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ON STRONGLY h-CONVEX FUNCTIONS
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Abstract. We introduce the notion of strongly h-convex functions (defined
on a normed space) and present some properties and representations of such
functions. We obtain a characterization of inner product spaces involving the
notion of strongly h-convex functions. Finally, a Hermite–Hadamard–type in-
equality for strongly h-convex functions is given.

1. Introduction

Let I be an interval in R and h : (0, 1) → (0,∞) be a given function. Following
Varos̆anec [17], a function f : I → R is said to be h-convex if

f(tx + (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) (1.1)

for all x, y ∈ I and t ∈ (0, 1). This notion unifies and generalizes the known
classes of convex functions, s - convex functions, Godunova-Levin functions and
P -functions, which are obtained by putting in (1.1) h(t) = t, h(t) = ts, h(t) = 1

t
,

and h(t) = 1, respectively. Many properties of them can be found, for instance,
in [1, 2, 4, 10, 13, 14, 17].

Recall also that a function f : I → R is called strongly convex with modulus
c > 0, if

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)− ct(1− t)(x− y)2
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for all x, y ∈ I and t ∈ (0, 1). Strongly convex functions have been introduced by
Polyak [12], and they play an important role in optimization theory and mathe-
matical economics. Various properties and applications of them can be found in
the literature (see, for instance, [6, 7, 9, 11, 15, 16] and the references therein).

In this paper we introduce the notion of strongly h-convex functions defined in
normed spaces and present some examples and properties of them. In particular
we obtain a representation of strongly h-convex functions in inner product spaces
and, using the methods of [9], we give a characterization of inner product spaces,
among normed spaces, that involves the notion of strongly h-convex function.
Finally, a version of Hermite–Hadamard-type inequalities for strongly h-convex
functions is presented. This result generalizes the Hermite–Hadamard-type in-
equalities obtained in [7] for strongly convex functions, and for c = 0, coincides
with the classical Hermite–Hadamard inequalities, as well as the corresponding
Hermite–Hadamard-type inequalities for h-convex functions, s-convex functions,
Godunova-Levin functions and P -functions presented in [14, 3, 4], respectively.

2. Some basic properties and representations

In what follows (X, ‖ · ‖) denotes a real normed space, D stands for a convex
subset of X, h : (0, 1) → (0,∞) is a given function and c is a positive constant.
We say that a function f : D → R is strongly h-convex with modulus c if

f(tx + (1− t)y) ≤ h(t)f(x) + h(1− t)f(y)− ct(1− t)‖x− y‖2 (2.1)

for all x, y ∈ D and t ∈ (0, 1). In particular, if f satisfies (2.1) with h(t) = t,
h(t) = ts (s ∈ (0, 1)), h(t) = 1

t
, and h(t) = 1, then f is said to be strongly convex,

strongly s-convex, strongly Godunova-Levin functions and strongly P -function,
respectively. The notion of h-convex function corresponds to the case c = 0. We
start with two lemmas which give some relationships between strongly h-convex
functions and h-convex functions in the case where X is a real inner product
space (that is, the norm ‖ · ‖ is induced by an inner product: ‖x‖2 :=< x | x >).

Lemma 2.1. Let (X, ‖ · ‖) be a real inner product space, D be a convex subset
of X and c > 0. Assume that h : (0, 1) → (0,∞) satisfies the condition

h(t) ≥ t, t ∈ (0, 1). (2.2)

If g : D → R is h-convex, then f : D → R defined by f(x) = g(x)+c‖x‖2, x ∈
D is strongly h-convex with modulus c.

Proof. Assume that g is h-convex. Then
f(tx + (1− t)y)

= g(tx + (1− t)y) + c‖(tx + (1− t)y)‖2

≤ h(t)g(x) + h(1− t)g(y) + c‖(tx + (1− t)y)‖2

= h(t)f(x) + h(1− t)f(y)− ch(t)‖x‖2 − ch(1− t)‖y‖2 + c‖(tx + (1− t)y)‖2

≤ h(t)f(x) + h(1− t)f(y)− ct‖x‖2 − c(1− t)‖y‖2

+ c(t2‖x‖2 + 2t(1− t) < x | y > +(1− t)2‖y‖2)
= h(t)f(x) + h(1− t)f(y)− ct(1− t)‖x− y‖2,

which shows that f is strongly h-convex with modulus c.
�
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In a similar way we can prove the next lemma

Lemma 2.2. let (X, ‖ · ‖) be a real inner product space, D be a convex subset of
X and c > 0. Assume that h : (0, 1) → (0,∞) satisfies the condition

h(t) ≤ t, t ∈ (0, 1).

If f : D → R is strongly h-convex with modulus c, then there exists an h-convex
function g : D → R such that f(x) = g(x) + c‖x‖2, where x ∈ D.

Remark 2.3. For strongly convex functions (i.e. if f satisfies (2.1) with h(t) = t,
t ∈ (0, 1)) defined on a convex subset D of an inner product space X the following
characterization holds (see [9, 16], cf. also [6, Prop 1.12] for the case X = Rn): A
function f : D → R is strongly convex with modulus c if and only if g = f−c‖·‖2

is convex. This result follows also from Lemma 1 and Lemma 2 above. However,
an analogous characterization is not true for arbitrary h.

Example 2.4. Let h(t) := 1, t ∈ (0, 1). Then f : [−1, 1] → R defined by
f(x) := 1, x ∈ [−1, 1], is strongly h-convex with modulus c = 1. Indeed, for every
x, y ∈ [−1, 1] and t ∈ (0, 1) we have

f(tx + (1− t)y) = 1 ≤ 2− t(1− t)(x− y)2 = f(x) + f(y)− t(1− t)(x− y)2.

However, g(x) := f(x)− x2 is not h-convex. For instance,

g

(
1

2
(−1) +

1

2
1

)
= 1 > 0 = g(−1) + g(1).

Now, let h(t) := t2, t ∈ (0, 1). Then g : [−1, 1] → R given by g(x) := 1,
x ∈ [−1, 1], is h-convex, but f(x) := g(x) + x2, x ∈ [−1, 1], is not strongly
h-convex with modulus 1. For instance,

f

(
1

2
(−1) +

1

2
1

)
= 1 > 0 =

1

4
f(−1) +

1

4
f(1)− 1

4
(1 + 1)2.

Remark 2.5. Condition (2.2) is satisfied, for instance, for the following functions
defined in (0, 1): h1(t) = t, h2(t) = ts (s ∈ (0, 1)), h3(t) = 1

t
, h4(t) = 1. Thus,

if a function g : I → R is convex, s-convex, a Godunova-Levin function or a
P -function, then by Lemma 1, f : I → R given by f(x) = g(x) + cx2 is strongly
h-convex with h = hi, respectively.

Remark 2.6. We can easily check that if a function g : D → [0,∞), defined on
a convex subset D of a normed space X, is convex then it is h-convex with any
h : (0, 1) → (0,∞) satisfying (2.2). Therefore, if X is an inner product space
then, by Lemma 1, f : D → [0,∞) given by f(x) = g(x) + c‖x‖2 is strongly
h-convex.

3. A characterization of inner product spaces via strong
h-convexity

The assumption that X is an inner product space in Lemma 1 is essential.
Moreover, it appears that the fact that for every h-convex function g : X → R
the function f = g + ‖ · ‖2 is strongly h-convex characterizes inner product
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spaces among normed spaces. Similar characterizations of inner product spaces
by strongly convex and strongly midconvex functions are presented in [9].

Theorem 3.1. Let (X, ‖ · ‖) be a real normed space. Assume that h : (0, 1) → R
satisfies (2.2) and h(1

2
) = 1

2
. The following conditions are equivalent:

1. (X, ‖ · ‖) is an inner product space;

2. For every c > 0 and for every h-convex function g : D → R defined on a
convex subset D of X, the function f = g + c‖ · ‖2 is strongly h-convex
with modulus c;

3. ‖ · ‖2 : X → R is strongly h-convex with modulus 1.

Proof. The implication 1 ⇒ 2 follows be Lemma 1.
To see that 2 ⇒ 3 take g = 0. Clearly, g is h-convex, whence f = c‖ · ‖2 is
strongly h-convex with modulus c. Consequently, ‖ · ‖2 is strongly h-convex with
modulus 1.
To prove 3 ⇒ 1 observe that by the strong h-convexity of ‖·‖2 and the assumption
h(1

2
) = 1

2
, we have ∥∥∥x + y

2

∥∥∥2

≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4
‖x− y‖2

and hence

‖x + y‖2 + ‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 (3.1)

for all x, y ∈ X. Now, putting u = x + y and v = x− y in (3.1) we get

2‖u‖2 + 2‖v‖2 ≤ ‖u + v‖2 + ‖u− v‖2 (3.2)

for all u, v ∈ X
Conditions (3.1) and (3.2) mean that the norm ‖ · ‖ satisfies the parallelogram

law, which implies, by the classical Jordan-Von Neumann theorem, that (X, ‖ · ‖)
is an inner product space.

�

4. Hermite–Hadamard-type Inequalities

It is known that if a function f : I → R is convex then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

for all a, b ∈ I, a < b. These classical Hermite–Hadamard inequalities play an
important role in convex analysis and there is an extensive literature dealing
with its applications, various generalizations and refinements (see for instance
[5, 8], and the references therein). The following result is a counterpart of the
Hermite–Hadamard inequalities for strongly h-convex functions.
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Theorem 4.1. let h : (0, 1) → (0,∞) be a given function. If a function f : I → R
is Lebesgue integrable and strongly h-convex with modulus c > 0, then

1

2h(1
2
)

[
f
(a + b

2

)
+

c

12
(b− a)2

]
≤ 1

b− a

∫ b

a

f(x)dx

≤ (f(a) + f(b))

∫ 1

0

h(t)dt− c

6
(b− a)2 (4.1)

for all a, b ∈ I, a < b

Proof. Fix a, b ∈ I, a < b, and take u = ta + (1 − t)b, v = (1 − t)a + tb. Then,
the strong h-convexity of f implies

f(
a + b

2
) = f(

u + v

2
)

≤ h(
1

2
)f(u) + h(

1

2
)f(v)− c

4
(u− v)2

= h(
1

2
)[f(ta + (1− t)b) + f((1− t)a + tb)]

− c

4
((2t− 1)a + (1− 2t)b)2.

Integrating the above inequality over the interval (0, 1), we obtain

f
(a + b

2

)
≤ h

(1

2

)[ ∫ 1

0

f(ta + (1− t)b)dt +

∫ 1

0

f((1− t)a + tb)dt

]
− c

4

∫ 1

0

(
(2t− 1)a + (1− 2t)b

)2

dt

= h
(1

2

) 2

b− a

∫ b

a

f(x)dx− c

12
(b− a)2

which gives the left-hand side inequality of (4.1).
For the proof of the right-hand side inequality of (4.1) we use inequality (2).

Integrating over the interval (0, 1), we get

1

b− a

∫ b

a

f(x)dx =

∫ 1

0

f((1− t)a + tb)dt

≤ f(a)

∫ 1

0

h(1− t)dt + f(b)

∫ 1

0

h(t)dt

−c(b− a)2

∫ 1

0

t(1− t)dt

= (f(a) + f(b))

∫ 1

0

h(t)dt− c

6
(b− a)2

which gives the right-hand side inequality of (4.1). �
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Remark 4.2. (1) In the case c = 0 the Hermite–Hadamard-type inequalities
(4.1) coincide with the Hermite–Hadamard-type inequalities for h-convex
functions proved by Sarikaya, Saglam and Yildirim in [14].

(2) If h(t) = t, t ∈ (0, 1), then the inequalities (4.1) reduce to

f
(a + b

2

)
+

c

12
(b− a)2 ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
− c

6
(b− a)2.

These Hermite–Hadamard-type inequalities for strongly convex functions
have been proved by Merentes and Nikodem in [7]. For c = 0 we get the
classical Hermite–Hadamard inequalities.

(3) If h(t) = ts, t ∈ (0, 1), then the inequalities (4.1) give

2s−1

[
f
(a + b

2

)
+

c

12
(b− a)2

]
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

s + 1
− c

6
(b− a)2.

For c = 0 it reduces to the Hermite–Hadamard-type inequalities for s-
convex functions proved by Dragomir and Fitzpatrik [3].

(4) If h(t) = 1
t
, t ∈ (0, 1), then the inequalities (4.1) give

1

4
f
(a + b

2

)
+

c

48
(b− a)2 ≤ 1

b− a

∫ b

a

f(x)dx (≤ +∞).

The case c = 0 corresponds to the Hermite–Hadamard-type inequalities
for Godunova–Levin functions obtained by Dragomir, Pec̆arić and Persson
[4].

(5) If h(t) = 1, t ∈ (0, 1), then the inequalities (4.1) reduce to

1

2
f
(a + b

2

)
+

c

24
(b− a)2 ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)− c

6
(b− a)2.

In the case c = 0 it gives the Hermite–Hadamard-type inequalities for
P -convex functions proved by Dragomir, Pec̆arić and Persson in [4].
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