

Ann. Funct. Anal. 2 (2011), no. 2, 75–84

 \mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

SOME RESULTS ON σ -DERIVATIONS

A. ${
m HOSSEINI^1},$ M. ${
m HASSANI^{1*}},$ A. ${
m NIKNAM^1}$ AND S. ${
m HEJAZIAN^2}$

Communicated by M. S. Moslehian

ABSTRACT. Let \mathcal{A} and \mathcal{B} be two Banach algebras and let \mathcal{M} be a Banach \mathcal{B} -bimodule. Suppose that $\sigma: \mathcal{A} \to \mathcal{B}$ is a linear mapping and $d: \mathcal{A} \to \mathcal{M}$ is a σ -derivation. We prove several results about automatic continuity of σ -derivations on Banach algebras. In addition, we define a notion for m-weakly continuous linear mapping and show that, under certain conditions, d and σ are m-weakly continuous. Moreover, we prove that if \mathcal{A} is commutative and $\sigma: \mathcal{A} \to \mathcal{A}$ is a continuous homomorphism such that $\sigma^2 = \sigma$ then $\sigma d\sigma(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$.

1. Introduction and preliminaries

Let \mathcal{A} and \mathcal{B} be two algebras and let \mathcal{M} be a \mathcal{B} -bimodule. Suppose that $\sigma: \mathcal{A} \to \mathcal{B}$ is a linear mapping. A linear mapping $d: \mathcal{A} \to \mathcal{M}$ is called a σ -derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for all $a, b \in \mathcal{A}$. Clearly if \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma = id$, the identity mapping on \mathcal{A} , then a σ -derivation is an ordinary derivation. On the other hand, each homomorphism $\theta: \mathcal{A} \to \mathcal{B}$ is a $\frac{\theta}{2}$ -derivation. Mirzavaziri and Moslehian [5] have presented several important results of σ -derivations. Hosseini et al [3] defined generalized σ -derivation on Banach algebras and presented some results about automatic continuity of generalized σ -derivations and σ -derivations on Banach algebras. So far, numerous derivations have been defined such as σ -derivation, generalized σ -derivation, (σ, τ) -derivation and so on. In 2009, Mirzavaziri and Omidvar Tehrani [8] defined (δ, ε) -double derivation and also the automatic continuity of the former derivation on C^* -algebras was considered. Next, Hejazian et al [4] studied the automatic

Date: Received: 17 July 2011; Accepted: 20 August 2011.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47; Secondary 17B40.

Key words and phrases. σ -derivation, derivation, m-weakly continuous linear mapping, quasi-nilpotent.

continuity of (δ, ε) -double derivations on Banach algebras. The investigation of automatic continuity of (δ, ε) -double derivations and generalized σ -derivations in detail, will result in some theorems about automatic continuity of derivations and σ -derivations. Moreover, Mirzavaziri and Moslehian ([6] and [7]) acquired some results about automatic continuity of σ -derivations. In this article the m-weakly continuity of a linear mapping is defined as follows:

The linear mapping $T: \mathcal{B} \to \mathcal{A}$ is called m-weakly continuous if the linear mapping $\varphi T: \mathcal{B} \to \mathbb{C}$ is continuous for all multiplicative linear functional φ from \mathcal{A} in to \mathbb{C} . Suppose that \mathcal{A} is unital and $d: \mathcal{A} \to \mathcal{B}$ is a σ -derivation such that $\varphi d(\mathbf{1}) \neq 0$ for all $\varphi \in \Phi_{\mathcal{B}}$, the set of all non-zero multiplicative linear functionals from \mathcal{B} in to \mathbb{C} . If for all $\varphi \in \Phi_{\mathcal{B}}$ there exists an element $a_{\varphi} \in \mathcal{A}$ such that $a_{\varphi} \notin ker(\varphi d)$ and $\varphi d(a_{\varphi}^2) = (\varphi d(a_{\varphi}))^2$ then φd is a homomorphism. Moreover, d and σ are m-weakly continuous. In particular, if \mathcal{A} is semi-simple and commutative then d and σ are continuous.

Singer and Wermer (see Corollary 2.7.20 of [2]) proved that, when \mathcal{A} is a commutative Banach algebra and $D: \mathcal{A} \to \mathcal{A}$ is a continuous derivation, $D(\mathcal{A}) \subseteq rad(\mathcal{A})$, where $rad(\mathcal{A})$ is the Jacobson radical of \mathcal{A} . They conjectured that $D(\mathcal{A}) \subseteq rad(\mathcal{A})$ for each (possibly discontinuous) derivation D on \mathcal{A} . In 1988, Thomas [9] proved this conjecture. We prove that if $d: \mathcal{A} \to \mathcal{A}$ is a σ -derivation on a commutative Banach algebra \mathcal{A} such that σ is a continuous homomorphism and $\sigma^2 = \sigma$ then $\sigma d\sigma(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$. In particular if $d(\mathcal{A}) \subseteq \sigma d\sigma(\mathcal{A})$ then $d(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$, where $Q(\mathcal{A})$ is the set of all quasi-nilpotent elements of \mathcal{A} .

2. Main results

Throughout this paper \mathcal{A} and \mathcal{B} denote two Banach algebras. Moreover, \mathcal{M} denotes a Banach \mathcal{B} -bimodule. Furthermore, if an algebra is unital then $\mathbf{1}$ will show its unit element. Recall that if E is a subset of an algebra B, the right annihilator ran(E) of E (resp. the left annihilator lan(E) of E) is defined to be $\{b \in B : Eb = \{0\}\}$ (resp. $\{b \in B : bE = \{0\}\}$). The set $ann(E) := ran(E) \cap lan(E)$ is called the annihilator of E. Suppose $S \subseteq \mathcal{M}$. The right annihilator ran(S) of S is defined to be $\{b \in \mathcal{B} : Sb = \{0\}\}$. The left annihilator of S is defined, similarly. Also, recall that if Y and Z are Banach spaces and $T: Y \rightarrow Z$ is a linear mapping, then the set $\{z \in Z : \exists \{y_n\} \subseteq Y \text{ s.t } y_n \to 0, T(y_n) \to z\}$ is called the separating space S(T) of T. By the closed graph Theorem, T is continuous if and only if $S(T) = \{0\}$. The reader is referred to [2] for more about separating spaces.

Definition 2.1. Suppose $\sigma: \mathcal{A} \to \mathcal{B}$ is a linear mapping. A linear mapping $d: \mathcal{A} \to \mathcal{M}$ is called a σ -derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for all $a, b \in \mathcal{A}$.

It is clear that if \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma = id$, the identity mapping on \mathcal{A} , then a σ -derivation is an ordinary derivation.

Theorem 2.2. Suppose that $d: A \to B$ is a linear mapping. We define $d_1: A_1 \to B_1$ by $d_1(a + \alpha) = d(a) + \alpha$ for all $a + \alpha \in A_1$, whenever $A_1 = A \bigoplus \mathbb{C}$

and $\mathcal{B}_1 = \mathcal{B} \bigoplus \mathbb{C}$ are the unitization of \mathcal{A} and \mathcal{B} , respectively. Then d_1 is a σ -derivation if and only if d is a homomorphism.

Proof. We denote the unit element of \mathcal{A}_1 and \mathcal{B}_1 by 1. Clearly $d_1(\mathbf{1}) = \mathbf{1}$. Suppose that d_1 is a σ -derivation. We have $\mathbf{1} = d_1(\mathbf{1}) = d_1(\mathbf{1})\sigma(\mathbf{1}) + \sigma(\mathbf{1})d_1(\mathbf{1})$. Therefore $\sigma(\mathbf{1}) = \frac{1}{2}$ and $d_1((a + \alpha)\mathbf{1}) = d_1(a + \alpha)\sigma(\mathbf{1}) + \sigma(a + \alpha)d_1(\mathbf{1}) = \frac{d_1(a+\alpha)}{2} + \sigma(a + \alpha)$. Hence $\sigma(a + \alpha) = \frac{d_1(a+\alpha)}{2}$ for all $a + \alpha \in \mathcal{A}_1$. Moreover, we have

$$d_1((a+\alpha)(b+\beta)) = d_1(a+\alpha)\sigma(b+\beta) + \sigma(a+\alpha)d_1(b+\beta)$$

= $d_1(a+\alpha)\frac{d_1(b+\beta)}{2} + \frac{d_1(a+\alpha)}{2}d_1(b+\beta)$
= $d_1(a+\alpha)d_1(b+\beta)$.

It means that d_1 is a homomorphism. Hence d is a homomorphism. Conversely, assume that d is a homomorphism, i.e. d(ab) = d(a)d(b) for all $a, b \in \mathcal{A}$. We have $d(ab) + \beta d(a) + \alpha d(b) + \alpha \beta = d(a)d(b) + \beta d(a) + \alpha d(b) + \alpha \beta$ for all $a + \alpha$, $b + \beta \in \mathcal{A}_1$. It means that d_1 is a homomorphism. Put $\sigma = \frac{d_1}{2}$. Then

$$d_1((a+\alpha)(b+\beta)) = d_1(a+\alpha)d_1(b+\beta)$$

= $d_1(a+\alpha)\frac{d_1(b+\beta)}{2} + \frac{d_1(a+\alpha)}{2}d_1(b+\beta)$
= $d_1(a+\alpha)\sigma(b+\beta) + \sigma(a+\alpha)d_1(b+\beta)$.

Hence d_1 is a σ -derivation.

Corollary 2.3. Suppose \mathcal{B} is commutative and semisimple and let $d: \mathcal{A} \to \mathcal{B}$ be a linear mapping. If $d_1: \mathcal{A}_1 \to \mathcal{B}_1$, defined by $d_1(a + \alpha) = d(a) + \alpha$, is a σ -derivation then d and d_1 are continuous operators.

Proof. According to Theorem 2.2, d is a homomorphism. By Theorem 2.3.3 of [2], d is continuous and so d_1 is continuous.

Theorem 2.4. Suppose that \mathcal{A} is unital and $d: \mathcal{A} \to \mathcal{M}$ is a σ -derivation. If σ is continuous and $\|\sigma(\mathbf{1})\| < 1$ then d is continuous.

Proof. Suppose $d(\mathbf{1}) = 0$. Then for each $a \in \mathcal{A}$, $||d(a)|| = ||d(a)\sigma(\mathbf{1})|| \le ||d(a)|||\sigma(\mathbf{1})||$. Thus $||d(a)||(1 - ||\sigma(\mathbf{1})||) \le 0$. It follows that d(a) = 0. Since a was arbitrary, d is identically zero and hence d is continuous. Now assume that $d(\mathbf{1}) \ne 0$ and a is an arbitrary element of \mathcal{A} such that $d(a) \ne 0$. We have

$$||d(a)|| = ||d(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})d(a)||$$

$$\leq ||d(\mathbf{1})\sigma(a)|| + ||\sigma(\mathbf{1})d(a)||$$

$$\leq ||d(\mathbf{1})||||\sigma||||a|| + ||\sigma(\mathbf{1})||||d(a)||.$$

Hence $(1-\|\sigma(\mathbf{1})\|)\|d(a)\| \le \|d(\mathbf{1})\|\|\sigma\|\|a\|$. This implies that d is continuous. \square

Recall that an element a in a normed algebra \mathcal{A} is called quasi-nilpotent if $\lim_{n\to\infty} ||a^n||^{\frac{1}{n}} = 0$. The set of all quasi-nilpotent elements of \mathcal{A} is denoted by $Q(\mathcal{A})$.

Theorem 2.5. Suppose that \mathcal{A} and \mathcal{B} are unital and \mathcal{B} has no zero divisors and assume that $d: \mathcal{A} \to \mathcal{B}$ is a σ -derivation such that $d(\mathbf{1}) \neq 0$. If there exists a sequence $\{a_n\} \subseteq \mathcal{A}$ such that $d(a_n) \to a_0$ and $\sigma(a_n) \to a_0$, where $a_0 \neq 0$, then $d = \sigma$. Moreover, if d is continuous then $d(Q(\mathcal{A})) \subseteq Q(\mathcal{B})$.

Proof. We have $d(a_n) = d(a_n)\sigma(\mathbf{1}) + \sigma(a_n)d(\mathbf{1})$. Thus $a_0(\sigma(\mathbf{1}) + d(\mathbf{1}) - \mathbf{1}) = 0$. Since \mathcal{B} has no zero divisors and $a_0 \neq 0$, $d(\mathbf{1}) + \sigma(\mathbf{1}) = \mathbf{1}$. We have $d(\mathbf{1}) \neq \mathbf{1}$, since if $d(\mathbf{1}) = \mathbf{1}$ then $\sigma(\mathbf{1}) = 0$. Thus $d(\mathbf{1}) = d(\mathbf{1})\sigma(\mathbf{1}) + \sigma(\mathbf{1})d(\mathbf{1}) = 0$, which is a contradiction. We have $d(\mathbf{1}) = (\mathbf{1} - \sigma(\mathbf{1}))\sigma(\mathbf{1}) + \sigma(\mathbf{1})(\mathbf{1} - \sigma(\mathbf{1}))$. Therefore $(\mathbf{1} - 2\sigma(\mathbf{1}))d(\mathbf{1}) = 0$. Since $d(\mathbf{1}) \neq 0$ and \mathcal{B} has no zero divisors, $\sigma(\mathbf{1}) = \frac{1}{2}$. It follows that $d(\mathbf{1}) = \frac{1}{2}$. Let a be an arbitrary element of \mathcal{A} . We have

$$d(a) = d(a)\sigma(1) + \sigma(a)d(1) = \frac{d(a)}{2} + \frac{\sigma(a)}{2},$$

and hence $d = \sigma$. By induction on n, we obtain

$$d(a^n) = 2^{n-1}(d(a))^n$$

therefore $(d(a))^n = \frac{d(a^n)}{2^{n-1}}$. Assume that d is continuous and $a \in Q(\mathcal{A})$. Then

$$\|(d(a))^n\|^{\frac{1}{n}} = \|\frac{d(a^n)}{2^{n-1}}\|^{\frac{1}{n}} \le (\frac{1}{2^{n-1}})^{\frac{1}{n}} \|d\|^{\frac{1}{n}} \|a^n\|^{\frac{1}{n}} \to 0.$$

It means that $d(a) \in Q(\mathcal{B})$.

Remark 2.6. Suppose that $\sigma: \mathcal{A} \to \mathcal{B}$ is a continuous linear mapping and $\{\sigma(ab) - \sigma(a)\sigma(b) \mid a,b \in \mathcal{A}\} \subseteq ann(\mathcal{M})$. Then $U_{\sigma} = \mathcal{A} \bigoplus \mathcal{M}$ is an algebra by the following action: $(a,x) \bullet (b,y) = (ab,\sigma(a)y + x\sigma(b))$ for all $a,b \in \mathcal{A}$ and $x,y \in \mathcal{M}$. Put $m = \max\{1, \|\sigma\|\}$. We define $\||a\|| = m\|a\|$ $(a \in \mathcal{A})$, which is clearly a complete norm on \mathcal{A} . Then $\||ab\|| = m\|ab\| \le m^2\|a\|\|b\| = m\|a\|m\|b\| = \||a\|\|\|b\|$. Let $d: \mathcal{A} \to \mathcal{M}$ be a σ -derivation. Define two norms $\|.\|_1$ and $\|.\|_2$ on U_{σ} by $\|(a,x)\|_1 = \||a\|| + \|x\|$, $\|(a,x)\|_2 = \||a\|| + \|d(a) - x\|$.

Theorem 2.7. Suppose that $U_{\sigma}, \|.\|_1$ and $\|.\|_2$ are as in the Remark 2.6. Then U_{σ} is a Banach algebra with respect to $\|.\|_1$ and $\|.\|_2$. Furthermore, these two norms are equivalent if and only if d is continuous.

Proof. Clearly $(U_{\sigma}, \|.\|_1)$ is a Banach algebra and $\|.\|_2$ is a norm on U_{σ} . We prove that $\|.\|_2$ is a complete algebra norm on U_{σ} . Suppose $\{(a_n, x_n)\}$ is a Cauchy sequence in $(U_{\sigma}, \|.\|_2)$. Then $\{a_n\}$ and $\{d(a_n) - x_n\}$ are Cauchy sequences in \mathcal{A} and \mathcal{M} , respectively. Since \mathcal{A} and \mathcal{M} are Banach spaces, there exist $a \in \mathcal{A}$ and $x \in \mathcal{M}$ such that $a_n \to a$ in \mathcal{A} and $d(a_n) - x_n \to x$ in \mathcal{M} . Therefore $(a_n, x_n) \to (a, d(a) - x)$ in $\|.\|_2$. Thus $(U_{\sigma}, \|.\|_2)$ is a Banach space. Assume that

(a,x) and (b,y) are two arbitrary elements of U_{σ} . We have

$$\begin{aligned} \|(a,x) \bullet (b,y)\|_2 &= \|(ab,\sigma(a)y + x\sigma(b)\|_2 \\ &= \||ab\|| + \|d(ab) - \sigma(a)y - x\sigma(b)\| \\ &= \||ab\|| + \|d(a)\sigma(b) + \sigma(a)d(b) - \sigma(a)y - x\sigma(b)\| \\ &\leq \||a\|| \ \||b\|| + \|d(a) - x\| \||\sigma\|| \|b\| + \|\sigma\| \|a\| \|d(b) - y\| \\ &\leq \||a\|| \ \||b\|| + \|d(a) - x\| \ \||b\|| + \||a\|| \ \|d(b) - y\| \\ &\leq (\||a\|| + \|d(a) - x\|)(\||b\|| + \|d(b) - y\|) \\ &= \|(a,x)\|_2 \|(b,y)\|_2. \end{aligned}$$

Therefore $(U_{\sigma}, \|.\|_2)$ is a Banach algebra. Suppose d is continuous. We have

$$||(a,x)||_{2} = |||a||| + ||d(a) - x||$$

$$\leq |||a||| + ||d(a)|| + ||x||$$

$$\leq |||a||| + ||d|||a|| + ||x||$$

$$\leq |||a||| + ||d|| m||a|| + ||x||$$

$$= |||a||| + ||d|| |||a||| + ||x||$$

$$\leq (1 + ||d||)(||a||| + ||x||)$$

$$= (1 + ||d||)||(a,x)||_{1}$$

for all $(a,x) \in U_{\sigma}$. Applying the open mapping Theorem, we obtain that $\|.\|_1$ and $\|.\|_2$ are equivalent. Conversely, suppose that $\|.\|_1$ and $\|.\|_2$ are equivalent. Then there exists a positive number c such that $\|(a,x)\|_2 \leq c\|(a,x)\|_1$ $((a,x) \in U_{\sigma})$. Thus $\|d(a)\| \leq \|(a,0)\|_2 \leq c\|(a,0)\|_1 = c\||a\||$. It means that d is continuous. \square

Suppose that $d: \mathcal{A} \to \mathcal{M}$ is a linear mapping. We define a linear mapping $\Theta: U_{\sigma} \to U_{\sigma}$ by $\Theta(a, x) = (a, d(a) - x) \quad (a \in \mathcal{A}, x \in \mathcal{M})$. It is clear that Θ is an endomorphism if and only if d is a σ -derivation.

Theorem 2.8. Suppose that $\sigma: \mathcal{A} \to \mathcal{B}$ is a continuous linear mapping such that $\{\sigma(ab) - \sigma(a)\sigma(b) \mid a, b \in \mathcal{A}\} \subseteq ann(\mathcal{M})$ and assume that $d: \mathcal{A} \to \mathcal{M}$ is a σ -derivation. Consider U_{σ} and $\|.\|_2$ as in Remark 2.6. Then d is continuous if and only if $\Theta: (U_{\sigma}, \|.\|_2) \to (U_{\sigma}, \|.\|_2)$ is continuous.

Proof. We have $\|\Theta(a,x)\|_2 = \|(a,d(a)-x)\|_2 = \||a\|| + \|x\| = \|(a,x)\|_1$. Let d be continuous. By Theorem 2.7, $\|.\|_1$ and $\|.\|_2$ are equivalent. So there exists a positive number c such that $\|(a,x)\|_1 \leq c \|(a,x)\|_2$. On the other hand, $\|\Theta(a,x)\|_2 = \|(a,x)\|_1 \leq c \|(a,x)\|_2$. It means that Θ is continuous. Now assume that Θ is continuous. Then there exists a positive number c such that $\|\Theta(a,x)\|_2 \leq c \|(a,x)\|_2$. This implies that $\|(a,x)\|_1 \leq c \|(a,x)\|_2$. It follows from Theorem 2.7 that d is continuous.

Suppose that \mathcal{A} is a Banach algebra. We denote by $\Phi_{\mathcal{A}}$, the set of all non-zero multiplicative linear functionals from \mathcal{A} into \mathbb{C} . We know that each member of $\Phi_{\mathcal{A}}$ is continuous. Since the case $\Phi_{\mathcal{A}} = \phi$ makes every thing trivial, so we will assume that $\Phi_{\mathcal{A}}$ is not equal to empty set.

Definition 2.9. Let \mathcal{B} and \mathcal{A} be two Banach algebras and suppose that $T: \mathcal{B} \to \mathcal{A}$ is a linear mapping. T is called m-weakly continuous if the linear mapping $\varphi T: \mathcal{B} \to \mathbb{C}$ is continuous for all $\varphi \in \Phi_{\mathcal{A}}$.

It is clear that if a linear mapping is continuous then it is m-weakly continuous but the converse is not true, in general. To see this, suppose that \mathcal{A} is a Banach algebra. Set $\mathfrak{B} = \mathbb{C} \bigoplus \mathcal{A}$. Consider \mathfrak{B} as a commutative algebra with pointwise addition and scalar multiplication and the product defined by $(\alpha, a).(\beta, b) = (\alpha\beta, \alpha b + \beta a)$ $(\alpha, \beta \in \mathbb{C} \text{ and } a, b \in \mathcal{A})$. The algebra \mathfrak{B} with the norm $\|(\alpha, a)\| = |\alpha| + \|a\|$ is a Banach algebra. Hence $rad(\mathfrak{B}) = Q(\mathfrak{B}) = \{0\} \bigoplus \mathcal{A}$. On the other hand, $rad(\mathfrak{B}) = \bigcap_{\varphi \in \Phi_{\mathfrak{B}}} ker(\varphi)$. Note that $\Phi_{\mathfrak{B}} \neq \phi$, since \mathfrak{B} is a unital commutative Banach algebra. Assume that $T : \mathcal{A} \to \mathcal{A}$ is a discontinuous linear mapping. Define $D : \mathfrak{B} \to \mathfrak{B}$ by $D(\alpha, a) = (0, T(a))$. Clearly D is discontinuous and $D(\mathfrak{B}) \subseteq \{0\} \bigoplus \mathcal{A} = rad(\mathfrak{B}) = \bigcap_{\varphi \in \Phi_{\mathfrak{B}}} ker(\varphi)$. So $\varphi(D(\mathfrak{B})) = \{0\}$ for all $\varphi \in \Phi_{\mathfrak{B}}$ and it cause that $\varphi D : \mathfrak{B} \to \mathbb{C}$ is continuous for all $\varphi \in \Phi_{\mathfrak{B}}$. Thus D is m-weakly continuous but it is not continuous. In fact D is a discontinuous derivation on \mathfrak{B} . Moreover, every derivation from a commutative Banach algebra \mathcal{A} into \mathcal{A} is m-weakly continuous (see Theorem 4.4 of [9]).

Proposition 2.10. Suppose that \mathcal{A} is a Banach algebra. Then \mathcal{A} is commutative and semi-simple if and only if $\bigcap_{\varphi \in \Phi_A} ker(\varphi) = \{0\}$.

Proof. Obviously if \mathcal{A} is commutative and semi-simple then $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker(\varphi) = \{0\}$. Conversely, suppose that $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker(\varphi) = \{0\}$ and a,b are two arbitrary elements of \mathcal{A} . Then $\varphi(ab) = \varphi(a)\varphi(b) = \varphi(b)\varphi(a) = \varphi(ba)$ for all $\varphi \in \Phi_{\mathcal{A}}$. So $\varphi(ab-ba) = 0$. Since φ was arbitrary, we have $ab - ba \in \bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker(\varphi) = \{0\}$. Hence \mathcal{A} is commutative. Since \mathcal{A} is commutative and $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker(\varphi) = \{0\}$, $rad(\mathcal{A}) = \{0\}$. Thus \mathcal{A} is semi-simple.

Theorem 2.11. Suppose that \mathcal{B} and \mathcal{A} are two Banach algebras and assume that $T: \mathcal{B} \to \mathcal{A}$ is an m-weakly continuous linear mapping. If $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker(\varphi) = \{0\}$ then T is continuous.

Proof. By part (ii) of Proposition 5.2.2 in [2], we have the result.

Theorem 2.12. Suppose that $d: A \to \mathcal{B}$ is a σ -derivation such that σ is mweakly continuous. If $\bigcap_{\varphi \in \Phi_{\mathcal{B}}} \ker(\varphi) = \{0\}$ and $S(\varphi d) \neq \{0\}$ for all $\varphi \in \Phi_{\mathcal{B}}$ then σ is a homomorphism.

Proof. Suppose that φ is an arbitrary element of $\Phi_{\mathcal{B}}$. Put $\varphi d = d_1$ and $\varphi \sigma = \sigma_1$. Obviously d_1 is a σ_1 -derivation. Since σ_1 is continuous, $\{\sigma_1(ab) - \sigma_1(a)\sigma_1(b) \mid a, b \in \mathcal{A}\} \subseteq ann(S(d_1)) = \{0\}$ (see Lemma 2.3 of [6]). Therefore $\{\sigma(ab) - \sigma(a)\sigma(b) \mid a, b \in \mathcal{A}\} \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{B}}} ker(\varphi) = \{0\}$. So σ is a homomorphism.

Theorem 2.13. Suppose that \mathcal{A} is unital and $d: \mathcal{A} \to \mathcal{B}$ is a σ -derivation such that $\varphi d(\mathbf{1}) \neq 0$ for all $\varphi \in \Phi_{\mathcal{B}}$. If for all $\varphi \in \Phi_{\mathcal{B}}$ there exists an element $a_{\varphi} \in \mathcal{A}$ such that $a_{\varphi} \notin \ker(\varphi d)$ and $\varphi d(a_{\varphi}^2) = (\varphi d(a_{\varphi}))^2$ then φd is a homomorphism. Moreover, d and σ are m-weakly continuous.

Proof. Suppose that φ is an arbitrary element of $\Phi_{\mathcal{B}}$. Put $\varphi d = d_1$ and $\varphi \sigma = \sigma_1$. At first we show that $ker(d_1) \subseteq ker(\sigma_1)$. Let $a \in ker(d_1)$. We have

$$0 = d_1(a)$$

= $d_1(a)\sigma_1(1) + \sigma_1(a)d_1(1)$
= $\sigma_1(a)d_1(1)$.

Since $d_1(\mathbf{1}) \neq 0$, $\sigma_1(a) = 0$ and hence $a \in ker(\sigma_1)$. It means that $ker(d_1) \subseteq ker(\sigma_1)$. Therefore there exists a complex number λ_{φ} such that $\sigma_1 = \lambda_{\varphi}d_1$. By hypothesis, there exists $a_{\varphi} \notin ker(\varphi d)$ such that $\varphi d(a_{\varphi}^2) = (\varphi d(a_{\varphi}))^2$. We have

$$(d_1(a_{\varphi}))^2 = d_1(a_{\varphi}^2)$$

$$= d_1(a_{\varphi})\sigma_1(a_{\varphi}) + \sigma_1(a_{\varphi})d_1(a_{\varphi})$$

$$= d_1(a_{\varphi})\lambda_{\varphi}d_1(a_{\varphi}) + \lambda_{\varphi}d_1(a_{\varphi})d_1(a_{\varphi})$$

$$= 2\lambda_{\varphi}(d_1(a_{\varphi}))^2.$$

Since $d_1(a_{\varphi}) \neq 0$, $\lambda_{\varphi} = \frac{1}{2}$. This implies that $\sigma_1 = \frac{d_1}{2}$. We have

$$d_1(ab) = d_1(a)\sigma_1(b) + \sigma_1(a)d_1(b)$$

= $d_1(a)\frac{d_1(b)}{2} + \frac{d_1(a)}{2}d_1(b)$
= $d_1(a)d_1(b)$

for all $a, b \in \mathcal{A}$. Hence $d_1 : \mathcal{A} \to \mathbb{C}$ is a complex homomorphism. We know that every complex homomorphism on a Banach algebra is continuous. Clearly σ_1 is also continuous. Since φ was arbitrary, d and σ are m-weakly continuous. \square

Suppose that $a \in \mathcal{A}$ we define $L_a : \mathcal{A} \to \mathcal{A}$ by $L_a(b) = ab$ for all $b \in \mathcal{A}$. Set $L_{\mathcal{A}} = \{L_a \mid a \in \mathcal{A}\}$. It is clear that $L_{\mathcal{A}}$ is a subalgebra of $B(\mathcal{A})$, here $B(\mathcal{A})$ denotes the set of all continuous linear mapping from \mathcal{A} into \mathcal{A} . It is well known that $a \in Q(\mathcal{A})$ if and only if $L_a \in Q(L_{\mathcal{A}})$.

Theorem 2.14. Q(A) = lan(A) if and only if $Q(L_A) = \{0\}$.

Proof. Suppose that $Q(L_{\mathcal{A}}) = \{0\}$ and $a \in Q(\mathcal{A})$. So $L_a \in Q(L_{\mathcal{A}}) = \{0\}$ and hence $a \in lan(\mathcal{A})$. It means that $Q(\mathcal{A}) \subseteq lan(\mathcal{A})$. It is easy to see that $lan(\mathcal{A}) \subseteq Q(\mathcal{A})$. Thus $Q(\mathcal{A}) = lan(\mathcal{A})$. Conversely, assume that $Q(\mathcal{A}) = lan(\mathcal{A})$. Suppose that $L_a \in Q(L_{\mathcal{A}})$. So $a \in Q(\mathcal{A}) = lan(\mathcal{A})$. It follows that ab = 0 for all $b \in \mathcal{A}$. It means that $L_a = 0$. Hence $Q(L_{\mathcal{A}}) = \{0\}$.

Theorem 2.15. Suppose that $d: A \to A$ is a σ -derivation such that σ is an endomorphism and $\sigma^2 = \sigma$. If $\sigma d\sigma$ is a continuous mapping and $\sigma(a)\sigma d\sigma(a) = \sigma d\sigma(a)\sigma(a)$ for all $a \in A$ then $\sigma d\sigma(A) \subseteq \sigma(Q(A)) \subseteq Q(A)$. In particular if $d(A) \subseteq \sigma d\sigma(A)$ then $d(A) \subseteq \sigma(Q(A))$.

Proof. First of all, we define another action on \mathcal{A} by the following form: $a \bullet b = \sigma(ab)$ for all $a, b \in \mathcal{A}$. It is clear that \mathcal{A} is an algebra by this action. We denote this algebra by $\widetilde{\mathcal{A}}_{\sigma}$. Put $D = \sigma d\sigma$. It is clear that $\sigma D = D\sigma = D$ and D is a

 σ -derivation on \mathcal{A} . Moreover, D is a derivation on $\widetilde{\mathcal{A}}_{\sigma}$. Because,

$$D(a \bullet b) = D(\sigma(ab)) = D(\sigma(a)\sigma(b))$$

$$= D(\sigma(a))\sigma^{2}(b) + \sigma^{2}(a)D(\sigma(b))$$

$$= \sigma(D(a))\sigma(b) + \sigma(a)\sigma(D(b))$$

$$= D(a) \bullet b + a \bullet D(b)$$

for all $a, b \in \widetilde{\mathcal{A}}_{\sigma}$. Suppose that $a \in \mathcal{A}$ is a non-zero arbitrary element. We define a linear mapping $\Delta_{L_a}: B(\widetilde{\mathcal{A}}_{\sigma}) \to B(\widetilde{\mathcal{A}}_{\sigma})$ by $\Delta_{L_a}(T) = TL_a - L_aT$ for all $T \in B(\widetilde{\mathcal{A}}_{\sigma})$. We have $\Delta_{L_a}(D)(x) = (DL_a - L_aD)(x) = D(a \bullet x) - a \bullet D(x) = L_{D(a)}(x)$ for all $x \in \widetilde{\mathcal{A}}_{\sigma}$. Therefore $\Delta_{L_a}^2(D) = \Delta_{L_a}(L_{D(a)}) = L_{D(a)}L_a - L_aL_{D(a)} = 0$. Hence $\Delta_{L_a}(D) \in Q(B(\widetilde{\mathcal{A}}_{\sigma}))$. This implies that $L_{D(a)} \in Q(L_{\widetilde{\mathcal{A}}_{\sigma}})$. So $D(a) \in Q(\widetilde{\mathcal{A}}_{\sigma})$. Since $D\sigma = \sigma D = D$, $D(a) \in Q(\mathcal{A})$. It means that $\sigma d\sigma(\mathcal{A}) \subseteq Q(\mathcal{A})$. Since $D(\mathcal{A}) \subseteq Q(\mathcal{A})$, $\sigma D(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A}))$. Hence $\sigma d\sigma(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A}))$. Note that $\sigma(Q(\mathcal{A})) \subseteq Q(\mathcal{A})$.

We know that if $\sigma: \mathcal{A} \to \mathcal{A}$ is an endomorphism such that $\sigma^2 = \sigma$ then we can define $\widetilde{\mathcal{A}}_{\sigma} - algebra$ which introduced in 2.15. We want to define a norm on $\widetilde{\mathcal{A}}_{\sigma}$ such that it is a Banach algebra. Suppose σ is continuous. Obviously $\|\sigma\| \geq 1$. We define $\||a|| = \|\sigma\| \|a\|$. Clearly $\widetilde{\mathcal{A}}_{\sigma}$ is a Banach algebra with respect to $\||.||$.

Theorem 2.16. Suppose that \mathcal{A} is commutative and $d: \mathcal{A} \to \mathcal{A}$ is a σ -derivation such that σ is a continuous endomorphism and $\sigma^2 = \sigma$. Then $\sigma d\sigma(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$. In particular if $d(\mathcal{A}) \subseteq \sigma d\sigma(\mathcal{A})$ then $d(\mathcal{A}) \subseteq \sigma(Q(\mathcal{A})) \subseteq rad(\mathcal{A})$.

Proof. Consider $\widetilde{\mathcal{A}}_{\sigma}$ -algebra with $\|\cdot\|$. Clearly it is a commutative Banach algebra. We know that $D = \sigma d\sigma : \widetilde{\mathcal{A}}_{\sigma} \to \widetilde{\mathcal{A}}_{\sigma}$ is a derivation. By Theorem 4.4 in [9], $D(\widetilde{\mathcal{A}}_{\sigma}) \subseteq rad(\widetilde{\mathcal{A}}_{\sigma}) = Q(\widetilde{\mathcal{A}}_{\sigma})$. Since $D\sigma = \sigma D = D$, $D(\mathcal{A}) \subseteq Q(\mathcal{A})$. A similar argument to Theorem 2.15 gives the result.

Definition 2.17. A Banach algebra \mathcal{A} has the Cohen's factorization property if $\mathcal{A}^2 = \mathcal{A}$, where $\mathcal{A}^2 = \{bc \mid b, c \in \mathcal{A}\}.$

Corollary 2.18. Suppose that $d: A \to A$ is a σ -derivation such that all conditions in Theorem 2.16 are hold and furthermore $d\sigma = \sigma d = d$. If $Q(L_A) = \{0\}$ and A has the Cohen's factorization property then d is identically zero.

Proof. By Theorem 2.16, $d(A) \subseteq Q(A)$. Since A is commutative and $Q(L_A) = \{0\}$, it follows from Theorem 2.14 that Q(A) = lan(A) = ann(A). Suppose that a is an arbitrary element of A. Then there exist two elements b and c in A such that a = bc. We have $d(a) = d(bc) = d(b)\sigma(c) + \sigma(b)d(c) = 0$. Since a was arbitrary, $d \equiv 0$.

Remark 2.19. Suppose that \mathcal{A} is commutative and has the Cohen's factorization property and assume that $d: \mathcal{A} \to \mathcal{A}$ is a derivation. If $Q(L_{\mathcal{A}}) = \{0\}$ then by Theorem 4.4 of [9], we have $d(\mathcal{A}) \subseteq Q(\mathcal{A})$. It follows from Theorem 2.14 that $d \equiv 0$.

Theorem 2.20. Suppose \mathcal{B} is commutative and $d: \mathcal{A} \to \mathcal{B}$ is a σ – derivation such that σ is an isomorphism. Then $d(\mathcal{A}) \subseteq rad(\mathcal{B})$.

Proof. We define a map $D: \mathcal{B} \to \mathcal{B}$ by $D(b) = d\sigma^{-1}(b)$ for all $b \in \mathcal{B}$. It is clear that D is a derivation on \mathcal{B} . According to Theorem 4.4 of [9], $D(\mathcal{B}) \subseteq rad(\mathcal{B})$. Hence $d(\mathcal{A}) \subseteq rad(\mathcal{B})$.

Proposition 2.21. Suppose that $d: A \to A$ is a σ -derivation such that $\sigma^2 = \sigma$ and σ is an endomorphism. If $d\sigma = \sigma d$ then $d^n(\sigma(ab)) = \sum_{k=0}^n \binom{n}{k} d^{n-k}\sigma(a) d^k\sigma(b)$ $(n \in \mathbb{N} \ and \ a, b \in A)$. With the convention that $d^0 = id$, the identity operator on A.

Proof. We consider $\widetilde{\mathcal{A}}_{\sigma}-algebra$. Clearly $d:\widetilde{\mathcal{A}}_{\sigma}\to\widetilde{\mathcal{A}}_{\sigma}$ is a derivation. According to part (i) of Proposition 18.4 of [1], we have $d^n(a\bullet b)=\sum_{k=0}^n\binom{n}{k}\ d^{n-k}(a)\bullet d^k(b)$ for all $a,b\in\widetilde{\mathcal{A}}_{\sigma}$. Therefore

$$d^{n}(\sigma(ab)) = \sum_{k=0}^{n} \binom{n}{k} \sigma(d^{n-k}(a) \ d^{k}(b))$$
$$= \sum_{k=0}^{n} \binom{n}{k} \sigma d^{n-k}(a) \ \sigma d^{k}(b)$$
$$= \sum_{k=0}^{n} \binom{n}{k} d^{n-k} \sigma(a) \ d^{k} \sigma(b).$$

Theorem 2.22. Suppose that $d: A \to A$ is a continuous σ – derivation such that σ is an endomorphism and $\sigma^2 = \sigma$. If $d\sigma = \sigma d$ and $d\sigma$ is continuous then $e^d \sigma$ is a continuous endomorphism and e^d is a continuous bijective mapping on A.

Proof. First, we define a linear mapping d_1 by the following form: $d_1^0 = \sigma$ and $d_1 = d\sigma$. Clearly $d_1^n = d^n\sigma$ for all non-negative integer n. It follows from Proposition 2.21 that $d_1^n(ab) = \sum_{k=0}^n \binom{n}{k} d_1^{n-k}(a) d_1^k(b)$ for all $a, b \in \mathcal{A}$. We have

$$e^{d_1} = \sum_{n=0}^{\infty} \frac{d_1^n}{n!} = \sigma + \sum_{n=1}^{\infty} \frac{d_1^n}{n!}$$
$$= \sigma + \sum_{n=1}^{\infty} \frac{(d\sigma)^n}{n!}$$
$$= \sigma + \sum_{n=1}^{\infty} \frac{d^n \sigma}{n!}$$
$$= (id + \sum_{n=1}^{\infty} \frac{d^n}{n!})\sigma$$
$$= e^d \sigma.$$

Since d_1 is a continuous derivation, Proposition 18.7 of [1] implies that $e^{d_1}(ab) = e^{d_1}(a) e^{d_1}(b)$. Therefore $e^d \sigma(ab) = e^d \sigma(a) e^d \sigma(b)$ for all $a, b \in \mathcal{A}$. It means that

 $e^{d_1} = e^d \sigma$ is a continuous endomorphism on \mathcal{A} . We know that $d: \widetilde{\mathcal{A}}_{\sigma} \to \widetilde{\mathcal{A}}_{\sigma}$ is a continuous derivation. By Proposition 18.7 of [1], we obtain $e^d(a \bullet b) = e^d(a) \bullet e^d(b)$, i.e. $e^d: \widetilde{\mathcal{A}}_{\sigma} \to \widetilde{\mathcal{A}}_{\sigma}$ is a continuous automorphism. Hence e^d is a continuous bijective mapping on \mathcal{A} .

References

- 1. F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
- H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, 2000.
- 3. A. Hosseini, M. Hassani and A. Niknam, Generalized σ -derivation on Banach Algebras, Bull. Iranian Math. (to appear).
- 4. S. Hejazian, H. Mahdavian Rad and M. Mirzavaziri, (δ, ε) -double deivations on Banach algebras, Ann. Funct. Anal. 1 (2010), 103–111.
- 5. M. Mirzavaziri and M.S. Moslehian, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. **32** (2006), no. 1, 65–78.
- M. Mirzavaziri and M.S. Moslehian, Automatic continuity of σ-derivations in C*-algebras, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3312–3327.
- 7. M. Mirzavaziri and M.S. Moslehian, *Ultraweak Continuity of* σ -derivations on von Neumann Algebras, Math. Phys. Anal. Geom. **12** (2009), no. 2, 109–115.
- 8. M. Mirzavaziri and E. Omidvar Tehrani, δ -double derivation on C^* -algebras, Bull. Iranian Math. **35** (2009), no. 1, 147–154.
- M.P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), no. 3, 435-460.
- ¹ Amin Hosseini, Department of Mathematics, Mashhad Branch, Islamic Azad University-Mashhad, Iran.

E-mail address: A.hosseini@mshdiau.ac.ir E-mail address: Hassani@mshdiau.ac.ir E-mail address: dassamankin@yahoo.co.uk

 2 S. Hejazian, Department of Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Iran.

E-mail address: hejazian@ferdowsi.um.ac.ir