{1}{\psi(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi(t)}(-1+t, t)$.

As in the proof of Theorem 2.2, we can prove this theorem. This completes the proof.

3. The Zbăganu constant of \mathbb{R}^{2}

The Zbăganu constant $C_{Z}(X)$ in [15] is defined by

$$
C_{Z}(X)=\sup \left\{\left.\frac{\|x+y\|\|x-y\|}{\|x\|^{2}+\|y\|^{2}} \right\rvert\, x, y \in X,(x, y) \neq(0,0)\right\}
$$

Then it is clear that $C_{Z}(X) \leq C_{N J}(X)$ for any Banach space X. In this section, we consider the condition that $C_{Z}(X)=C_{N J}(X)$ for $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$. Then, we have the following
Proposition 3.1. Let $\psi \in \Psi_{2}$. If $\psi \geq \psi_{2}$, then $C_{Z}(X)=C_{N J}(X)=M_{1}^{2}$.
Proof. For any $x, y \in X$,

$$
\begin{aligned}
2\|x+y\|_{\psi}\|x-y\|_{\psi} & \leq\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} \\
& \leq M_{1}^{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right) \\
& =2 M_{1}^{2}\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& \leq 2 M_{1}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)
\end{aligned}
$$

Since ψ / ψ_{2} attains the maximum at $t=t_{0}\left(0 \leq t_{0} \leq 1\right)$, we put $x=\left(1-t_{0}, 0\right)$ and $y=\left(0, t_{0}\right)$, respectively. Then we have

$$
\begin{aligned}
\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} & =2 \psi\left(t_{0}\right)^{2} \\
& =2 M_{1}^{2} \psi_{2}\left(t_{0}\right)^{2} \\
& =2 M_{1}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) .
\end{aligned}
$$

Since $\|x+y\|_{\psi}=\psi\left(t_{0}\right)=\|x-y\|_{\psi}$, we have

$$
\begin{aligned}
2\|x+y\|_{\psi}\|x-y\|_{\psi} & =\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2} \\
& =2 M_{1}^{2}\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) .
\end{aligned}
$$

Therefore we have

$$
\frac{\|x+y\|_{\psi}\|x-y\|_{\psi}}{\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}}=M_{1}^{2}
$$

which implies that $C_{Z}(X)=M_{1}^{2}$.
We next consider the case that $\psi \leq \psi_{2}$. We remark that the Zbăganu constant $C_{Z}(X)$ is in the following form;

$$
C_{Z}(X)=\sup \left\{\left.\frac{4\|x\|\|y\|}{\|x+y\|^{2}+\|x-y\|^{2}} \right\rvert\, x, y \in X, \quad(x, y) \neq(0,0)\right\} .
$$

Then we have the following
Theorem 3.2. Let $\psi \in \Psi_{2}$. Assume that $\psi \leq \psi_{2}$. Then $C_{Z}(X)=M_{2}^{2}$ if and only if there exist $s, t \in[0,1](s<t)$ satisfying one of the following conditions:
(1) $\psi(s)=\psi_{2}(s), \psi(t)=\psi_{2}(t)$ and, if we put $r=\frac{\psi(s) t+\psi(t) s}{\psi(s)+\psi(t)}$, then $\frac{\psi_{2}(r)}{\psi(r)}=$ $\frac{\psi(1-r)}{\psi_{2}(1-r)}=M_{2}$.
(2) $\psi(s)=\psi_{2}(s), \psi(t)=\psi_{2}(t)$ and, if we put $r=\frac{\psi(t) s+\psi(s) t}{\psi(t)+\psi(s)(2 t-1)}$, then $\frac{\psi_{2}(r)}{\psi(r)}=$ $\frac{\psi(1-r)}{\psi_{2}(1-r)}=M_{2}$.
Proof. For any $x, y \in X$,

$$
\begin{aligned}
4\|x\|_{\psi}\|y\|_{\psi} & \leq 2\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right) \\
& \leq 2\left(\|x\|_{2}^{2}+\|y\|_{2}^{2}\right) \\
& =\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2} \\
& \leq M_{2}^{2}\left(\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}\right)
\end{aligned}
$$

Since $X=\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$ is finite dimensional,

$$
C_{Z}(X)=\max \left\{\left.\frac{4\|x\|_{\psi}\|y\|_{\psi}}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}} \right\rvert\, x, y \in X, \quad(x, y) \neq(0,0)\right\}
$$

Then $C_{Z}(X)=M_{2}^{2}$ if and only if there exist $x, y \in S_{X}(x \neq y)$ such that

$$
\frac{4\|x\|_{\psi}\|y\|_{\psi}}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}}=M_{2}^{2} .
$$

From the above inequality, $\|x\|_{2}=\|x\|_{\psi}=\|y\|_{\psi}=\|y\|_{2}$ and

$$
\frac{\|x+y\|_{2}}{\|x+y\|_{\psi}}=\frac{\|x-y\|_{2}}{\|x-y\|_{\psi}}=M_{2}^{2}
$$

Hence we may assume that

$$
\|x\|_{2}=\|x\|_{\psi}=\|y\|_{\psi}=\|y\|_{2}=1
$$

As in the proof of Theorem 2.2, it is sufficient to consider the following three cases:
(i) There exist $s, t \in[0,1](s \neq t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(1-t, t)$.
(ii) There exist $s, t \in[0,1](s<t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(-1+t, t)$.
(iii) There exist $s, t \in[0,1](s>t)$ satisfying $x=\frac{1}{\psi_{2}(s)}(1-s, s)$ and $y=$ $\frac{1}{\psi_{2}(t)}(-1+t, t)$.

As in the proof of Theorem 2.2, we can similarly prove this theorem.
We next study the Zbăganu constant $C_{Z}(X)$ in general case. If $\psi \in \Psi$, by [11, Theorem 3], then we have

$$
\max \left\{M_{1}^{2}, M_{2}^{2}\right\} \leq C_{Z}(X) \leq C_{N J}(X) \leq M_{1}^{2} M_{2}^{2}
$$

However, by Theorem 3.2, there exist many $\psi \in \Psi$ satisfying $\psi \geq \psi_{2}$ such that

$$
C_{Z}(X)<C_{N J}(X) \leq \max \left\{M_{1}^{2}, M_{2}^{2}\right\} .
$$

From [11, Theorem 3], $C_{N J}(X)=M_{1}^{2} M_{2}^{2}$ if either ψ / ψ_{2} or ψ_{2} / ψ attains a maximum at $t=1 / 2$. Then, we have the following

Proposition 3.3. Let $\psi \in \Psi_{2}$ and let $\psi(t)=\psi(1-t)$ for all $t \in[0,1]$. If $M_{2}=\frac{\psi_{2}(1 / 2)}{\psi(1 / 2)}$, then $C_{Z}(X)=C_{N J}(X)=M_{1}^{2} M_{2}^{2}$.

Proof. From the definition, we have $C_{Z}(X) \leq C_{N J}(X)=M_{1}^{2} M_{2}^{2}$. Take an arbitrary $t \in[0,1]$ and put $x=(t, 1-t)$ and $y=(1-t, t)$. Then $\|x\|_{\psi}=\|y\|_{\psi}=\psi(t)$ and $\|x+y\|_{\psi}=\|(1,1)\|_{\psi}=2 \psi(1 / 2),\|x-y\|_{\psi}=\|(2 t-1,1-2 t)\|_{\psi}=2 \mid 2 t-$ $1 \mid \psi(1 / 2)$. Hence we have

$$
\begin{aligned}
\frac{4\|x\|_{\psi}\|y\|_{\psi}}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}} & =\frac{2\left(\|x\|_{\psi}^{2}+\|y\|_{\psi}^{2}\right)}{\|x+y\|_{\psi}^{2}+\|x-y\|_{\psi}^{2}} \\
& =\frac{\psi(t)^{2}}{\left(1+(2 t-1)^{2}\right) \psi(1 / 2)^{2}} \\
& =\frac{\psi(t)^{2}}{2 \psi_{2}(t)^{2} \psi(1 / 2)^{2}} \\
& =\frac{\psi(t)^{2}}{\psi_{2}(t)^{2}} \frac{\psi_{2}(1 / 2)^{2}}{\psi(1 / 2)^{2}}=M_{2}^{2} \frac{\psi(t)^{2}}{\psi_{2}(t)^{2}}
\end{aligned}
$$

Since t is arbitrary, we have $C_{Z}(X) \geq M_{1}^{2} M_{2}^{2}$. Therefore we have $C_{Z}(X)=$ $M_{1}^{2} M_{2}^{2}$. This completes the proof.

In case that $M_{1}=\psi(1 / 2) / \psi_{2}(1 / 2)$, we have the following theorem as in the proof of Theorem 2.2 and so omit the proof.

Theorem 3.4. Let $\psi \in \Psi_{2}$ and let $\psi(t)=\psi(1-t)$ for all $t \in[0,1]$. If $M_{1}=\frac{\psi(1 / 2)}{\psi_{2}(1 / 2)}$ and $M_{2}>1$, then $C_{Z}(X)=M_{1}^{2} M_{2}^{2}$ if and only if there exist $s, t \in[0,1](s<t)$ satisfying one of the following conditions:
(1) $\psi_{2}(s)=M_{2} \psi(s), \psi_{2}(t)=M_{2} \psi(t)$ and, if we put $r=\frac{\psi(s) t+\psi(t) s}{\psi(s)+\psi(t)}$, then $\psi(r)=M_{1} \psi_{2}(r)$.
(2) $\psi_{2}(s)=M_{2} \psi(s), \psi_{2}(t)=M_{2} \psi(t)$ and, if we put $r=\frac{\psi(t) s+\psi(s) t}{\psi(t)+\psi(s)(2 t-1)}$, then $\psi(r)=M_{1} \psi_{2}(r)$.

4. Examples

In this section, we calculate $C_{N J}^{\prime}(X)$ and $C_{Z}(X)$ of some Banach spaces $X=$ $\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)$, where $\psi \in \Psi$. First, we consider the case that $\psi=\psi_{p}$.

Example 4.1. Let $1 \leq p \leq \infty$ and $1 / p+1 / q=1$. We put $t=\min (p, q)$. Then $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=2^{\frac{2}{t}-1}$ 。

Suppose that $1 \leq p \leq 2$. Since $\psi_{p} \geq \psi_{2}$, we have $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=2^{\frac{2}{p}-1}$ by Proposition 3.1. On the other hand, as in Theorem 2.2, we take $s=0$ and $t=1$. Since $r=\frac{\psi(0) \cdot 1+\psi(1) \cdot 0}{\psi(0)+\psi(1)}=\frac{1}{2}$ and $M_{1}=\psi_{p}(1 / 2) / \psi_{2}(1 / 2)=2^{\frac{1}{p}-\frac{1}{2}}$, by Theorem 2.2, we have $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=M_{1}^{2}=2^{\frac{2}{p}-1}$.

If $2 \leq p \leq \infty$, then we similarly have, by Proposition 2.1 and Theorem 3.2, $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{p}\right)=2^{\frac{2}{p}-1}$.

In [14, Example], C. Yang and H. Li calculated the modified NJ constant of the following normed linear space. From our theorems, we have

Example 4.2. Let $\lambda>0$ and $X_{\lambda}=\mathbb{R}^{2}$ endowed with norm

$$
\|(x, y)\|_{\lambda}=\left(\|(x, y)\|_{p}^{2}+\lambda\|(x, y)\|_{q}^{2}\right)^{1 / 2}
$$

(i) If $2 \leq p \leq q \leq \infty$, then $C_{N J}\left(X_{\lambda}\right)=C_{N J}^{\prime}\left(X_{\lambda}\right)=C_{Z}\left(X_{\lambda}\right)=\frac{2(\lambda+1)}{2^{2 / p}+\lambda^{2 / q}}$.
(ii) If $1 \leq p \leq q \leq 2$, then $C_{N J}\left(X_{\lambda}\right)=C_{N J}^{\prime}\left(X_{\lambda}\right)=C_{Z}\left(X_{\lambda}\right)=\frac{2^{2 / p}+\lambda \lambda^{2 / q}}{2(\lambda+1)}$.

To see this, first, we remark that (p, q) is not necessarily a Hölder pair. We define the normalized norm $\|\cdot\|_{\lambda}^{0}$ by

$$
\|(x, y)\|_{\lambda}^{0}=\frac{\|(x, y)\|_{\lambda}}{\sqrt{1+\lambda}}
$$

Then $\|\cdot\|_{\lambda}^{0}$ is absolute and so put the corresponding function $\psi_{\lambda}(t)=\|(1-t, t)\|_{\lambda}^{0}$. (i) Suppose that $2 \leq p \leq q \leq \infty$. Since $\psi_{\lambda} \leq \psi_{2}$, by Proposition 2.1, we have $C_{N J}\left(X_{\lambda}\right)=C_{N J}^{\prime}\left(X_{\lambda}\right)=M_{2}^{2}=\frac{2(\lambda+1)}{2^{2 / p}+\lambda 2^{2 / q}}$. On the other hand, in Theorem 3.2, we take $s=0$ and $t=1$. Then we have $r=1 / 2$ and $\frac{\psi_{2}(1 / 2)}{\psi_{\lambda}(1 / 2)}=M_{2}$. Thus we have $C_{Z}\left(X_{\lambda}\right)=M_{2}^{2}=\frac{2^{2 / p}+\lambda 2^{2 / q}}{2(\lambda+1)}$.
(ii) Suppose that $1 \leq p \leq q \leq 2$. Since $\psi_{\lambda} \geq \psi_{2}$, by Theorem 2.2 and Proposition 3.1, we similarly have (ii).

Example 4.3. Put

$$
\psi(t)=\left\{\begin{array}{cl}
\psi_{2}(t) & (0 \leq t \leq 1 / 2) \\
(2-\sqrt{2}) t+\sqrt{2}-1 & (1 / 2 \leq t \leq 1)
\end{array}\right.
$$

Then $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)<C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=2 \sqrt{2}(\sqrt{2}-1)$.

In fact, $\psi \in \Psi_{2}$ and the norm of $\|\cdot\|_{\psi}$ is

$$
\|(a, b)\|_{\psi}=\left\{\begin{array}{cl}
\sqrt{|a|^{2}+|b|^{2}} & (|a| \geq|b|) \\
(\sqrt{2}-1)|a|+|b| & (|a| \leq|b|)
\end{array}\right.
$$

Since $\psi \geq \psi_{2}$, by Proposition 3.1, we have $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=M_{1}^{2}=2 \sqrt{2}(\sqrt{2}-1)$.
We assume that $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)=M_{1}^{2}$. By Theorem 2.2, we can choose $r \in$ $[0,1]$ such that $\frac{\psi(r)}{\psi_{2}(r)}=\frac{\psi(1-r)}{\psi_{2}(1-r)}=M_{1}$. This is impossible by the definition of ψ. Therefore we have $C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi}\right)<M_{1}^{2}$.
Example 4.4. Let $1 / 2 \leq \beta \leq 1$. We define a convex function $\psi_{\beta} \in \Psi_{2}$ by

$$
\psi_{\beta}(t)=\max \{1-t, t, \beta\}
$$

By [11, Example 4], we have

$$
C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)= \begin{cases}\frac{\beta^{2}+(1-\beta)^{2}}{\beta^{2}} & \left(\beta \in\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]\right) \\ 2\left(\beta^{2}+(1-\beta)^{2}\right) & \left(\beta \in\left(\frac{1}{\sqrt{2}}, 1\right]\right) .\end{cases}
$$

Indeed,

$$
M_{1}= \begin{cases}1 & \left(\beta \in\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]\right) \\ \frac{\psi_{\beta}(1 / 2)}{\psi_{2}(1 / 2)}=\frac{\beta}{1 / \sqrt{2}}=\sqrt{2} \beta & \left(\beta \in\left(\frac{1}{\sqrt{2}}, 1\right]\right)\end{cases}
$$

and

$$
M_{2}=\frac{\psi_{2}(\beta)}{\psi_{\beta}(\beta)}=\frac{1}{\beta}\left\{(1-\beta)^{2}+\beta^{2}\right\}^{1 / 2}
$$

If $1 / 2 \leq \beta \leq 1 / \sqrt{2}$, then $\psi_{\beta} \leq \psi_{2}$ and so, by Proposition 2.1, we have

$$
C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=M_{2}^{2}=\frac{\beta^{2}+(1-\beta)^{2}}{\beta^{2}}
$$

By Theorem 3.2, we have $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)<M_{2}^{2}$.
Assume that $1 / \sqrt{2}<\beta \leq 1$. Since $M_{1}=\frac{\psi_{\beta}(1 / 2)}{\psi_{2}(1 / 2)}$, we have, by Proposition 2.3,

$$
C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=M_{1}^{2} M_{2}^{2}=2\left(\beta^{2}+(1-\beta)^{2}\right)
$$

On the other hand, we take $s=\beta$ and $t=1-\beta$ in Theorem 3.4. Then we have $r=\frac{\psi(\beta)(1-\beta)+\psi(1-\beta) \beta}{\psi(\beta)+\psi(1-\beta)}=1 / 2$. By Theorem 3.4, we have

$$
C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=M_{1}^{2} M_{2}^{2}=2\left(\beta^{2}+(1-\beta)^{2}\right)
$$

Example 4.5. We consider ψ_{β} in Example 4.4 in case of $\beta=1 / \sqrt{2}$. Then we have

$$
C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=M_{2}^{2}=2 \sqrt{2}(\sqrt{2}-1)
$$

On the other hand, we have $C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\psi_{\beta}}\right)=M_{2}^{2}=2 \sqrt{2}(\sqrt{2}-1)$.
For this ψ_{β}, define a convex function $\varphi \in \Psi_{2}$ by

$$
\varphi(t)= \begin{cases}\psi_{\beta}(t) & (0 \leq t \leq 1 / 2) \\ \psi_{2}(t) & (1 / 2 \leq t \leq 1)\end{cases}
$$

As in Example 4.2, we similarly have

$$
C_{Z}\left(\mathbb{R}^{2},\|\cdot\|_{\varphi}\right)<C_{N J}^{\prime}\left(\mathbb{R}^{2},\|\cdot\|_{\varphi}\right)=C_{N J}\left(\mathbb{R}^{2},\|\cdot\|_{\varphi}\right)=M_{2}^{2}=2 \sqrt{2}(\sqrt{2}-1)
$$

Acknowledgement. The second author is supported in part by Grants-inAid for Scientific Research, Japan Society for the Promotion of Science (No. 23540189). The authors would also like to thank the referees for some helpful comments.

References

1. J. Alonso, P. Martin and P.L. Papini, Wheeling around von Neumann-Jordan constant in Banach Spaces, Studia Math. 188 (2008), no. 2, 135-150.
2. J. Alonso and P. Martin, A counterexample for a conjecture of G. Zbâganu about the Neumann-Jordan constant, Rev. Roumaine Math. Pures Appl. 51 (2006), 135-141.
3. J.A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math. (2) 38 (1937), no. 1, 114-115.
4. J. Gao, A Pythagorean approach in Banach spaces, J. Inequal. Appl. (2006), Art. ID 94982, 1-11.
5. J. Gao and K. Lau, On the geometry of spheres in normed linear spaces, J. Austral. Math. Soc., 48(1990), 101-112.
6. J. Gao and S. Saejung, Normal structure and the generalized James and Zbăganu constant, Nonlinear Anal. 71 (2009), no. 7-8, 3047-3052.
7. J. Gao and S. Saejung, Some geometric measures of spheres in Banach spaces, Appl. Math. Comput. 214 (2009), no. 1, 102-107.
8. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719-723.
9. E. Llorens-Fuster, E.M. Mazcuñán-Navarro and S. Reich, The Ptolemy and Zbăganu constants of normed spaces, Nonlinear Anal. 72 (2010), no. 11, 3984-3993.
10. M. Kato and Y. Takahashi, On sharp estimates concerning von Neumann-Jordan and James constants for a Banach space, Rend. Circ. Mat. Palermo, Serie II, Suppl. 82 (2010), 1-17.
11. K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), no. 2, 515-532.
12. Y. Takahashi and M. Kato, A simple inequality for the von Neumann-Jordan and James constants of a Banach space, J. Math. Anal. Appl. 359 (2009), no. 2, 602-609.
13. Y. Takahashi, M. Kato and K. -S. Saito, Strict convexity of absolute norms on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl., 7(2002), 179-186.
14. C. Yang and H. Li, An inequality between Jordan-con Neumann constant and James constant, Appl. Math. Lett. 23 (2010), no. 3, 277-281.
15. G. Zbăganu, An inequality of M. Rădulescu and S. Rădulescu which characterizes inner product spaces, Rev. Roumaine Math. Puers Appl. 47 (2001), 253-257.

Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181 Japan.

E-mail address: mizuguchi@m.sc.niigata-u.ac.jp
E-mail address: saito@math.sc.niigata-u.ac.jp

[^0]: Date: Received: 31 March 2011; Accepted: 14 June 2011.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 46B20; Secondary 46B25.
 Key words and phrases. Zbăganu constant, absolute norm, von Neumann-Jordan constant.

