

Ann. Funct. Anal. 3 (2012), no. 1, 67–85

ANNALS OF FUNCTIONAL ANALYSIS

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

EXTENSION OF THE REFINED JENSEN'S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA

JADRANKA MIĆIĆ^{1*}, JOSIP PEČARIĆ² AND JURICA PERIĆ³

Communicated by M. S. Moslehian

ABSTRACT. We give an extension of the refined Jensen's operator inequality for n—tuples of self-adjoint operators, unital n—tuples of positive linear mappings and real valued continuous convex functions with conditions on the spectra of the operators. We also study the order among quasi-arithmetic means under similar conditions.

1. Introduction

We recall some notations and definitions. Let $\mathcal{B}(H)$ be the C^* -algebra of all bounded linear operators on a Hilbert space H and 1_H stands for the identity operator. We define bounds of a self-adjoint operator $A \in \mathcal{B}(H)$ by

$$m_A = \inf_{\|x\|=1} \langle Ax, x \rangle$$
 and $M_A = \sup_{\|x\|=1} \langle Ax, x \rangle$

for $x \in H$. If $\mathsf{Sp}(A)$ denotes the spectrum of A, then $\mathsf{Sp}(A)$ is real and $\mathsf{Sp}(A) \subseteq [m_A, M_A]$.

For an operator $A \in \mathcal{B}(H)$ we define operators |A|, A^+ , A^- by

$$|A| = (A^*A)^{1/2}, \qquad A^+ = (|A| + A)/2, \qquad A^- = (|A| - A)/2.$$

Obviously, if A is self-adjoint, then $|A| = (A^2)^{1/2}$ and $A^+, A^- \ge 0$ (called positive and negative parts of $A = A^+ - A^-$).

Date: Received: 6 January 2012; Accepted: 13 January 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47B15.

Key words and phrases. Jensen's operator inequality, self-adjoint operator, positive linear mapping, convex function, quasi-arithmetic mean.

B. Mond and J. Pečarić in [9] proved Jensen's operator inequality

$$f\left(\sum_{i=1}^{n} w_i \Phi_i(A_i)\right) \le \sum_{i=1}^{n} w_i \Phi_i\left(f(A_i)\right), \tag{1.1}$$

for operator convex functions f defined on an interval I, where $\Phi_i : \mathcal{B}(H) \to \mathcal{B}(K)$, i = 1, ..., n, are unital positive linear mappings, $A_1, ..., A_n$ are self-adjoint operators with the spectra in I and $w_1, ..., w_n$ are non-negative real numbers with $\sum_{i=1}^n w_i = 1$.

F. Hansen, J. Pečarić and I. Perić gave in [3] a generalization of (1.1) for a unital field of positive linear mappings. The following discrete version of their inequality holds

$$f\left(\sum_{i=1}^{n} \Phi_i(A_i)\right) \le \sum_{i=1}^{n} \Phi_i\left(f(A_i)\right), \tag{1.2}$$

for operator convex functions f defined on an interval I, where $\Phi_i : \mathcal{B}(H) \to \mathcal{B}(K)$, $i = 1, \ldots, n$, is a unital field of positive linear mappings (i.e. $\sum_{i=1}^n \Phi_i(1_H) = 1_K$), A_1, \ldots, A_n are self-adjoint operators with the spectra in I.

Recently, J. Mićić, Z. Pavić and J. Pečarić proved in [5, Theorem 1] that (1.2) stands without operator convexity of $f: I \to \mathbb{R}$ if a condition on spectra

$$(m_A, M_A) \cap [m_i, M_i] = \emptyset$$
 for $i = 1, \dots, n$

holds, where m_i and M_i , $m_i \leq M_i$ are bounds of A_i , i = 1, ..., n; and m_A and M_A , $m_A \leq M_A$, are bounds of $A = \sum_{i=1}^n \Phi_i(A_i)$ (provided that the interval I contains all m_i, M_i).

Next, they considered in [6, Theorem 2.1] the case when $(m_A, M_A) \cap [m_i, M_i] = \emptyset$ is valid for several $i \in \{1, ..., n\}$, but not for all i = 1, ..., n and obtain an extension of (1.2) as follows.

Theorem A. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (Φ_1, \ldots, Φ_n) be an n-tuple of positive linear mappings $\Phi_i : B(H) \to B(K)$, such that $\sum_{i=1}^{n_1} \Phi_i(1_H) = \alpha 1_K$, $\sum_{i=n_1+1}^n \Phi_i(1_H) = \beta 1_K$, where $1 \leq n_1 < n$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$. Let $m = \min\{m_1, \ldots, m_{n_1}\}$ and $M = \max\{M_1, \ldots, M_{n_1}\}$. If

$$(m, M) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, \dots, n$,

and one of two equalities

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) = \sum_{i=1}^n \Phi_i(A_i) = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i)$$

is valid, then

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \sum_{i=1}^n \Phi_i(f(A_i)) \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)), \tag{1.3}$$

holds for every continuous convex function $f: I \to \mathbb{R}$ provided that the interval I contains all $m_i, M_i, i = 1, ..., n$.

If $f: I \to \mathbb{R}$ is concave, then the reverse inequality is valid in (1.3).

Very recently, J. Mićić, J. Pečarić and J. Perić gave in [7, Theorem 3] the following refinement of (1.2) with condition on spectra, i.e. a refinement of [5, Theorem 3] (see also [5, Corollary 5]).

Theorem B. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (Φ_1, \ldots, Φ_n) be an n-tuple of positive linear mappings $\Phi_i : B(H) \to B(K)$, $i = 1, \ldots, n$, such that $\sum_{i=1}^n \Phi_i(1_H) = 1_K$. Let

$$(m_A, M_A) \cap [m_i, M_i] = \emptyset$$
 for $i = 1, \dots, n$, and $m < M$,

where m_A and M_A , $m_A \leq M_A$, are the bounds of the operator $A = \sum_{i=1}^n \Phi_i(A_i)$ and

 $m = \max \{M_i : M_i \le m_A, i \in \{1, \dots, n\}\}, M = \min \{m_i : m_i \ge M_A, i \in \{1, \dots, n\}\}.$

If $f: I \to \mathbb{R}$ is a continuous convex (resp. concave) function provided that the interval I contains all m_i, M_i , then

$$f\left(\sum_{i=1}^{n} \Phi_{i}(A_{i})\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f(A_{i})\right) - \delta_{f}\widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}\left(f(A_{i})\right) \quad (1.4)$$
(resp.
$$f\left(\sum_{i=1}^{n} \Phi_{i}(A_{i})\right) \geq \sum_{i=1}^{n} \Phi_{i}\left(f(A_{i})\right) + \delta_{f}\widetilde{A} \geq \sum_{i=1}^{n} \Phi_{i}\left(f(A_{i})\right)\right)$$

holds, where

$$\delta_f \equiv \delta_f(\bar{m}, \bar{M}) = f(\bar{m}) + f(\bar{M}) - 2f\left(\frac{\bar{m} + \bar{M}}{2}\right)$$
(resp.
$$\delta_f \equiv \delta_f(\bar{m}, \bar{M}) = 2f\left(\frac{\bar{m} + \bar{M}}{2}\right) - f(\bar{m}) - f(\bar{M}) ,$$

$$\tilde{A} \equiv \tilde{A}_A(\bar{m}, \bar{M}) = \frac{1}{2}1_K - \frac{1}{\bar{M} - \bar{m}} \left| A - \frac{\bar{m} + \bar{M}}{2} 1_K \right|$$

and $\bar{m} \in [m, m_A], \bar{M} \in [M_A, M], \bar{m} < \bar{M},$ are arbitrary numbers.

There is an extensive literature devoted to Jensens inequality concerning different refinements and extensive results, see, for example [1, 2, 4], [10]–[14].

In this paper we study an extension of Jensen's inequality given in Theorem B and a refinement of Theorem A. As an application of this result to the quasi-arithmetic mean with a weight, we give an extension of results given in [7] and a refinement of ones given in [6].

2. Main results

To obtain our main result we need a result [7, Lemma 2] given in the following lemma.

Lemma C. Let A be a self-adjoint operator $A \in B(H)$ with $\mathsf{Sp}(A) \subseteq [m,M]$, for some scalars m < M. Then

$$f(A) \leq \frac{M1_H - A}{M - m} f(m) + \frac{A - m1_H}{M - m} f(M) - \delta_f \widetilde{A}$$

$$(\text{resp.} \quad f(A) \geq \frac{M1_H - A}{M - m} f(m) + \frac{A - m1_H}{M - m} f(M) + \delta_f \widetilde{A})$$

holds for every continuous convex (resp. concave) function $f:[m,M]\to\mathbb{R}$, where

$$\delta_f = f(m) + f(M) - 2f\left(\frac{m+M}{2}\right) \quad \text{(resp. } \delta_f = 2f\left(\frac{m+M}{2}\right) - f(m) - f(M)\text{)},$$

and $\widetilde{A} = \frac{1}{2}1_H - \frac{1}{M-m} \left| A - \frac{m+M}{2} 1_H \right|.$

We shall give the proof for the convenience of the reader.

Proof of Lemma C. We prove only the convex case.

In [8, Theorem 1, p. 717] is prove that

$$\min\{p_1, p_2\} \left[f(x) + f(y) - 2f\left(\frac{x+y}{2}\right) \right]$$

$$\leq p_1 f(x) + p_2 f(y) - f(p_1 x + p_2 y)$$
(2.2)

holds for every convex function f on an interval I and $x, y \in I$, $p_1, p_2 \in [0, 1]$ such that $p_1 + p_2 = 1$.

Putting x = m, y = M in (2.2) it follows that

$$\begin{array}{rcl}
f(p_1 m + p_2 M) & \leq & p_1 f(m) + p_2 f(M) \\
& - & \min\{p_1, p_2\} \left(f(m) + f(M) - 2f\left(\frac{m+M}{2}\right) \right)
\end{array} (2.3)$$

holds for every $p_1, p_2 \in [0, 1]$ such that $p_1 + p_2 = 1$. For any $t \in [m, M]$ we can write

$$f(t) = f\left(\frac{M-t}{M-m}m + \frac{t-m}{M-m}M\right).$$

Then by using (2.3) for $p_1 = \frac{M-t}{M-m}$ and $p_2 = \frac{t-m}{M-m}$ we get

$$f(t) \leq \frac{M-t}{M-m}f(m) + \frac{t-m}{M-m}f(M) - \left(\frac{1}{2} - \frac{1}{M-m}\left|t - \frac{m+M}{2}\right|\right)\left(f(m) + f(M) - 2f\left(\frac{m+M}{2}\right)\right),$$
(2.4)

since

$$\min\left\{\frac{M-t}{M-m}, \frac{t-m}{M-m}\right\} = \frac{1}{2} - \frac{1}{M-m} \left| t - \frac{m+M}{2} \right|.$$

Finally we use the continuous functional calculus for a self-adjoint operator A: $f, g \in \mathcal{C}(I), Sp(A) \subseteq I$ and $f \geq g$ implies $f(A) \geq g(A)$; and h(t) = |t| implies h(A) = |A|. Then by using (2.4) we obtain the desired inequality (2.1).

In the following theorem we give an extension of Jensen's inequality given in Theorem B and a refinement of Theorem A.

Theorem 2.1. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (Φ_1, \ldots, Φ_n) be an n-tuple of positive linear mappings $\Phi_i : B(H) \to B(K)$, such that $\sum_{i=1}^{n_1} \Phi_i(1_H) = \alpha 1_K$, $\sum_{i=n_1+1}^n \Phi_i(1_H) = \beta 1_K$, where $1 \leq n_1 < n$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$. Let $m_L = \min\{m_1, \ldots, m_{n_1}\}$, $M_R = \max\{M_1, \ldots, M_{n_1}\}$ and

$$m = \begin{cases} m_L, & \text{if } \{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \max\{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise,} \end{cases}$$

$$M = \begin{cases} M_R, & \text{if } \{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \min\{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise.} \end{cases}$$

If

$$(m_L, M_R) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, \dots, n$, $m < M$, and one of two equalities

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) = \sum_{i=1}^n \Phi_i(A_i) = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i)$$

is valid, then

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \leq \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \beta \delta_f \widetilde{A} \leq \sum_{i=1}^n \Phi_i(f(A_i))
\leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)) - \alpha \delta_f \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)), (2.5)$$

holds for every continuous convex function $f: I \to \mathbb{R}$ provided that the interval I contains all $m_i, M_i, i = 1, ..., n$, where

$$\delta_f \equiv \delta_f(\bar{m}, \bar{M}) = f(\bar{m}) + f(\bar{M}) - 2f\left(\frac{\bar{m} + \bar{M}}{2}\right)$$

$$\widetilde{A} \equiv \widetilde{A}_{A,\Phi,n_1,\alpha}(\bar{m}, \bar{M}) = \frac{1}{2} 1_K - \frac{1}{\alpha(\bar{M} - \bar{m})} \sum_{i=1}^{n_1} \Phi_i\left(\left|A_i - \frac{\bar{m} + \bar{M}}{2} 1_H\right|\right)$$
(2.6)

and $\bar{m} \in [m, m_L], \ \bar{M} \in [M_R, M], \ \bar{m} < \bar{M}, \ are arbitrary numbers.$

If $f: I \to \mathbb{R}$ is concave, then the reverse inequality is valid in (2.5).

Proof. We prove only the convex case.

Let us denote

$$A = \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i), \qquad B = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i), \qquad C = \sum_{i=1}^n \Phi_i(A_i).$$

It is easy to verify that A = B or B = C or A = C implies A = B = C.

Since f is convex on $[\bar{m}, \bar{M}]$ and $\mathsf{Sp}(A_i) \subseteq [m_i, M_i] \subseteq [\bar{m}, \bar{M}]$ for $i = 1, \ldots, n_1$, it follows from Lemma C that

$$f(A_i) \le \frac{\bar{M}1_H - A_i}{\bar{M} - \bar{m}} f(\bar{m}) + \frac{A_i - \bar{m}1_H}{\bar{M} - \bar{m}} f(\bar{M}) - \delta_f \tilde{A}_i, \qquad i = 1, \dots, n_1$$

holds, where $\delta_f = f(\bar{m}) + f(\bar{M}) - 2f\left(\frac{\bar{m} + \bar{M}}{2}\right)$ and $\widetilde{A}_i = \frac{1}{2}1_H - \frac{1}{\bar{M} - \bar{m}} \left| A_i - \frac{\bar{m} + \bar{M}}{2} 1_H \right|$. Applying a positive linear mapping Φ_i and summing, we obtain

$$\sum_{i=1}^{n_1} \Phi_i \left(f(A_i) \right) \leq \frac{\bar{M}\alpha 1_K - \sum_{i=1}^{n_1} \Phi_i(A_i)}{\bar{M} - \bar{m}} f(\bar{m}) + \frac{\sum_{i=1}^{n_1} \Phi_i(A_i) - \bar{m}\alpha 1_K}{\bar{M} - \bar{m}} f(\bar{M}) \\
- \delta_f \left(\frac{\alpha}{2} 1_K - \frac{1}{\bar{M} - \bar{m}} \sum_{i=1}^{n_1} \Phi_i \left(\left| A_i - \frac{\bar{m} + \bar{M}}{2} 1_H \right| \right) \right),$$

since $\sum_{i=1}^{n_1} \Phi_i(1_H) = \alpha 1_K$. It follows that

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \frac{\bar{M} 1_K - A}{\bar{M} - \bar{m}} f(\bar{m}) + \frac{A - \bar{m} 1_K}{\bar{M} - \bar{m}} f(\bar{M}) - \delta_f \widetilde{A}, \tag{2.7}$$

where
$$\widetilde{A} = \frac{1}{2} 1_K - \frac{1}{\alpha(\overline{M} - \overline{m})} \sum_{i=1}^{n_1} \Phi_i \left(\left| A_i - \frac{\overline{m} + \overline{M}}{2} 1_H \right| \right)$$

In addition, since f is convex on all $[m_i, M_i]$ and $(\bar{m}, \bar{M}) \cap [m_i, M_i] = \emptyset$ for $i = n_1 + 1, \ldots, n$, then

$$f(A_i) \ge \frac{\bar{M}1_H - A_i}{\bar{M} - \bar{m}} f(\bar{m}) + \frac{A_i - \bar{m}1_H}{\bar{M} - \bar{m}} f(\bar{M}), \qquad i = n_1 + 1, \dots, n.$$

It follows

$$\frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \delta_f \widetilde{A} \ge \frac{\bar{M}1_K - B}{\bar{M} - \bar{m}} f(\bar{m}) + \frac{B - \bar{m}1_K}{\bar{M} - \bar{m}} f(\bar{M}) - \delta_f \widetilde{A}. \tag{2.8}$$

Combining (2.7) and (2.8) and taking into account that A = B, we obtain

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i\left(f(A_i)\right) \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i\left(f(A_i)\right) - \delta_f \widetilde{A}. \tag{2.9}$$

Next, we obtain

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i))$$

$$= \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \frac{\beta}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \quad (\text{by } \alpha + \beta = 1)$$

$$\leq \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \beta \delta_f \widetilde{A} \qquad (\text{by } (2.9))$$

$$\leq \frac{\alpha}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \alpha \delta_f \widetilde{A} + \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \beta \delta_f \widetilde{A} \qquad (\text{by } (2.9))$$

$$= \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \delta_f \widetilde{A} \quad (\text{by } \alpha + \beta = 1),$$

which gives the following double inequality

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \sum_{i=1}^n \Phi_i(f(A_i)) - \beta \delta_f \widetilde{A} \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)) - \delta_f \widetilde{A}.$$

Adding $\beta \delta_f A$ in the above inequalities, we get

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \beta \delta_f \widetilde{A} \le \sum_{i=1}^n \Phi_i(f(A_i)) \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)) - \alpha \delta_f \widetilde{A}. \quad (2.10)$$

Now, we remark that $\delta_f \geq 0$ and $\widetilde{A} \geq 0$. (Indeed, since f is convex, then $f((\bar{m} + \bar{M})/2) \leq (f(\bar{m}) + f(\bar{M}))/2$, which implies that $\delta_f \geq 0$. Also, since

$$\operatorname{\mathsf{Sp}}(A_i) \subseteq [\bar{m}, \bar{M}] \quad \Rightarrow \quad \left| A_i - \frac{\bar{M} + \bar{m}}{2} 1_H \right| \leq \frac{\bar{M} - \bar{m}}{2} 1_H, \quad \text{for } i = 1, \dots, n_1,$$

then

$$\sum_{i=1}^{n_1} \Phi_i \left(\left| A_i - \frac{\bar{M} + \bar{m}}{2} 1_H \right| \right) \le \frac{\bar{M} - \bar{m}}{2} \alpha 1_K,$$

which gives

$$0 \le \frac{1}{2} 1_K - \frac{1}{\alpha(\bar{M} - \bar{m})} \sum_{i=1}^{n_1} \Phi_i \left(\left| A_i - \frac{\bar{M} + \bar{m}}{2} 1_H \right| \right) = \widetilde{A}.$$

Consequently, the following inequalities

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \beta \delta_f \widetilde{A},$$

$$\frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \alpha \delta_f \widetilde{A} \le \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)),$$

hold, which with (2.10) proves the desired series inequalities (2.5).

Example 2.2. We observe the matrix case of Theorem 2.1 for $f(t) = t^4$, which is the convex function but not operator convex, n = 4, $n_1 = 2$ and the bounds of matrices as in Figure 1.

FIGURE 1. An example a convex function and the bounds of four operators

We show an example such that

$$\frac{1}{\alpha} \left(\Phi_1(A_1^4) + \Phi_2(A_2^4) \right) < \frac{1}{\alpha} \left(\Phi_1(A_1^4) + \Phi_2(A_2^4) \right) + \beta \delta_f \widetilde{A}
< \Phi_1(A_1^4) + \Phi_2(A_2^4) + \Phi_3(A_3^4) + \Phi_4(A_4^4)
< \frac{1}{\beta} \left(\Phi_3(A_3^4) + \Phi_4(A_4^4) \right) - \alpha \delta_f \widetilde{A} < \frac{1}{\beta} \left(\Phi_3(A_3^4) + \Phi_4(A_4^4) \right)$$
(2.11)

holds, where $\delta_f = \bar{M}^4 + \bar{m}^4 - (\bar{M} + \bar{m})^4/8$ and

$$\widetilde{A} = \frac{1}{2}I_2 - \frac{1}{\alpha(\bar{M} - \bar{m})} \left(\Phi_1 \left(|A_1 - \frac{\bar{M} + \bar{m}}{2} I_h| \right) + \Phi_2 \left(|A_2 - \frac{\bar{M} + \bar{m}}{2} I_3| \right) \right).$$

We define mappings $\Phi_i: M_3(\mathbb{C}) \to M_2(\mathbb{C})$ as follows: $\Phi_i((a_{jk})_{1 \leq j,k \leq 3}) = \frac{1}{4}(a_{jk})_{1 \leq j,k \leq 2},$ $i = 1, \ldots, 4$. Then $\sum_{i=1}^4 \Phi_i(I_3) = I_2$ and $\alpha = \beta = \frac{1}{2}$.

$$A_{1} = 2 \begin{pmatrix} 2 & 9/8 & 1 \\ 9/8 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}, \qquad A_{2} = 3 \begin{pmatrix} 2 & 9/8 & 0 \\ 9/8 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$
$$A_{3} = -3 \begin{pmatrix} 4 & 1/2 & 1 \\ 1/2 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix}, \qquad A_{4} = 12 \begin{pmatrix} 5/3 & 1/2 & 0 \\ 1/2 & 3/2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Then $m_1 = 1.28607$, $M_1 = 7.70771$, $m_2 = 0.53777$, $M_2 = 5.46221$, $m_3 = -14.15050$, $M_3 = -4.71071$, $m_4 = 12.91724$, $M_4 = 36$., so $m_L = m_2$, $M_R = M_1$, $m = M_3$ and $M = m_4$ (rounded to five decimal places). Also,

$$\frac{1}{\alpha} \left(\Phi_1(A_1) + \Phi_2(A_2) \right) = \frac{1}{\beta} \left(\Phi_3(A_3) + \Phi_4(A_4) \right) = \begin{pmatrix} 4 & 9/4 \\ 9/4 & 3 \end{pmatrix},$$

and

$$A_f \equiv \frac{1}{\alpha} \left(\Phi_1(A_1^4) + \Phi_2(A_2^4) \right) = \begin{pmatrix} 989.00391 & 663.46875 \\ 663.46875 & 526.12891 \end{pmatrix},$$

$$C_f \equiv \Phi_1(A_1^4) + \Phi_2(A_2^4) + \Phi_3(A_3^4) + \Phi_4(A_4^4) = \begin{pmatrix} 68093.14258 & 48477.98437 \\ 48477.98437 & 51335.39258 \end{pmatrix},$$

$$B_f \equiv \frac{1}{\beta} \left(\Phi_3(A_3^4) + \Phi_4(A_4^4) \right) = \begin{pmatrix} 135197.28125 & 96292.5 \\ 96292.5 & 102144.65625 \end{pmatrix}$$

Then

$$A_f < C_f < B_f \tag{2.12}$$

holds (which is consistent with (1.3)).

We will choose three pairs of numbers $(\bar{m}, \bar{M}), \bar{m} \in [-4.71071, 0.53777], \bar{M} \in [7.70771, 12.91724]$ as follows:

i)
$$\bar{m} = m_L = 0.53777, \ \bar{M} = M_R = 7.70771, \ \text{then}$$

$$\widetilde{\Delta}_1 = \beta \delta_f \widetilde{A} = 0.5 \cdot 2951.69249 \cdot \begin{pmatrix} 0.15678 & 0.09030 \\ 0.09030 & 0.15943 \end{pmatrix} = \begin{pmatrix} 231.38908 & 133.26139 \\ 133.26139 & 235.29515 \end{pmatrix},$$

ii)
$$\bar{m} = m = -4.71071, \ \bar{M} = M = 12.91724, \ \text{then}$$

$$\widetilde{\Delta}_2 = \beta \delta_f \widetilde{A} = 0.5 \cdot 27766.07963 \cdot \begin{pmatrix} 0.36022 & 0.03573 \\ 0.03573 & 0.36155 \end{pmatrix} = \begin{pmatrix} 5000.89860 & 496.04498 \\ 496.04498 & 5019.50711 \end{pmatrix},$$

iii)
$$\bar{m} = -1, \, \bar{M} = 10, \, \text{then}$$

$$\widetilde{\Delta}_3 = \beta \delta_f \widetilde{A} = 0.5 \cdot 9180.875 \cdot \begin{pmatrix} 0.28203 & 0.08975 \\ 0.08975 & 0.27557 \end{pmatrix} = \begin{pmatrix} 1294.66 & 411.999 \\ 411.999 & 1265. \end{pmatrix}.$$

New, we obtain the following improvement of (2.12) (see (2.11)):

i)
$$A_f < A_f + \widetilde{\Delta}_1 = \begin{pmatrix} 1220.39299 & 796.73014 \\ 796.73014 & 761.42406 \end{pmatrix}$$

$$< C_f < \begin{pmatrix} 134965.89217 & 96159.23861 \\ 96159.23861 & 101909.36110 \end{pmatrix} = B_f - \widetilde{\Delta}_1 < B_f,$$

ii)
$$A_f < A_f + \widetilde{\Delta}_2 = \begin{pmatrix} 5989.90251 & 1159.51373 \\ 1159.51373 & 5545.63601 \end{pmatrix}$$

 $< C_f < \begin{pmatrix} 130196.38265 & 95796.45502 \\ 95796.45502 & 97125.14914 \end{pmatrix} = B_f - \widetilde{\Delta}_2 < B_f,$

iii)
$$A_f < A_f + \widetilde{\Delta}_3 = \begin{pmatrix} 2283.66362 & 1075.46746 \\ 1075.46746 & 1791.12874 \end{pmatrix}$$

 $< C_f < \begin{pmatrix} 133902.62153 & 95880.50129 \\ 95880.50129 & 100879.65641 \end{pmatrix} = B_f - \widetilde{\Delta}_3 < B_f.$

Using Theorem 2.1 we get the following result.

Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \gamma_1 \delta_f \widetilde{A} \le \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i))$$
 (2.13)

and

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)) - \gamma_2 \delta_f \widetilde{A} \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i))$$
 (2.14)

holds for every γ_1, γ_2 in the close interval joining α and β , where δ_f and \widetilde{A} are defined by (2.6).

Proof. Adding $\alpha \delta_f \widetilde{A}$ in (2.5) and noticing $\delta_f \widetilde{A} \geq 0$, we obtain

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \le \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \alpha \delta_f \widetilde{A} \le \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)).$$

Taking into account the above inequality and the left hand side of (2.5) we obtain (2.13).

Similarly, subtracting
$$\beta \delta_f \widetilde{A}$$
 in (2.5) we obtain (2.14).

Remark 2.4. Let the assumptions of Theorem 2.1 be valid.

1) We observe that the following inequality

$$f\left(\frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(A_i)\right) \le \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)) - \delta_f \widetilde{A}_{\beta} \le \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(f(A_i)),$$

holds for every continuous convex function $f: I \to \mathbb{R}$ provided that the interval I contains all $m_i, M_i, i = 1, ..., n$, where δ_f is defined by (2.6),

$$\widetilde{A}_{\beta} \equiv \widetilde{A}_{\beta,A,\Phi,n_1}(\bar{m},\bar{M}) = \frac{1}{2} 1_K - \frac{1}{\bar{M} - \bar{m}} \left| \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i A_i - \frac{\bar{m} + \bar{M}}{2} 1_K \right|$$

and $\bar{m} \in [m, m_L], \bar{M} \in [M_R, M], \bar{m} < \bar{M},$ are arbitrary numbers.

Indeed, by the assumptions of Theorem 2.1 we have

$$m_L \alpha 1_H \le \sum_{i=1}^{n_1} \Phi_i(A_i) \le M_R \alpha 1_H$$
 and $\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) = \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i(A_i)$

which implies

$$m_L 1_H \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i) \le M_R 1_H.$$

Also $(m_L, M_R) \cap [m_i, M_i] = \emptyset$ for $i = n_1 + 1, \ldots, n$ and $\sum_{i=n_1+1}^n \frac{1}{\beta} \Phi_i(1_H) = 1_K$ hold. So we can apply Theorem B on operators A_{n_1+1}, \ldots, A_n and mappings $\frac{1}{\beta} \Phi_i$. We obtain the desired inequality.

2) We denote by m_C and M_C the bounds of $C = \sum_{i=1}^n \Phi_i(A_i)$. If $(m_C, M_C) \cap [m_i, M_i] = \emptyset$, $i = 1, \ldots, n_1$, then series inequality (2.5) can be extended from the left side if we use refined Jensen's operator inequality (1.4)

$$f\left(\sum_{i=1}^{n} \Phi_{i}(A_{i})\right) = f\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}(A_{i})\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}(f(A_{i})) - \delta_{f}\widetilde{A}_{\alpha}$$

$$\leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}(f(A_{i})) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}(f(A_{i})) + \beta \delta_{f}\widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}(f(A_{i}))$$

$$\leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}(f(A_{i})) - \alpha \delta_{f}\widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}(f(A_{i})),$$

where δ_f and \widetilde{A} are defined by (2.6),

$$\widetilde{A}_{\alpha} \equiv \widetilde{A}_{\alpha,A,\Phi,n_1}(\bar{m},\bar{M}) = \frac{1}{2} 1_K - \frac{1}{\bar{M} - \bar{m}} \left| \frac{1}{\alpha} \sum_{i=n_1+1}^n \Phi_i A_i - \frac{\bar{m} + \bar{M}}{2} 1_K \right|$$

Remark 2.5. We obtain the equivalent inequalities to the ones in Theorem 2.1 in the case when $\sum_{i=1}^{n} \Phi_i(1_H) = \gamma 1_K$, for some positive scalar γ . If $\alpha + \beta = \gamma$ and one of two equalities

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i) = \frac{1}{\gamma} \sum_{i=1}^n \Phi_i(A_i)$$

is valid, then

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) \leq \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(A_i)) + \frac{\beta}{\gamma} \delta_f \widetilde{A} \leq \frac{1}{\gamma} \sum_{i=1}^n \Phi_i(f(A_i))$$

$$\leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)) - \frac{\alpha}{\gamma} \delta_f \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(A_i)),$$

holds for every continuous convex function $f: I \to \mathbb{R}$ provided that the interval I contains all $m_i, M_i, i = 1, ..., n$, where δ_f and \widetilde{A} are defined by (2.6).

With respect to Remark 2.5, we obtain the following obvious corollary of Theorem 2.1 with the convex combination of operators A_i , i = 1, ..., n.

Corollary 2.6. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (p_1, \ldots, p_n) be an n-tuple of non-negative numbers such that $0 < \sum_{i=1}^{n_1} p_i = \mathbf{p_{n_1}} < \mathbf{p_n} = \sum_{i=1}^{n} p_i$, where $1 \leq n_1 < n$. Let

 $m_L = \min\{m_1, \dots, m_{n_1}\}, M_R = \max\{M_1, \dots, M_{n_1}\}$ and

$$m = \begin{cases} m_L, & \text{if } \{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \max \{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise,} \end{cases}$$

$$M = \begin{cases} M_R, & \text{if } \{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \min \{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise.} \end{cases}$$

If

$$(m_L, M_R) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, \ldots, n,$ $m < M$,

and one of two equalities

$$\frac{1}{\mathbf{p_{n_1}}} \sum_{i=1}^{n_1} p_i A_i = \frac{1}{\mathbf{p_n}} \sum_{i=1}^{n} p_i A_i = \frac{1}{\mathbf{p_n} - \mathbf{p_{n_1}}} \sum_{i=n_1+1}^{n} p_i A_i$$

is valid, then

$$\frac{1}{\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=1}^{n_{1}} p_{i} f(A_{i}) \leq \frac{1}{\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=1}^{n_{1}} p_{i} f(A_{i}) + \left(1 - \frac{\mathbf{p}_{\mathbf{n}_{1}}}{\mathbf{p}_{\mathbf{n}}}\right) \delta_{f} \widetilde{A} \leq \frac{1}{\mathbf{p}_{\mathbf{n}}} \sum_{i=1}^{n} p_{i} f(A_{i})$$

$$\leq \frac{1}{\mathbf{p}_{\mathbf{n}} - \mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=n_{1}+1}^{n} p_{i} f(A_{i}) - \frac{\mathbf{p}_{\mathbf{n}_{1}}}{\mathbf{p}_{\mathbf{n}}} \delta_{f} \widetilde{A} \leq \frac{1}{\mathbf{p}_{\mathbf{n}} - \mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=n_{1}+1}^{n} p_{i} f(A_{i}), \tag{2.15}$$

holds for every continuous convex function $f: I \to \mathbb{R}$ provided that the interval I contains all $m_i, M_i, i = 1, ..., n$, where where δ_f is defined by (2.6),

$$\widetilde{A} \equiv \widetilde{A}_{A,p,n_1}(\bar{m},\bar{M}) = \frac{1}{2} 1_H - \frac{1}{\mathbf{p_{n_1}}(\bar{M} - \bar{m})} \sum_{i=1}^{n_1} p_i \left(\left| A_i - \frac{\bar{m} + \bar{M}}{2} 1_H \right| \right)$$

and $\bar{m} \in [m, m_L]$, $\bar{M} \in [M_R, M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

If $f: I \to \mathbb{R}$ is concave, then the reverse inequality is valid in (2.15).

As a special case of Corollary 2.6 we obtain an extension of [7, Corollary 6].

Corollary 2.7. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (p_1, \ldots, p_n) be an n-tuple of non-negative numbers such that $\sum_{i=1}^{n} p_i = 1$. Let

$$(m_A, M_A) \cap [m_i, M_i] = \emptyset$$
 for $i = 1, \ldots, n$, and $m < M$

where m_A and M_A , $m_A \leq M_A$, are the bounds of $A = \sum_{i=1}^n p_i A_i$ and

$$m = \max \{M_i \le m_A, i \in \{1, \dots, n\}\}, M = \min \{m_i \ge M_A, i \in \{1, \dots, n\}\}.$$

If $f: I \to \mathbb{R}$ is a continuous convex function provided that the interval I contains all m_i, M_i , then

$$f(\sum_{i=1}^{n} p_{i}A_{i}) \leq f(\sum_{i=1}^{n} p_{i}A_{i}) + \frac{1}{2}\delta_{f}\tilde{\tilde{A}} \leq \frac{1}{2}f(\sum_{i=1}^{n} p_{i}A_{i}) + \frac{1}{2}\sum_{i=1}^{n} p_{i}f(A_{i})$$

$$\leq \sum_{i=1}^{n} p_{i}f(A_{i}) - \frac{1}{2}\delta_{f}\tilde{\tilde{A}} \leq \sum_{i=1}^{n} p_{i}f(A_{i}),$$
(2.16)

holds, where δ_f is defined by (2.6), $\tilde{\tilde{A}} = \frac{1}{2} 1_H - \frac{1}{\bar{M} - \bar{m}} \left| \sum_{i=1}^n p_i A_i - \frac{\bar{m} + \bar{M}}{2} 1_H \right|$ and $\bar{m} \in [m, m_A], \ \bar{M} \in [M_A, M], \ \bar{m} < \bar{M}, \ are \ arbitrary \ numbers.$

If $f: I \to \mathbb{R}$ is concave, then the reverse inequality is valid in (2.16).

Proof. We prove only the convex case.

We define (n+1)-tuple of operators (B_1, \ldots, B_{n+1}) , $B_i \in B(H)$, by $B_1 = A = \sum_{i=1}^n p_i A_i$ and $B_i = A_{i-1}$, $i = 2, \ldots, n+1$. Then $m_{B_1} = m_A$, $M_{B_1} = M_A$ are the bounds of B_1 and $m_{B_i} = m_{i-1}$, $M_{B_i} = M_{i-1}$ are the ones of B_i , $i = 2, \ldots, n+1$. Also, we define (n+1)-tuple of non-negative numbers (q_1, \ldots, q_{n+1}) by $q_1 = 1$ and $q_i = p_{i-1}$, $i = 2, \ldots, n+1$. We have that $\sum_{i=1}^{n+1} q_i = 2$ and

$$(m_{B_1}, M_{B_1}) \cap [m_{B_i}, M_{B_i}] = \emptyset, \text{ for } i = 2, \dots, n+1 \text{ and } m < M$$
 (2.17)

holds. Since

$$\sum_{i=1}^{n+1} q_i B_i = B_1 + \sum_{i=2}^{n+1} q_i B_i = \sum_{i=1}^{n} p_i A_i + \sum_{i=1}^{n} p_i A_i = 2B_1,$$

then

$$q_1 B_1 = \frac{1}{2} \sum_{i=1}^{n+1} q_i B_i = \sum_{i=2}^{n+1} q_i B_i.$$
 (2.18)

Taking into account (2.17) and (2.18), we can apply Corollary 2.6 for $n_1 = 1$ and B_i , q_i as above, and we get

$$q_1 f(B_1) \le q_1 f(B_1) + \frac{1}{2} \delta_f \widetilde{B} \le \frac{1}{2} \sum_{i=1}^{n+1} q_i f(B_i) \le \sum_{i=2}^{n+1} q_i f(B_i) - \frac{1}{2} \delta_f \widetilde{B} \le \sum_{i=2}^{n+1} q_i f(B_i),$$

where $\widetilde{B} = \frac{1}{2} 1_H - \frac{1}{M - \bar{m}} \left| B_1 - \frac{\bar{m} + \bar{M}}{2} 1_H \right|$, which gives the desired inequality (2.16).

3. Quasi-arithmetic means

In this section we study an application of Theorem 2.1 to the quasi-arithmetic mean with weight.

For a subset $\{A_{n_1}, \ldots, A_{n_2}\}$ of $\{A_1, \ldots, A_n\}$, we denote the quasi-arithmetic mean by

$$\mathcal{M}_{\varphi}(\gamma, \mathbf{A}, \mathbf{\Phi}, n_1, n_2) = \varphi^{-1} \left(\frac{1}{\gamma} \sum_{i=n_1}^{n_2} \Phi_i \left(\varphi(A_i) \right) \right), \tag{3.1}$$

where $(A_{n_1}, \ldots, A_{n_2})$ are self-adjoint operators in $\mathcal{B}(H)$ with the spectra in I, $(\Phi_{n_1}, \ldots, \Phi_{n_2})$ are positive linear mappings $\Phi_i : \mathcal{B}(H) \to \mathcal{B}(K)$ such that $\sum_{i=n_1}^{n_2} \Phi_i(1_H) = \gamma 1_K$, and $\varphi : I \to \mathbb{R}$ is a continuous strictly monotone function. Under the same conditions, for convenience we introduce the following denotations

$$\delta_{\varphi,\psi}(m,M) = \psi(m) + \psi(M) - 2\psi \circ \varphi^{-1}\left(\frac{\varphi(m) + \varphi(M)}{2}\right),
\widetilde{A}_{\varphi,n_1,\gamma}(m,M) = \frac{1}{2}1_K - \frac{1}{\gamma(M-m)}\sum_{i=1}^{n_1}\Phi_i\left(\left|\varphi(A_i) - \frac{\varphi(M) + \varphi(m)}{2}1_H\right|\right),$$
(3.2)

where $\varphi, \psi: I \to \mathbb{R}$ are continuous strictly monotone functions and $m, M \in I$, m < M. Of course, we include implicitly that $\widetilde{A}_{\varphi,n_1,\gamma}(m,M) \equiv \widetilde{A}_{\varphi,A,\Phi,n_1,\gamma}(m,M)$.

The following theorem is an extension of [7, Theorem 7] and a refinement of [6, Theorem 3.1].

Theorem 3.1. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let $\varphi, \psi : I \to \mathbb{R}$ be continuous strictly monotone functions on an interval I which contains all m_i, M_i . Let (Φ_1, \ldots, Φ_n) be an n-tuple of positive linear mappings $\Phi_i : B(H) \to B(K)$, such that $\sum_{i=1}^{n_1} \Phi_i(1_H) = \alpha 1_K$, $\sum_{i=n_1+1}^n \Phi_i(1_H) = \beta 1_K$, where $1 \leq n_1 < n$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$. Let one of two equalities

$$\mathcal{M}_{\varphi}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_1) = \mathcal{M}_{\varphi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) = \mathcal{M}_{\varphi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n)$$
be valid and let

 $(m_L, M_R) \cap [m_i, M_i] = \emptyset$ for $i = n_1 + 1, \dots, n,$ m < M,where $m_L = \min\{m_1, \dots, m_{n_1}\}, M_R = \max\{M_1, \dots, M_{n_1}\},$

$$m = \begin{cases} m_L, & \text{if } \{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \max\{M_i \colon M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise,} \end{cases}$$

$$M = \begin{cases} M_R, & \text{if } \{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \min\{m_i \colon m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise.} \end{cases}$$

(i) If $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone, then

$$\mathcal{M}_{\psi}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_{1}) \leq \psi^{-1} \left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i} \left(\psi(A_{i}) \right) + \beta \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \right)$$

$$\leq \mathcal{M}_{\psi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) \leq \psi^{-1} \left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} \left(\psi(A_{i}) \right) - \alpha \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \right)$$

$$\leq \mathcal{M}_{\psi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_{1} + 1, n)$$

$$(3.4)$$

holds, where $\delta_{\varphi,\psi} \geq 0$ and $\widetilde{A}_{\varphi,n_1,\alpha} \geq 0$.

- (i') If $\psi \circ \varphi^{-1}$ is convex and $-\psi^{-1}$ is operator monotone, then the reverse inequality is valid in (3.4), where $\delta_{\varphi,\psi} \geq 0$ and $\widetilde{A}_{\varphi,n_1,\alpha} \geq 0$.
- (ii) If $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone, then (3.4) holds, where $\delta_{\varphi,\psi} \leq 0$ and $\widetilde{A}_{\varphi,n_1,\alpha} \geq 0$.

(ii') If $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator monotone, then the reverse inequality is valid in (3.4), where $\delta_{\varphi,\psi} \leq 0$ and $\widetilde{A}_{\varphi,n_1,\alpha} \geq 0$.

In all the above cases, we assume that $\delta_{\varphi,\psi} \equiv \delta_{\varphi,\psi}(\bar{m},\bar{M})$, $\widetilde{A}_{\varphi,n_1,\alpha} \equiv \widetilde{A}_{\varphi,n_1,\alpha}(\bar{m},\bar{M})$ are defined by (3.2) and $\bar{m} \in [m,m_L]$, $\bar{M} \in [M_R,M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

Proof. We only prove the case (i). Suppose that φ is a strictly increasing function. Then

$$(m_L, M_R) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, ..., n$

implies

$$(\varphi(m_L), \varphi(M_R)) \cap [\varphi(m_i), \varphi(M_i)] = \emptyset \quad \text{for } i = n_1 + 1, \dots, n.$$
 (3.5)

Also, by using (3.3), we have

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i \left(\varphi(A_i) \right) = \sum_{i=1}^n \Phi_i \left(\varphi(A_i) \right) = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i \left(\varphi(A_i) \right).$$

Taking into account (3.5) and the above double equality, we obtain by Theorem 2.1

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(\varphi(A_i))) \leq \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(f(\varphi(A_i))) + \beta \delta_f \widetilde{A}_{\varphi,n_1,\alpha} \leq \sum_{i=1}^n \Phi_i(f(\varphi(A_i)))$$

$$\leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(\varphi(A_i))) - \alpha \delta_f \widetilde{A}_{\varphi,n_1,\alpha} \leq \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(f(\varphi(A_i))),$$
(3.6)

for every continuous convex function $f: J \to \mathbb{R}$ on an interval J which contains all $[\varphi(m_i), \varphi(M_i)] = \varphi([m_i, M_i]), i = 1, \ldots, n$, where $\delta_f = f(\varphi(m)) + f(\varphi(M)) - 2f\left(\frac{\varphi(m) + \varphi(M)}{2}\right)$.

Also, if φ is strictly decreasing, then we check that (3.6) holds for convex $f: J \to \mathbb{R}$ on J which contains all $[\varphi(M_i), \varphi(m_i)] = \varphi([m_i, M_i])$.

Putting $f = \psi \circ \varphi^{-1}$ in (3.6), we obtain

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i \left(\psi(A_i) \right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i \left(\psi(A_i) \right) + \beta \delta_{\varphi,\psi} \widetilde{A}_{\varphi,n_1,\alpha} \leq \sum_{i=1}^{n} \Phi_i \left(\psi(A_i) \right) \\
\leq \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i \left(\psi(A_i) \right) - \alpha \delta_{\varphi,\psi} \widetilde{A}_{\varphi,n_1,\alpha} \leq \frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i \left(\psi(A_i) \right).$$

Applying an operator monotone function ψ^{-1} on the above double inequality, we obtain the desired inequality (3.4).

We now give some particular results of interest that can be derived from Theorem 3.1, which are an extension of [7, Corollary 8, Corollary 10] and a refinement of [6, Corollary 3.3].

Corollary 3.2. Let (A_1, \ldots, A_n) and (Φ_1, \ldots, Φ_n) , m_i , M_i , m, M, m_L , M_R , α and β be as in Theorem 3.1. Let I be an interval which contains all m_i , M_i and

$$(m_L, M_R) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, \dots, n,$ $m < M$.

I) If one of two equalities

$$\mathcal{M}_{\varphi}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_1) = \mathcal{M}_{\varphi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) = \mathcal{M}_{\varphi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n)$$
 is valid. then

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) \le \frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) + \beta \delta_{\varphi^{-1}} \widetilde{A}_{\varphi,n_1,\alpha} \le \sum_{i=1}^n \Phi_i(A_i)
\le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i) - \alpha \delta_{\varphi^{-1}} \widetilde{A}_{\varphi,n_1,\alpha} \le \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i \Phi_i(A_i).$$
(3.7)

holds for every continuous strictly monotone function $\varphi: I \to \mathbb{R}$ such that φ^{-1} is convex on I, where $\delta_{\varphi^{-1}} = \bar{m} + \bar{M} - 2 \varphi^{-1} \left(\frac{\varphi(\bar{m}) + \varphi(\bar{M})}{2} \right) \geq 0$, $\widetilde{A}_{\varphi,n_1,\alpha} = \frac{1}{2} 1_K - \frac{1}{\alpha(\bar{M} - \bar{m})} \sum_{i=1}^{n_1} \Phi_i \left(\left| \varphi(A_i) - \frac{\varphi(\bar{M}) + \varphi(\bar{m})}{2} 1_H \right| \right)$ and $\bar{m} \in [m, m_L]$, $\bar{M} \in [M_R, M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

But, if φ^{-1} is concave, then the reverse inequality is valid in (3.7) for $\delta_{\varphi^{-1}} \leq 0$.

II) If one of two equalities

$$\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i(A_i) = \sum_{i=1}^n \Phi_i(A_i) = \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(A_i)$$

is valid, then

$$\mathcal{M}_{\varphi}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_{1}) \leq \varphi^{-1} \left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i} \left(\varphi(A_{i}) \right) + \beta \delta_{\varphi} \widetilde{A}_{n_{1}} \right) \leq \mathcal{M}_{\varphi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n)$$

$$\leq \varphi^{-1} \left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} \left(\varphi(A_{i}) \right) - \alpha \delta_{\varphi} \widetilde{A}_{n_{1}} \right) \leq \mathcal{M}_{\varphi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_{1} + 1, n)$$
(3.8)

holds for every continuous strictly monotone function $\varphi: I \to \mathbb{R}$ such that one of the following conditions

- (i) φ is convex and φ^{-1} is operator monotone,
- (i') φ is concave and $-\varphi^{-1}$ is operator monotone,

is satisfied, where $\delta_{\varphi} = \varphi(\bar{m}) + \varphi(\bar{M}) - 2\varphi\left(\frac{\bar{m}+\bar{M}}{2}\right)$, $\widetilde{A}_{n_1} = \frac{1}{2}1_K - \frac{1}{\alpha(\bar{M}-\bar{m})} \times \sum_{i=1}^{n_1} \Phi_i\left(\left|A_i - \frac{\bar{m}+\bar{M}}{2}1_H\right|\right)$ and $\bar{m} \in [m, m_L]$, $\bar{M} \in [M_R, M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

But, if one of the following conditions

- (ii) φ is concave and φ^{-1} is operator monotone,
- (ii') φ is convex and $-\varphi^{-1}$ is operator monotone, is satisfied, then the reverse inequality is valid in (3.8).

Proof. The inequalities (3.7) follows from Theorem 3.1 by replacing ψ with the identity function, while the inequalities (3.8) follows by replacing φ with the identity function and ψ with φ .

Remark 3.3. Let the assumptions of Theorem 3.1 be valid.

- 1) We observe that if one of the following conditions
 - (i) $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone,
 - (i') $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone,

is satisfied, then the following obvious inequality (see Remark 2.4.1))

$$\mathcal{M}_{\varphi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n) \leq \psi^{-1} \left(\frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i(\psi(A_i)) - \delta_{\varphi} \widetilde{A}_{\beta} \right)$$

$$\leq \mathcal{M}_{\psi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n),$$

holds, $\delta_{\varphi} = \varphi(\bar{m}) + \varphi(\bar{M}) - 2\varphi\left(\frac{\bar{m} + \bar{M}}{2}\right)$, $\widetilde{A}_{\beta} = \frac{1}{2}1_K - \frac{1}{\bar{M} - \bar{m}} \left| \frac{1}{\beta} \sum_{i=n_1+1}^n \Phi_i A_i - \frac{\bar{m} + \bar{M}}{2} 1_K \right|$ and $\bar{m} \in [m, m_L]$, $\bar{M} \in [M_R, M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

- 2) We denote by m_{φ} and M_{φ} the bounds of $\mathcal{M}_{\varphi}(1, \mathbf{A}, \Phi, 1, n)$. If $(m_{\varphi}, M_{\varphi}) \cap [m_i, M_i] = \emptyset$, $i = 1, \ldots, n_1$, and one of two following conditions
 - (i) $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone
 - (ii) $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone

is satisfied, then the double inequality (3.4) can be extended from the left side as follows

$$\mathcal{M}_{\varphi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) = \mathcal{M}_{\varphi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n_{1}) \leq \psi^{-1} \left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}(f(A_{i})) - \delta_{\varphi, \psi} \widetilde{A}_{\alpha} \right)$$

$$\leq \mathcal{M}_{\psi}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_{1}) \leq \psi^{-1} \left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i} \left(\psi(A_{i}) \right) + \beta \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \right)$$

$$\leq \mathcal{M}_{\psi}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) \leq \psi^{-1} \left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} \left(\psi(A_{i}) \right) - \alpha \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \right)$$

$$\leq \mathcal{M}_{\psi}(\beta, \mathbf{A}, \mathbf{\Phi}, n_{1} + 1, n),$$

where $\delta_{\varphi,\psi}$ and $\widetilde{A}_{\varphi,n_1,\alpha}$ are defined by (3.2),

$$\widetilde{A}_{\alpha} = \frac{1}{2} 1_K - \frac{1}{\bar{M} - \bar{m}} \left| \frac{1}{\alpha} \sum_{i=n_1+1}^n \Phi_i A_i - \frac{\bar{m} + \bar{M}}{2} 1_K \right|.$$

As a special case of the quasi-arithmetic mean (3.1) we can study the weighted power mean as follows. For a subset $\{A_{p_1}, \ldots, A_{p_2}\}$ of $\{A_1, \ldots, A_n\}$ we denote

this mean by

$$M^{[r]}(\gamma, \mathbf{A}, \mathbf{\Phi}, p_1, p_2) = \begin{cases} \left(\frac{1}{\gamma} \sum_{i=p_1}^{p_2} \Phi_i\left(A_i^r\right)\right)^{1/r}, & r \in \mathbb{R} \setminus \{0\}, \\ \exp\left(\frac{1}{\gamma} \sum_{i=p_1}^{p_2} \Phi_i\left(\ln\left(A_i\right)\right)\right), & r = 0, \end{cases}$$

where $(A_{p_1}, \ldots, A_{p_2})$ are strictly positive operators, $(\Phi_{p_1}, \ldots, \Phi_{p_2})$ are positive linear mappings $\Phi_i : \mathcal{B}(H) \to \mathcal{B}(K)$ such that $\sum_{i=p_1}^{p_2} \Phi_i(1_H) = \gamma 1_K$.

Under the same conditions, for convenience we introduce denotations as a special case of (3.2) as follows

$$\delta_{r,s}(m,M) = \begin{cases}
m^s + M^s - 2\left(\frac{m^r + M^r}{2}\right)^{s/r}, & r \neq 0, \\
m^s + M^s - 2\left(mM\right)^{s/2}, & r = 0,
\end{cases}$$

$$\widetilde{A}_r(m,M) = \begin{cases}
\frac{1}{2}1_K - \frac{1}{|M^r - m^r|} \left| \sum_{i=1}^n \Phi_i(A_i^r) - \frac{M^r + m^r}{2} 1_K \right|, & r \neq 0, \\
\frac{1}{2}1_K - \left| \ln\left(\frac{M}{m}\right) \right|^{-1} \left| \sum_{i=1}^n \Phi_i(\ln A_i) - \ln\sqrt{Mm} 1_K \right|, & r = 0,
\end{cases} (3.9)$$

where $m, M \in \mathbb{R}$, 0 < m < M and $r, s \in \mathbb{R}$, $r \leq s$. Of course, we include implicitly that $\widetilde{A}_r(m, M) \equiv \widetilde{A}_{r,A}(m, M)$, where $A = \sum_{i=1}^n \Phi_i(A_i^r)$ for $r \neq 0$ and $A = \sum_{i=1}^n \Phi_i(\ln A_i)$ for r = 0.

We obtain the following corollary by applying Theorem 3.1 to the above mean. This is an extension of [7, Corollary 13] and a refinement of [6, Corollary 3.4].

Corollary 3.4. Let (A_1, \ldots, A_n) be an n-tuple of self-adjoint operators $A_i \in B(H)$ with the bounds m_i and M_i , $m_i \leq M_i$, $i = 1, \ldots, n$. Let (Φ_1, \ldots, Φ_n) be an n-tuple of positive linear mappings $\Phi_i : B(H) \to B(K)$, such that $\sum_{i=1}^{n_1} \Phi_i(1_H) = \alpha 1_K$, $\sum_{i=n_1+1}^n \Phi_i(1_H) = \beta 1_K$, where $1 \leq n_1 < n$, $\alpha, \beta > 0$ and $\alpha + \beta = 1$. Let

$$(m_L, M_R) \cap [m_i, M_i] = \emptyset$$
 for $i = n_1 + 1, \dots, n,$ $m < M$,

where $m_L = \min\{m_1, \dots, m_{n_1}\}, M_R = \max\{M_1, \dots, M_{n_1}\}$ and

$$m = \begin{cases} m_L, & \text{if } \{M_i : M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \max\{M_i : M_i \le m_L, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise,} \end{cases}$$

$$M = \begin{cases} M_R, & \text{if } \{m_i : m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\} = \emptyset, \\ \min\{m_i : m_i \ge M_R, i \in \{n_1 + 1, \dots, n\}\}, & \text{otherwise.} \end{cases}$$

(i) If either $r \leq s, \ s \geq 1$ or $r \leq s \leq -1$ and also one of two equalities

$$\mathcal{M}^{[r]}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_1) = \mathcal{M}^{[r]}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) = \mathcal{M}^{[r]}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n)$$

is valid, then

$$\mathcal{M}^{[s]}(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_1) \leq \left(\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i\left(A_i^s\right) + \beta \delta_{r,s} \widetilde{A}_{s,n_1,\alpha}\right)^{1/s} \leq \mathcal{M}^{[s]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)$$

$$\leq \left(\frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i\left(A_i^s\right) - \alpha \delta_{r,s} \widetilde{A}_{s,n_1,\alpha}\right)^{1/s} \leq \mathcal{M}^{[s]}(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_1 + 1, n)$$

holds, where $\delta_{r,s} \geq 0$ and $\widetilde{A}_{s,n_1,\alpha} \geq 0$.

In this case, we assume that $\delta_{r,s} \equiv \delta_{r,s}(\bar{m},\bar{M})$, $\widetilde{A}_{s,\bar{n}_1,\alpha} \equiv \widetilde{A}_{s,n_1,\alpha}(\bar{m},\bar{M})$ are defined by (3.9) and $\bar{m} \in [m,m_L]$, $\bar{M} \in [M_R,M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

(ii) If either $r \leq s$, $r \leq -1$ or $1 \leq r \leq s$ and also one of two equalities

$$\mathcal{M}^{[s]}(\alpha, \mathbf{A}, \mathbf{\Phi}, 1, n_1) = \mathcal{M}^{[s]}(1, \mathbf{A}, \mathbf{\Phi}, 1, n) = \mathcal{M}^{[s]}(\beta, \mathbf{A}, \mathbf{\Phi}, n_1 + 1, n)$$

is valid, then

$$\mathcal{M}^{[r]}(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_1) \ge \left(\frac{1}{\alpha} \sum_{i=1}^{n_1} \Phi_i\left(A_i^r\right) + \beta \delta_{s,r} \widetilde{A}_{r,n_1,\alpha}\right)^{1/r} \ge \mathcal{M}^{[r]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)$$

$$\ge \left(\frac{1}{\beta} \sum_{i=n_1+1}^{n} \Phi_i\left(A_i^r\right) - \alpha \delta_{s,r} \widetilde{A}_{r,n_1,\alpha}\right)^{1/r} \ge \mathcal{M}^{[r]}(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_1 + 1, n)$$

holds, where $\delta_{s,r} \leq 0$ and $\widetilde{A}_{s,n_1,\alpha} \geq 0$.

In this case, we assume that $\delta_{s,r} \equiv \delta_{s,r}(\bar{m},\bar{M})$, $\widetilde{A}_{r,n_1,\alpha} \equiv \widetilde{A}_{r,n_1,\alpha}(\bar{m},\bar{M})$ are defined by (3.9) and $\bar{m} \in [m,m_L]$, $\bar{M} \in [M_R,M]$, $\bar{m} < \bar{M}$, are arbitrary numbers.

Proof. In the case (i) we put $\psi(t) = t^s$ and $\varphi(t) = t^r$ if $r \neq 0$ or $\varphi(t) = \ln t$ if $r \neq 0$ in Theorem 3.1. In the case (ii) we put $\psi(t) = t^r$ and $\varphi(t) = t^s$ if $s \neq 0$ or $\varphi(t) = \ln t$ if $s \neq 0$. We omit the details.

References

- 1. S. Abramovich, G. Jameson and G. Sinnamon, *Refining Jensen's inequality*, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) **47(95)** (2004), no. 1–2, 3-14.
- S.S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Math. Comput. Modelling 52 (2010), 1497–1505.
- 3. F. Hansen, J. Pečarić and I. Perić, Jensen's operator inequality and it's converses, Math. Scand. 100 (2007), 61–73.
- 4. M. Khosravi, J.S. Aujla, S.S. Dragomir and M.S. Moslehian, *Refinements of Choi-Davis-Jensen's inequality*, Bull. Math. Anal. Appl. 3 (2011), no. 2, 127–133.
- J. Mićić, Z. Pavić and J. Pečarić, Jensen's inequality for operators without operator convexity, Linear Algebra Appl. 434 (2011), 1228–1237.
- J. Mićić, Z. Pavić and J. Pečarić, Extension of Jensen's operator inequality for operators without operator convexity, Abstr. Appl. Anal. 2011 (2011), 1–14.
- 7. J. Mićić, J. Pečarić and J. Perić, Refined Jensen's operator inequality with condition on spectra, Oper. Matrices (to appear).
- 8. D.S. Mitrinović, J.E. Pečarić and A.M. Fink, *Classical and New Inequalities in Analysis*, Kluwer Acad. Publ., Dordrecht-Boston-London, 1993.
- 9. B. Mond and J. Pečarić, Converses of Jensen's inequality for several operators, Revue d'analyse numer. et de théorie de l'approxim. 23 (1994) 179–183.
- M.S. Moslehian, Operator extensions of Huas inequality, Linear Algebra Appl. 430 (2009), 1131–1139.
- 11. J. Rooin, A refinement of Jensens inequality, J. Ineq. Pure and Appl. Math., 6 (2005), no. 2, Art. 38., 4 pp.
- H.M. Srivastava, Z.-G. Xia and Z.-H. Zhang, Some further refinements and extensions of the HermiteHadamard and Jensen inequalities in several variables, Math. Comput. Modelling 54 (2011), 2709–2717.

- 13. Z.-G. Xiao, H.M. Srivastava and Z.-H. Zhang, Further refinements of the Jensen inequalities based upon samples with repetitions, Math. Comput. Modelling 51 (2010), 592–600.
- 14. L.-C. Wang, X.-F. Ma and L.-H. Liu, A note on some new refinements of Jensens inequality for convex functions, J. Inequal. Pure Appl. Math., 10 (2009), no.2, Art. 48., 6 pp.
- 1 Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia.

E-mail address: jmicic@fsb.hr

 2 Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 30, 10000 Zagreb, Croatia.

E-mail address: pecaric@hazu.hr

 3 Faculty of Science, Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia.

 $E ext{-}mail\ address: jperic@pmfst.hr}$