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ABSTRACT. We give an extension of the refined Jensen’s operator inequality for
n—tuples of self-adjoint operators, unital n—tuples of positive linear mappings
and real valued continuous convex functions with conditions on the spectra of
the operators. We also study the order among quasi-arithmetic means under
similar conditions.

1. INTRODUCTION

We recall some notations and definitions. Let B(H) be the C*-algebra of all
bounded linear operators on a Hilbert space H and 1y stands for the identity
operator. We define bounds of a self-adjoint operator A € B(H) by

ma = Hiﬂlf1<Ax,x) and M,y = sup (Az,x)
2= Jell=1

for v € H. If Sp(A) denotes the spectrum of A, then Sp(A) is real and Sp(A) C
[mA, MA]
For an operator A € B(H) we define operators |A], AT, A~ by

Al = (A" A)2, AT = (Al + A)/2, AT =(A] - 4)/2.

Obviously, if A is self-adjoint, then |A| = (42)Y/2 and A*, A~ > 0 (called positive
and negative parts of A = AT — A7),
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B. Mond and J. Pecarié¢ in [9] proved Jensen’s operator inequality

f (Zw@(&:)) < sz@i (f(A), (1.1)

for operator convex functions f defined on an interval I, where ®; : B(H) —

B(K),i=1,...,n, are unital positive linear mappings, A1, ..., A, are self-adjoint
operators with the spectra in I and wy, ..., w, are non-negative real numbers with
D wi =1

F. Hansen, J. Pecari¢ and I. Peri¢ gave in [3] a generalization of (1.1) for a

unital field of positive linear mappings. The following discrete version of their

inequality holds
f (Z (I)i(Ai)> < Z D; (f(A:)) (1.2)

for operator convex functions f defined on an interval I, where ®; : B(H) —
B(K),i=1,...,n,is aunital field of positive linear mappings (i.e. Y ., ®;(1y) =
1x), A1, ..., A, are self-adjoint operators with the spectra in I.

Recently, J. Mié¢i¢, Z. Pavi¢ and J. Pecari¢ proved in [5, Theorem 1] that (1.2)
stands without operator convexity of f : I — R if a condition on spectra

(ma, Ma) N [m;, M;] =0 fori=1,...,n

holds, where m; and M;, m; < M; are bounds of A;, i = 1,...,n; and m4 and
Ma, ma < My, are bounds of A = """ | ®;(A;) (provided that the interval I
contains all m;, M;).

Next, they considered in [0, Theorem 2.1] the case when (ma, Ma)N[m;, M;| =
@ is valid for several i € {1,...,n}, but not for all i = 1,...,n and obtain an
extension of (1.2) as follows.

Theorem A. Let (A1, ..., A,) be an n—tuple of self-adjoint operators A; € B(H)
with the bounds m; and M;, m; < M;, i = 1,...,n. Let (®y,...,P,) be an
n—tuple of positive linear mappings ®; : B(H) — B(K), such that Y ', ®;(1y) =
alg, i, 1 ®i(lg) = Blg, where 1 <ny; <n, a,f>0and a+ 3 = 1. Let
m = min{my, ..., my, } and M = max{M,,..., M, }. If

(m, M) N [m;, M;] = O for i=n1+1,...,n,

and one of two equalities

liq)i(Ai) = iq)i(Ai) -2 Z i(4))
o 4 : 6

is valid, then
1 ny n 1 n
a Zq)i(f(Ai)) < Zq)i<f(14i)) < 3 Z D;(f(A4i)), (1.3)
i=1 i=1 i=n1+1
holds for every continuous convex function f : I — R provided that the interval
I contains all m;, M;,i=1,...,n,.
If f: I — R is concave, then the reverse inequality is valid in (1.3).
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Very recently, J. Mi¢ié¢, J. Pecari¢ and J. Peri¢ gave in [7, Theorem 3] the
following refinement of (1.2) with condition on spectra, i.e. a refinement of [5,
Theorem 3] (see also [5, Corollary 5]).

Theorem B. Let (Ay, ..., A,) be an n—tuple of self-adjoint operators A; € B(H)
with the bounds m; and M;, m; < M;, i = 1,...,n. Let ($y,...,P,) be an
n—tuple of positive linear mappings ¢, : B(H) — B(K), i = 1,...,n, such that
Z?:l (I)z(lH) = 1K- Let

(ma, Mg) N my, M;] =0 fori=1,...,n, and m < M,

where my and My, my < My, are the bounds of the operator A = >"" | ®;(A;)
and

m=max {M;: M; <ma,i€{l,....,n}}, M =min{m;: m; > My,i € {1,...,n}}.

If f:I — Ris a continuous convex (resp. concave) function provided that the
interval I contains all m;, M;, then

f(i@i( ><Zq> 5fA<Z<I> (1.4)
(resp.  f (ZCDZ( ) >Z® —|—6fA> ZCI) A)))

holds, where

67 = dp(m, M) = f(m)+ F(M) = 2f (252
(esp. oy = ap(m, M) = 2f (P55) — f(m) — f(M) ),

A= Aalm, M) = $li— g7 |4 - 25501

and m € [m,mu], M € [My, M], m < M, are arbitrary numbers.

There is an extensive literature devoted to Jensens inequality concerning dif-
ferent refinements and extensive results, see, for example [1, 2, 4], [10]-[14].

In this paper we study an extension of Jensen’s inequality given in Theorem B
and a refinement of Theorem A. As an application of this result to the quasi-
arithmetic mean with a weight, we give an extension of results given in [7] and a
refinement of ones given in [0].

2. MAIN RESULTS

To obtain our main result we need a result [7, Lemma 2] given in the following
lemma.

Lemma C. Let A be a self-adjoint operator A € B(H) with Sp(A) C [m, M|, for
some scalars m < M. Then

_A A— -
) < BRSO 6 A (@)

—A A— ~

(resp. F(A) =TI fm) + AU () 46
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holds for every continuous convex (resp. concave) function f : [m, M] — R, where

Op = f(m) + [(M) = 2f ("5H%)  (vesp. 0y = 2f ("EH) — f(m) — f(M)),

We shall give the proof for the convenience of the reader.

Proof of Lemma C. We prove only the convex case.
In [8, Theorem 1, p. 717] is prove that

min{phpQ} [f(l‘) + f(y> - 2f (a:_;ry)] (2 2)
< pif(x) +p2f(y) — f(prz + p2y) '

holds for every convex function f on an interval I and x,y € I, p1,p2 € [0, 1] such
that p; +po = 1.
Putting x = m,y = M in (2.2) it follows that

fpim+p M) < pif(m)+paf(M) (2.3)
— min{py, po} (f(m) + f(M) —2f (25H)) '

holds for every py,py € [0, 1] such that p; +p, = 1. For any t € [m, M| we can

write Iy
Ft)=f <M __;Lm—i— ]\Z__TnM) .

M—t t—m

Then by using (2.3) for p; = 7= and py = 57 we get
M —t t—m
t) < M
O o g ) y
m + m +
— [ =- t— M) -2
. M_m\ . D(f(m)+f() (™).
(2.4)
since
(M-t t-m ) 1 1 | mtM
i M—-—m"M—m| 2 M-m 2 '

Finally we use the continuous functional calculus for a self-adjoint operator A:
f,g € C(I),Sp(A) C I and f > g implies f(A) > g(A); and h(t) = |¢| implies
h(A) = |A|. Then by using (2.4) we obtain the desired inequality (2.1). O

In the following theorem we give an extension of Jensen’s inequality given in
Theorem B and a refinement of Theorem A.

Theorem 2.1. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; €
B(H) with the bounds m; and M;, m; < M;, i =1,...,n. Let (®1,...,P,) be an
n—tuple of positive linear mappings ®; : B(H) — B(K), such that > ;' ®;(1y) =
alg, Z?:nlﬂ O,(1y) =B 1k, where 1 <ny <n, a,f >0 and a+ =1. Let
my = min{my,...,my,, }, Mrp = max{M,..., M,,} and

mr, if {M;: M; <mp,i€{n+1,...,n}} =0,
max{M;: M; <mp,i € {n;+1,...,n}}, otherwise,

MR, if {mi:mizMR,iE{n1+1,...,n}}:@,

min {m;: m; > Mpg,i € {n1 +1,...,n}}, otherwise.

m =

M =
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If
(mp, Mg) N\ [m;, M;] =@ for i=ny+1,...,n, m < M,

and one of two equalities

éZ@i(Ai) = Z‘I’z‘(Ai) = % | > DA

18 valid, then

S> (4
=1

IN

—§:¢ +5@A<§:¢

SED —aéfA<% > @f(A), (25)

i=ni1+1 i=ni+1

holds for every continuous convex function f : I — R provided that the interval
I contains all m;, M;, i = 1,...,n, where

57 = 8,(m, ) = f(m) + [(3T) — 2f (””M)

Iy

) (2.6)

~ o~ _ 1 1
A= AA7¢)7n17a(m, M) = 51]{ - m E (Dz ( A —
i=1

and m € [m,mp], M € [Mg, M], m < M, are arbitrary numbers.

If f: I — R is concave, then the reverse inequality is valid in (2.5).

Proof. We prove only the convex case.
Let us denote

:éz‘bi“‘”’ ﬁ S C=> ®i(A).

1=n1+1 =1
It is easy to verify that A= B or B=C or A= C implies A= B =C.

Since f is convex on [m, M| and Sp(4;) C [my, M;] C [m, M] fori =1,... ny,
it follows from Lemma C that

M1y — A; Ay —mly

f<Ai>§M—_mf<m>+ M-m

holds, where 6; = f(m) ) and A; = %1H—M£m
Applying a positive hnear mapping (I> and summing, we obtain
ni MOél = 1 A q)i Al —mal W
S @ (f(A) < MeeRa )y 4 Zintd)omale g )
— 05 (§1K — 3 i @i (A - m;MlHD) ;
since Y, (1) = alg. It follows that

;_x

S (M) -6 A, i=1,. . m

_7’71—‘,—]\7[1
2 H-

_Zq) MlK—_/lf(m)+ﬂf(M)_5fﬁ, (2.7)
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where A = L1 — ol 57 @ (|4, — 25801, ).
In addition, since f is convex on all [m;, M;] and (m, M) N [m;, M;] = @ for
i=mn1+1,...,n, then
M1y — A, A, —mly . -
A - = M = 1
Ay = MU A iy Ay
It follows
1 ~ _Mig—-B_, _ .  B-mlg -
= Q; (f(A)) — A > ———— —0;A. (2.8
@Z+ (F(A)) = 0pA > —=———f(m) + ————=f(M) = 0;A.  (28)

Combining (2.7) and (2.8) and taking into account that A = B, we obtain

DRACIEES SENENERE 29)
Next, we obtain
éij;@i(f(fl
- f_l;@i(f(m)) + §Z B(f(A)) (byat =1
< Z Bi(F(A) + Z DA -85A (w29
< %Z B.(F(A)) — by A+ Z FA)) — 65, (by (29))
- %Z D(f(A4) ~ 04 (by ot §=1),

which gives the following double inequality
RS = + 1 +
o D Bf(A) <D Bi(f(A) = 8O A< 3 > i(f(A) - 6,A.
i=1 i=1 '

Adding 56 fg in the above inequalities, we get
1 < ~
- Zcp )+ BO;A < Zcp ) < 5 > Di(f(A)) —adsA. (2.10)

i=ni1+1

Now, we remark that 6; > 0 and A > 0. (Indeed, since f is convex, then
f((m+ M)/2) < (f(m)+ f(M))/2, which implies that §; > 0. Also, since
M +m M —m

Sp(4;) € [m,M] = 5

A -

1| < 1q, forte=1,...,n4,
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M —m
)S 5 alg,

then

1y

=1

which gives

1 1 = M +m ~
0< -1l — —— O, [ |A; — 1 = A
=275 oM —m) ;‘ < " ) )
Consequently, the following inequalities
1 —
- Z ;(f (A Zcb ) + B A,
1 n

> o —adp A< = Y Bi(f(A)),

5 i=ni1+1 B i=ni1+1

hold, which with (2.10) proves the desired series inequalities (2.5).
0J

Example 2.2. We observe the matrix case of Theorem 2.1 for f(t) = t*, which
is the convex function but not operator convex, n = 4, ny = 2 and the bounds of
matrices as in Figure 1.

FIGURE 1. An example a convex function and the bounds of four operators

We show an example such that
3 (@1(A]) + @y(A)) < L (R2(Af) + By(43) + 53, A
< By (A]) + o(A3) + D3 (A7) + Pu(A)) (2.11)
< % (®3(A3) + D4(AY)) — aéfA <z (<I>3(A4) + ®4(AD))
holds, where §; = M* + m* — (M + m)*/8 and

~ 1 1 M +m M+m




74 J. MICIC, J. PECARIC, J. PERIC

We define mappings ®; : M3(C) — My (C) as follows: ®;((a;n)1<jk<s) = 1(aji)1<jh<s;
i=1,...,4 Then 3.\ ®;(I3) = I, and . = § = 1.

2

Let
2 9/8 1 2 9/8 0
A =219/8 2 0], Ay=319/8 1 0],
1 0 3 0 0 2
4 1/2 1 5/3 1/2 0
As=-3[1/2 4 0], Ay=12(1/2 3/2 0
1 0 2 0 0 3

Then m; = 1.28607, M, = 7.70771, me = 0.53777, My = 5.46221, mg =
—14.15050, My = —4.71071, my = 12.91724, My = 36., 50 my, = ma, My = M,
m = M3z and M = my (rounded to five decimal places). Also,

1 1 4 94
)+ Ba(4e)) = 5 (@) + @) = (o7, 1),
and
I oy (989.00391 663.46875
Ar = (2l + 25(4) = (663.46875 526.12891)’

(A ’ " 5 (68093.14258 48477.98437
Cr = 1(A1) + @2l ;) + Bods) +24(A)) = (48477.98437 51335.39258)’

1 . sy (135197.28125  96292.5
Bf:g(q’3(A3>+‘D4<A4)) - ( 96292.5 102144.65625)

Then
Ay <Oy < By (2.12)

holds (which is consistent with (1.3)). B B
We will choose three pairs of numbers (m, M), m € [—4.71071,0.53777], M €
[7.70771,12.91724] as follows:

i) m=my =0.53777, M = My = 7.70771, then

0.15678 0.09030\  (231.38908 133.26139
0.09030 0.15943)  \133.26139 235.29515 )’

ii) m=m=—4.71071, M = M = 12.91724, then
0.36022 0.03573) B (5000.89860 496.04498>

Ay = B6;A = 0.5-2951.69249 - (

Ay :55#4:0'5'27766‘07963'(0.03573 0.36155) ~ \ 496.04498 5019.50711

iii) m = —1, M = 10, then

0.08975 0.27557 )  \411.999  1265.
New, we obtain the following improvement of (2.12) (see (2.11)):

1220.39299 796.73014)

Rs = 86,4 = 0.5 9180.875 (0.28203 0.08975) _ <1294.66 411.999) _

i) Ap<ArtA= (796.73014 761.42406
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<O < 134965.89217  96159.23861
f 96159.23861 101909.36110

):Bf—£1<Bf,
ii) Af<Af+£2:(

_ ¢~ ((130196.38265 95796.45502
f 05796.45502  97125.14914

2283.66362 1075.46746
1075.46746 1791.12874

5989.90251 1159.51373
1159.51373 5545.63601

>ZBf—£2<Bf,

iii) Af<Af+£3:<

133902.62153  95880.50129

<Cr< (95880.50129 100879.65641) =By =2s < By

Using Theorem 2.1 we get the following result.
Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then

n

éi:@z‘(f(fli)) < ézq)z‘(f(flz‘)) +'715f121v < % Z Q;(f(A:)) (2.13)

i=ni1+1
and
SR BN 5 Y BA) — b A< 3 Y B(fA4) (214
=1 i=ni+1 i=n1+1

holds for every 1,72 in the close interval joining o and B, where 6y and A are
defined by (2.6).

Proof. Adding aéf;f in (2.5) and noticing 5fg > 0, we obtain
1 1 - 1
PIEUESDWHENETOEES DORILTH

Taking into account the above inequality and the left hand side of (2.5) we obtain
(2.13). N
Similarly, subtracting 8d;A in (2.5) we obtain (2.14). O

Remark 2.4. Let the assumptions of Theorem 2.1 be valid.
1)  We observe that the following inequality

f(% ) @im,.)) <3 WAN -6 A <5 3D BA)

i=ni1+1 1=n1+1 1=n1+1

holds for every continuous convex function f : I — R provided that the interval
I contains all m;, M;, i =1,...,n, where d; is defined by (2.6),

m—+ M
2

~ ~ _ 1 1 1 —
Ap = Ap e (M M) = 51k — 7 —— 3 > Pidi-
i=n1+1

1k

and m € [m,myg], M € [Mg, M], m < M, are arbitrary numbers.
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Indeed, by the assumptions of Theorem 2.1 we have

1 — 1
mLalH < Zq) < MRO,/lH and EZ(DZ(AZ) = E Z (I)l(Al)
i=1 i

=1

which implies

Also (mp, Mg) N [mi, M;] = @ for i =ny +1,...,n and ZZ L1 3 Lo,(1y) = 1k
hold. So we can apply Theorem B on operators Aan, ..., A, and mappings écbi.
We obtain the desired inequality.

2)  We denote by m¢e and Mc the bounds of C' = " | ©;(A;). If (me, Mc) N
[mi, M;] = @, i =1,...,nq, then series inequality (2.5) can be extended from the
left side if we use reﬁned Jensen’s operator inequality (1.4)

f (Z (I)i(Ai)> = f <$ Zl(pZ(A’L)> Z(D - 5fA

1
< =) P D, ( A< D, (
S QL AU Z ) + 8 Z
1 n
< ﬁ Z - Oé5fA < B Z CI)i(f(Az’))a
1=n1+1 1=ni1+1
where 6; and A are defined by (2.6),
- _ 1 1 -

Aa = Aa,A,@,n1<m>M> = §1K - M —mla

Remark 2.5. We obtain the equivalent inequalities to the ones in Theorem 2.1 in
the case when > | ®;(1y) = v 1, for some positive scalar . If a« + 5 =~ and
one of two equalities

éZ(I)i(A,-) = % Z D;(A;) = L Zq)i(A )
i=1 i=n1+1 7 =1

is valid, then

éi@(f(Ai)) < —Z@ +55fA< > a(s(4)

v i=1
< 5 Z ) — —5fA < B Z ®;(f(A)),
1=n1+1 i=n1+1
holds for every continuous convex function f : I — R provided that the interval
I contains all m;, M;, i =1,...,n, where §; and A are defined by (2.6).

With respect to Remark 2.5, we obtain the following obvious corollary of The-
orem 2.1 with the convex combination of operators A;, i =1,...,n.
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Corollary 2.6. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; €
B(H) with the bounds m; and M;, m; < M;, i =1,...,n. Let (p1,...,pn) be an
n—tuple of non-negative numbers such that 0 < ZZ 1pZ = Pny < Pn = Y.y Dis
where 1 < ny <n. Let

my =min{my,...,my, }, Mp = max{My,..., M, } and

my,  if {M;: M; <mgp,ie{ni+1,....n}} =0,

mo= max {M;: M; <myp,i € {n;1+1,...,n}}, otherwise,
M = MR, if {mi:miZMR,iE{nl—i—l,...,n}}:@,
N min {m;: m; > Mpg,i € {ny+1,...,n}}, otherwise.
If
(mp, Mg) N\ [m;, M;] =@ for i=ny+1,...,n, m < M,

and one of two equalities

n

1 & 1
iy ;:1 piddy = > pid;

M i=ny+1

18 valid, then

sz

Pn Pn 55

Pn, 77 Pn1 i=1
c LS ) Pusic LS A
o Pn — pn1 i=ni+1 Pn o Pn — pn1 i=ni+1 ’

(2.15)
holds for every continuous convex function f : I — R provided that the interval
I contains all m;, M;, i =1,...,n, where where &y is defined by (2.6),

~ = o1 1 G m+ M
A= AA,p,m(ma M) = —1H — —_msz (’Az - 1H

2

and m € [m,mp], M € [Mg, M], m < M, are arbitrary numbers.

If f: I — R is concave, then the reverse inequality is valid in (2.15).
As a special case of Corollary 2.6 we obtain an extension of [7, Corollary 6].

Corollary 2.7. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; €
B(H) with the bounds m; and M;, m; < M;, i =1,...,n. Let (p1,...,pn) be an
n—tuple of non-negative numbers such that Y. p; = 1. Let

(ma, M) N [my, M;) =@ fori=1,. and m < M,
where my and My, ma < My, are the bounds of A = Z?zlp,-Ai and

m=max{M; <ma,i€{l,...,n}}, M =min{m; > My,i € {1,...,n}}.
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If f : I — R is a continuous convex function provided that the interval I contains
all m;, MZ-, then

i=1
SZpif(A 14:1<sz
=1

holds, where & is defined by (2.6), A = 1y — 1=

m

(2.16)

[\Dlr—l

2?21 pzAl — mgM 1H and

m € [m,ma], M € [My, M], m < M, are arbitrary numbers.
If f: I — R is concave, then the reverse inequality is valid in (2.16).

Proof. We prove only the convex case.

We define (n+1)—tuple of operators (By, ..., B,.1), B; € B(H), by By = A =
Sor pid;and Bi = A, 1,i=2,...,n+ 1. Then mp, = ma, Mp, = My are the
bounds of By and mp, = m;—1, Mp, = M;_; are the ones of B;, i =2,...,n+ 1.
Also, we define (n + 1)—tuple of non-negative numbers (q1,...,qns1) by ¢1 = 1
and ¢; = p;_1, 1 = 2,...,n+ 1. We have that Z?Jrll ¢ = 2 and

(mp,, Mp,) N [mp,, Mp,] =0, fori=2,...,n+1 and m<M (2.17)
holds. Since

n+1 n+1

Z ¢;B; = B1 + ZQiBi = sz‘Ai + ZpiAi = 2By,
i—1 =2 i—1 =1

then
n+1 n+1

=2

Taking into account (2.17) and (2.18), we can apply Corollary 2.6 for n; = 1
and B;, g; as above, and we get

n+1 n+1 n+1

1 1. ~
@.f(B1) < quf(B1) + 5fB <5 Z% ) <D aif(B) - 508 = > af(B),
i=2 1=2
where B = ””M 1|, which gives the desired inequality (2.16).

O

3. QUASI-ARITHMETIC MEANS

In this section we study an application of Theorem 2.1 to the quasi-arithmetic
mean with weight.
For a subset {A,,,...,A,,} of {A;,..., A}, we denote the quasi-arithmetic

mean by
M (7, A, @, n1,n2) ( Zcb ) (3.1)

i=n1
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where (A,,,...,A,,) are self-adjoint operators in B(H) with the spectra in I,

(®,,,,...,P,,) are positive linear mappings ®; : B(H) — B(K) such that

> ®i(lg) =71k, and ¢ : I — R is a continuous strictly monotone function.
Under the same conditions, for convenience we introduce the following deno-

tations
Spus(m, M) = (m)+ (M) — 2o (w ’
Aomlm M) = 3 = st S, @ [l — 200200 ),

where ¢, : I — R are continuous strictly monotone functions and m, M € I,
m < M. Of course, we include implicitly that A%nw(m M) = ALPA ®n1 (M, M).

(3.2)

The following theorem is an extension of [7, Theorem 7] and a refinement of
[0, Theorem 3.1].

Theorem 3.1. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; €
B(H) with the bounds m; and M;, m; < M;, i =1,...,n. Let o, : I — R be
continuous strictly monotone functions on an interval I which contains all m;, M;.
Let (q,...,D,) be an n—tuple of positive linear mappings ®; : B(H) — B(K),
such that Y 1 @;(1y) = alg, Z?:nlﬂ O,(1y) = Blg, where 1 < ny < n,
a,B>0and a+ 8 =1. Let one of two equalities

My(a, A, ®,1,n1) = M,(1L,A, ®,1,n) = M,(5,A, ®,n, +1,n) (3.3)
be valid and let

(mp, Mg) N [mi, M;] =0  for i=mn1+1,...,n, m < M,
where my, = min{my, ..., my,, }, Mg = max{M, ... ,Mm},
. my, if {M,-:MiSmL,iE{n1+1,...,n}}:@,
mo= max{M;: M; <mp,i€{n+1,...,n}}, otherwise,
M = MR7 if {mzmzzMR7Z€{nl+1u7n}}:@7

min {m;: m; > Mpg,i € {ny +1,...,n}}, otherwise.

(i) Ifv o™t is conver and 1~ is operator monotone, then

M (&Aq)717n1 <¢ ( Zq) +55%01/’A90n1a>
i=n1+1
S Ml/)(ﬁv Aa (I)7n1 + 17”) (34)

holds, where 4., > 0 and g%m,a > 0.

(i) If ¢ o is conver and —~' is operator monotone, then the reverse
inequality is valid in (3.4), where 0,4 >0 and Ay py o > 0.

(i) If ¢ o ! is concave and —y~" is operator monotone, then (3.4) holds,
where 0, < 0 and Ay py o > 0.
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(ii")  If ¢ o @~ is concave and 1 is operator monotone, then the reverse
inequality is valid in (3.4), where 0,4 <0 and Ay py o > 0.

In all the above cases, we assume that 8,y = 6,4 (M, M), A¢ . A¢ o (110, M)
are defined by (3.2) and m € [m,my], M € [Mg, M|, m < M, are arbitrary
numbers.

Proof. We only prove the case (i). Suppose that ¢ is a strictly increasing function.
Then
(mL,MR)ﬂ[mi,Mi]z@ for i:nl—i-l,...,n

implies
(p(mr), p(Mg)) N [e(m;),p(M;)] =0 fori=mny;+1,...,n. (3.5)

Also, by using (3.3), we have

é Zl: D, (p(A;)) = Z D; (p(Ai)) = % Z ®; (p(Ai)) -

i=ni1+1

Taking into account (3.5) and the above double equality, we obtain by Theo-
rem 2.1

éi@i(f (o(A Z@ 4 B0 A < 3 0F (9(4)))

=1
n

s%lz B (AD) 0y A S 5 D S (LA,

i=ni1+1 i=ni1+1
(3.6)
for every continuous convex function f :.J — R on an interval J which contains

all [ (ms), p(M;)] = @([my, Mi]), i =1, n, where 0y = f(p(m)) + f(p(M)) —
o <<p<m>;go<M)> '

Also, if ¢ is strictly decreasing, then we check that (3.6) holds for convex
f:J — Ron J which contains all [p(M;), p(m;)] = o([mi, M;]).

Putting f =1 o ¢! in (3.6), we obtain

T3 ((A) Z@ A+ BB <30 (014
i=1

=1
1« 1 <
< B P, (w(Az)) - O‘dp,dﬂAgo,m,a < E Z ®; (w(Az)) :
i=n1+1 i=n1+1

Applying an operator monotone function ¥~! on the above double inequality, we
obtain the desired inequality (3.4). O

We now give some particular results of interest that can be derived from Theo-
rem 3.1, which are an extension of [7, Corollary 8, Corollary 10] and a refinement
of [6, Corollary 3.3].
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Corollary 3.2. Let (Ay,...,Ay) and (®1,...,9,), m;, M;, m, M, my, Mg, «
and B be as in Theorem 5.1. Let I be an interval which contains all m;, M; and

(mp, Mg) N\ [m;, M;] =0 for i=ny+1,...,n, m < M.

I) If one of two equalities
M&p(Oé7 A7 ¢7 17 nl) = Mgo(la A7 ¢7 17”) = Mgo(ﬂa Aa q)anl + 17”)

18 valid, then

1S e < Z‘D o)+ 50 1Awa<z@
=1

1=n1+1 1=n1+1

(3.7)

holds for every continuous strictly monotone function 1 — R such that ot
is convex on I, where 0,-1 = m + M—2 ! (M) >0, Apnia = %1[( —

ngl q)z (‘QD(AZ) — wlf[b and m < [m,mL], ]\7[ S [MR,M], m <

M, are arbitrary numbers.
But, if ¢~ is concave, then the reverse inequality is valid in (3.7) for d,-1 < 0.

II) If one of two equalities

1 1
o Z(I)i(Ai) = Z(I)i(Ai) = E Z D;(A;)
i=1 i j
18 valid, then

1« ~
M(a, A, ®,1,ny) < ! <— Z D, (p(A;)) + 5(5@An1> <M,(1,A,®,1,n)

(07
=1

1 & ~
S iP_l (E Z q)z (QO(AZ)) - O“SgOA?H) S Ms@(ﬁa Aa (I)7n1 + 17”)
1=n1+1
(3.8)

holds for every continuous strictly monotone function ¢ : I — R such that one of
the following conditions

(i) ¢ is conver and p~!
(i) ¢ is concave and —p~

is satisfied, where 5, = p(m) + (M) — 2¢p (m+M>, gnl = 11k — a—(]\zl_—m)
Xy, (’AZ - m;MlHD and m € [m,mz], M € [Mg, M], m < M, are arbi-

trary numbers.
But, if one of the following conditions

18 operator monotone,
1 is operator monotone,

(ii) ¢ is concave and @~ is operator monotone,
(ii") ¢ is convex and —p~' is operator monotone,

is satisfied, then the reverse inequality is valid in (3.8).
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Proof. The inequalities (3.7) follows from Theorem 3.1 by replacing ¢ with the
identity function, while the inequalities (3.8) follows by replacing ¢ with the
identity function and i with ¢. O

Remark 3.3. Let the assumptions of Theorem 3.1 be valid.
1) We observe that if one of the following conditions

(i) ¥ o™t is convex and ¢! is operator monotone,
(") ¥ ot is concave and —t)~! is operator monotone,

is satisfied, then the following obvious inequality (see Remark 2.4.1))

n

Ms@(ﬁaAaq),n1+1an) < lb_l (l Z (Di(d’(Ai))_ésogﬂ)

/Bi:n1+1
S M¢(57A7 (ﬁanl + 17”)7

holds, 6, = () +o(V1)—2 (252), &y = Sle— o [T, L, @i — 2201,
and m € [m,m], M € [Mg, M], m < M, are arbitrary numbers.

2)  We denote by m, and M, the bounds of M (1, A, ®,1,n). If (m,, M,) N
[mi, M;] =@, i=1,...,n1, and one of two following conditions

(i) ¥ o ¢! is convex and 1)~! is operator monotone
(ii) 1 o ¢! is concave and —1~! is operator monotone

is satisfied, then the double inequality (3.4) can be extended from the left side as
follows

M1, A, ®,1,n) = M,(1,A,®,1,n,) < ( ZCD A) wA)

< Mw(Oé A ‘I>,1,n1 < 77/1 ( Z(I) +ﬁ5gp¢Agon1 a)
<M¢<1 A <I>,1,n <”Lp ( Z (I) —Oédpszgpnla)
i=ni1+1

S M'zl)(ﬁaAu ¢)n1 + 17”)7

where 0, and Av%nha are defined by (3.2),

As a special case of the quasi-arithmetic mean (3.1) we can study the weighted
power mean as follows. For a subset {A,,,...,A,,} of {A;,..., A,} we denote
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this mean by

1/r
( Zcb AT) , r e R\{0},
MM(,77A7 (b?p17p2) =

exp( ZCID (In (A ), r =20,

L i=p1

where (4,,,...,4,,) are strictly positive operators, (®,,,...,®P,,) are positive
linear mappings ®; : B(H) — B(K) such that > 72 ®;(1y) =7 1x.

Under the same conditions, for convenience we introduce denotations as a spe-
cial case of (3.2) as follows

s s m"4+M" s/r
pnan = {2

mS+M5—2(mM)s/2, r =0,

~ %1[{ Mr mT Z’L ]_®( ) MT+mT1K|7 T#O’

Ao(m, M) = | ‘

A g —|In (&)~ 1‘22 L Pi(ln A;) — ln\/Mle‘, r =0,
(3.9)

where m, M € R, 0 < m < M and r,s € R, r < s. Of course, we include
implicitly that A,(m, M) = A, a(m, M), where A = >""  ®;(A7) for r # 0 and
A=>" ®;(In4;) for r =0.

We obtain the following corollary by applying Theorem 3.1 to the above mean.
This is an extension of [7, Corollary 13] and a refinement of [0, Corollary 3.4].

Corollary 3.4. Let (Ay,...,A,) be an n—tuple of self-adjoint operators A; €

B(H) with the bounds m; and M;, m; < M;, i =1,...,n. Let (®1,...,P,) be an

n—tuple of positive linear mappings ®; : B(H) — B(K), such that > ., ®;(1y) =

alg, Yo, 1 ®i(lg) = Bk, where 1 <ny <n, o, >0 and a+ = 1. Let
(mp, Mg) N\ [m;, M;] =@ for i=ny+1,...,n, m< M,

where my, = min{my, ..., my,, }, Mg =max{M,..., M, } and

mr, if {M;: M; <mp,i€{n+1,...,n}} =0

max {M;: M; <myp,i € {n;+1,...,n}}, otherwise,

MR, if {mi:mizMR,iE{n1+1,...,n}}:@,
min {m;: m; > Mpg,i € {n1 +1,...,n}}, otherwise.

m =
M =

(i) If eitherr <s, s > 1 orr < s < —1 and also one of two equalities
MU, A, ®,1,n1) = M1, A, @,1,n) = M (B, A, &, ny +1,n)

18 valid, then

1/s
M (0, A, ®,1,n1) _< Z@ (A?) +ﬁ6rsAsnla> < MU(1,A,,1,n)

n 1/s
1 ~
S <_ Z (I)z (Af) - a(sr,sAsm,l,oa) S MM(/Ba A7 Q)’ ni + 17 n)

/B i=ni1+1
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holds, where 6, > 0 and Av&nha > 0.

In this case, we assume that 6., = 0,s(m, M), ﬁs@ha = Zs,nw(m, M) are
defined by (3.9) and m € [m,mg], M € [Mg, M|, m < M, are arbitrary numbers.

(i) If either r < s, r < —1 or1 <r <s and also one of two equalities
ME(a, A, ®,1,n1) = ME(1,A, ®,1,n) = ME(B,A, ®,n, 4+ 1,n)

1 valid, then

n 1/r
1 ~
MY, A 1n0) > [ =) (A)) + BoapArna | = ML A @, 1,n)
o
1 n =t 1/r
>3 Y i (AD) = abpArpa | > MU(BA By +1,0)
1=n1+1

holds, where 5, <0 and A/s,nl,oz > 0.

In this case, we assume that s, = 0,,(m, 1), Zr@ha = Emw(m, M) are
defined by (3.9) and m € [m,mg], M € [Mg, M|, m < M, are arbitrary numbers.

Proof. In the case (i) we put ¢(t) = t* and p(t) = t" if r # 0 or p(t) = Int if
r # 0 in Theorem 3.1. In the case (ii) we put ¢(t) = ¢" and @(t) =t*if s # 0 or
o(t) =Int if s # 0. We omit the details. O
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