

Ann. Funct. Anal. 5 (2014), no. 1, 101–108
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

MAJORIZATION OF SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L^2

TAKANORI YAMAMOTO

This paper is dedicated to Professor Tsuyoshi Ando

Communicated by C. P. Niculescu

ABSTRACT. Let a, b, c and d be functions in $L^2 = L^2(\mathbb{T}, d\theta/2\pi)$, where \mathbb{T} denotes the unit circle. Let \mathcal{P} denote the set of all trigonometric polynomials. Suppose the singular integral operators A and B are defined by A = aP + bQ and B = cP + dQ on \mathcal{P} , where P is an analytic projection and Q = I - P is a co-analytic projection. In this paper, we use the Helson–Szegő type set (HS)(r) to establish the condition of a, b, c and d satisfying $||Af||_2 \geq ||Bf||_2$ for all f in \mathcal{P} . If a, b, c and d are bounded measurable functions, then A and B are bounded operators, and this is equivalent to that B is majorized by A on L^2 , i.e., $A^*A \geq B^*B$ on L^2 . Applications are then presented for the majorization of singular integral operators on weighted L^2 spaces, and for the normal singular integral operators aP + bQ on L^2 when a - b is a complex constant.

1. INTRODUCTION

Let *m* denote the normalized Lebesgue measure $d\theta/2\pi$ on the unit circle $\mathbb{T} = \{|z| = 1\}$. For $0 , <math>L^p = L^p(\mathbb{T}, m)$ denotes the usual Lebesgue space on \mathbb{T} and H^p denotes the usual Hardy space on \mathbb{T} . Let *S* be the singular integral operator defined by

$$(Sf)(\zeta) = \frac{1}{\pi i} \int_{\mathbb{T}} \frac{f(\eta)}{\eta - \zeta} d\eta \quad (\text{a.e.}\zeta \in \mathbb{T})$$

Date: Received: 1 July 2013; Accepted: 16 September 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 45E10; Secondary 47B35.

Key words and phrases. Analytic projection, singular integral operator, majorization, weighted norm inequality, A_2 -weight, Helson–Szegő weight, Hardy space.

Τ. ΥΑΜΑΜΟΤΟ

where the integral is understood in the sense of Cauchy's principal value (cf. [6], Vol. 1, p.12). If f is in L^1 then $(Sf)(\zeta)$ exists for almost all ζ on \mathbb{T} . Let

$$P = (I + S)/2$$
 and $Q = (I - S)/2$,

where I denotes the identity operator. Then $Pz^n = 0$ if n < 0, and $Pz^n = z^n$ if n > 0. P is said to be an analytic projection or the Riesz projection. Let $\mathcal{P}_1 = \operatorname{span}\{z^n : n \ge 0\}$ be the set of analytic polynomials, and let $\mathcal{P}_2 = \overline{z\mathcal{P}_1} =$ span $\{z^n : n < 0\}$. Then Q = I - P, $P(f_1 + f_2) = f_1$ and $Q(f_1 + f_2) = f_2$ for all $f_1 \in \mathcal{P}_1$ and $f_2 \in \mathcal{P}_2$. Q is said to be a co-analytic projection. Let $\alpha, \beta \in L^{\infty}$, and W is a nonnegative function in L^1 . In [8] and [16], the condition of α, β and W such that $\alpha P + \beta Q$ is contractive was given. In [9], the conditions of α, β and W such that $\alpha P + \beta Q$ is bounded and bounded below was given. In [10] and [11], for $\alpha, \beta \in L^{\infty}$, the norm formula of $\alpha P + \beta Q$ on the weighted L^2 space was given. In [10], [11] and [16], the another proofs of Feldman–Krupnik– Markus's theorem ([6], Vol. 2, p.213, Theorem 5.1, and p.215, Lemma 5.3) were given. In this paper, for $a, b, c, d \in L^2$, we consider the singular integral operators A = aP + bQ and B = cP + dQ. If $a, b, c, d \notin L^{\infty}$, then A and B are unbounded. In Section 2, we use the Helson–Szegő type set (HS)(r) to establish the condition of a, b, c and d satisfying $||Af||_2 \ge ||Bf||_2$ for all f in \mathcal{P} . The main theorem is Theorem 2.4. If $a, b, c, d \in L^{\infty}$, then A and B are bounded, and this is equivalent to that B is majorized by A on L^2 , i.e., $A^*A \ge B^*B$ on L^2 . As an application of Theorem 2.4, we have Theorem 2.5. In Section 3, some applications are presented for the majorization of singular integral operators on weighted L^2 spaces, and for the normal singular integral operators aP + bQ on L^2 when a - b is a complex constant.

2. Main Theorem

In this section, we use the Helson–Szegő type set (HS)(r) to establish the condition of a, b, c and d satisfying $||Af||_2 \ge ||Bf||_2$ for all f in \mathcal{P} . The main theorem is Theorem 2.4. If $a, b, c, d \in L^{\infty}$, then this is equivalent to that B is majorized by A on L^2 , i.e., $A^*A \ge B^*B$ on L^2 . By Douglas's criterion (cf. [4], [14], p.2), this implies that there is a contraction C on L^2 such that B is factorized as B = CA. Let \tilde{f} denote the harmonic conjugate function of $f \in L^1$. Then $Sf = i\tilde{f} + \int_{\mathbb{T}} f dm$. It is well known that the Helson–Szegő set

$$(HS) = \{e^{u+\tilde{v}} ; u, v \in L^{\infty} \text{ are real functions, and } \|v\|_{\infty} < \frac{\pi}{2}\}$$

is equal to the set of all Muckenhoupt (A_2) -weights (cf. [5], p.254).

Definition 2.1. For a function r satisfying $0 \le r \le 1$ and $\int_{\mathbb{T}} r dm > 0$, we define the Helson–Szegő type set (HS)(r):

$$(HS)(r) = \{ \gamma e^{u+\tilde{v}} ; \ \gamma \text{ is a positive constant, } u, v \text{ are real functions,} \\ u \in L^1, v \in L^{\infty}, \ |v| \le \pi/2, \ r^2 e^u + e^{-u} \le 2\cos v \}$$

If $|v| \leq \pi/2$, then $e^{\tilde{v}} \cos v \in L^1$ (cf. [5], p.161), and hence $e^{-\tilde{v}} \cos v \in L^1$. Therefore $(HS)(r) \subset \{W : W > 0, r^2W \in L^1, W^{-1} \in L^1\}$. If $r^{-1} \in L^\infty$, then $(HS)(r) \subset (HS)$. In [9], we defined the another Helson–Szegő type set which is similar to HS(r). We use HS(r) to study the majorization of singular integral operators.

Lemma 2.2. Let W be a non-negative function in L^1 , and let ϕ be a function in L^1 . Suppose $|\phi| \ge W$ and $\int_{\mathbb{T}} (|\phi| - W) dm > 0$. Then the following conditions $(1) \sim (3)$ are equivalent.

- (1) There is a k in H^1 such that $|\phi k| \leq W$.
- (2) There is a non-zero k in H^1 such that $|\phi k| \leq W$.
- (3) $\log |\phi| \in L^1$ and there is a V in (HS)(r) such that ϕ/V is in $H^{1/2}$, where $r = |\phi|^{-1}\sqrt{|\phi|^2 W^2}$.

Proof. (1) \Rightarrow (2) : By (1), if k = 0, then $0 \le |\phi| - W \le 0$, and hence $|\phi| = W$. This is a contradiction. Therefore $k \ne 0$.

 $(2) \Rightarrow (3)$: By (2), $|\phi - k| \le W \le |\phi|$, and hence $0 < |k| \le 2|\phi|$. Since $\log |k| \in L^1$, $\log |\phi| \in L^1$. Since

$$\left|1 - \frac{k}{\phi}\right|^2 \le \frac{W^2}{|\phi|^2} = 1 - \frac{|\phi|^2 - W^2}{|\phi|^2} = 1 - r^2 \le 1,$$

it follows that $\operatorname{Re}(k/\phi) \geq 0$. Since $\log |k/\phi| \in L^1$, it follows that there are real functions $u \in L^1$ and $v \in L^\infty$, $|v| \leq \pi/2$ such that $k/\phi = e^{-u-iv}$. Then $0 \leq r \leq 1$ and $|1-e^{-u-iv}|^2 \leq 1-r^2$. Hence $r^2+e^{-2u} \leq 2e^{-u}\cos v$, and so $r^2e^u+e^{-u} \leq 2\cos v$. Since $\phi = ke^{u+iv}$, it follows that $\phi e^{-u-\tilde{v}} = ke^{iv-\tilde{v}} \in H^p$, for some p > 0. Since $e^{-u} \leq 2\cos v$, it follows that $e^{-u-\tilde{v}} \leq 2e^{-\tilde{v}}\cos v$. Since $|v| \leq \pi/2$, $e^{-\tilde{v}}\cos v \in L^1$ (cf. [5], p.161). Hence $e^{-u-\tilde{v}} \in L^1$. Since $\phi \in L^1$, it follows that $\phi e^{-u-\tilde{v}} \in H^{1/2}$. (3) \Rightarrow (1) : By (3), if $k = \phi e^{-u-iv}$, then $k = (\phi e^{-u-\tilde{v}})e^{\tilde{v}-iv} \in H^p$, for some p > 0. Since $|\phi - k|^2 = |\phi|^2|1 - e^{-u-iv}|^2 = |\phi|^2e^{-u}(e^u + e^{-u} - 2\cos v)$ and $e^u + e^{-u} - 2\cos v \leq (1-r^2)e^u = |W/\phi|^2e^u$, it follows that $|\phi - k| \leq W$. Hence $|k| \leq |\phi| + W$, and so $k \in H^1$. This completes the proof.

Lemma 2.3. Let W_1, W_2 be real functions in L^1 , and let ϕ be a function in L^1 . Suppose $|\phi|^2 - W_1 W_2 \ge 0$. Then the following conditions (1) and (2) are equivalent.

(1) For all $f_1 \in \mathcal{P}_1$ and $f_2 \in \mathcal{P}_2$,

$$|\int_{\mathbb{T}} f_1 \overline{f_2} \phi dm| \le \frac{1}{2} \int_{\mathbb{T}} (|f_1|^2 W_1 + |f_2|^2 W_2) dm.$$

(2) $W_1 \ge 0, W_2 \ge 0, and either$ (a) or (b) holds. (a) $|\phi|^2 - W_1 W_2 = 0.$

(b) $\log |\phi| \in L^1$, and there is a V in (HS)(r) such that ϕ/V is in $H^{1/2}$, where $r = |\phi|^{-1}\sqrt{|\phi|^2 - W_1 W_2}$.

Proof. (1) \Rightarrow (2) : By Cotlar-Sadosky's lifting theorem [3], $W_1 \ge 0$, $W_2 \ge 0$, and there is a k in H^1 such that $|\phi - k|^2 \le W_1 W_2$. By Lemma 2.2, this implies (2). (2) \Rightarrow (1) : Suppose (a) holds. Then

$$\begin{aligned} |\int_{\mathbb{T}} f_1 \overline{f_2} \phi dm| &\leq \int_{\mathbb{T}} |f_1 f_2 \phi| dm = \int_{\mathbb{T}} |f_1 f_2| \sqrt{W_1 W_2} dm \\ &\leq \frac{1}{2} \int_{\mathbb{T}} (|f_1|^2 W_1 + |f_2|^2 W_2) dm. \end{aligned}$$

Τ. ΥΑΜΑΜΟΤΟ

This implies (1). Suppose $\int_{\mathbb{T}} (|\phi|^2 - W_1 W_2) dm > 0$ and (b) holds. Then it follows from Lemma 2.2 that there is a k in H^1 such that $|\phi - k|^2 \leq W_1 W_2$. Hence for all $f_1 \in \mathcal{P}_1$ and $f_2 \in \mathcal{P}_2$,

$$\begin{split} |\int_{\mathbb{T}} f_1 \overline{f_2} \phi dm| &= |\int_{\mathbb{T}} f_1 \overline{f_2} (\phi - k) dm| \\ &\leq \int_{\mathbb{T}} |f_1 f_2| \cdot |\phi - k| dm \\ &\leq \int_{\mathbb{T}} |f_1 f_2| \sqrt{W_1 W_2} dm \\ &\leq \frac{1}{2} \int_{\mathbb{T}} (|f_1|^2 W_1 + |f_2|^2 W_2) dm. \end{split}$$

This implies (1). This completes the proof.

Remark A. In Lemma 2.3, if $|\phi|^2 - W_1 W_2 \leq 0$ then

$$\begin{aligned} |\int_{\mathbb{T}} f_1 \overline{f_2} \phi dm| &\leq \int_{\mathbb{T}} |f_1 f_2 \phi| dm \leq \int_{\mathbb{T}} |f_1 f_2| \sqrt{W_1 W_2} dm \\ &\leq \frac{1}{2} \int_{\mathbb{T}} (|f_1|^2 W_1 + |f_2|^2 W_2) dm, \end{aligned}$$

and so (1) holds without the condition (2).

Theorem 2.4. Let a, b, c, d be functions in L^2 . Then the following conditions (1) and (2) are equivalent.

(1) For all f in \mathcal{P} ,

$$\int_{\mathbb{T}} |(aP + bQ)f|^2 dm \ge \int_{\mathbb{T}} |(cP + dQ)f|^2 dm.$$

- (2) $|a| \ge |c|$, $|b| \ge |d|$, and either (a) or (b) holds. (a) ad - bc = 0.
 - (b) $\log |a\bar{b} c\bar{d}| \in L^1$, and there is a V in (HS)(r) such that $(a\bar{b} c\bar{d})/V$ is in $H^{1/2}$, where $r = |ad - bc|/|a\bar{b} - c\bar{d}|$.

Proof. (1) implies that

$$\int_{\mathbb{T}} |af_1 + bf_2|^2 dm \ge \int_{\mathbb{T}} |cf_1 + df_2|^2 dm.$$

Let $W_1 = |a|^2 - |c|^2$, $W_2 = |b|^2 - |d|^2$, and let $\phi = a\bar{b} - c\bar{d}$. Then W_1, W_2 are real functions in L^1 , and ϕ is a function in L^1 such that for all $f_1 \in \mathcal{P}_1$ and $f_2 \in \mathcal{P}_2$,

$$\int_{\mathbb{T}} \{ |f_1|^2 W_1 + |f_2|^2 W_2 + 2\operatorname{Re}(f_1 \overline{f_2} \phi) \} dm \ge 0.$$

This is equivalent to the condition (1) of Theorem 2.4. Since $|\phi|^2 - W_1 W_2 = |ad - bc|^2$ and

$$r^{2} = \frac{|\phi|^{2} - W_{1}W_{2}}{|\phi|^{2}} = \frac{|a\bar{b} - c\bar{d}|^{2} - (|a|^{2} - |c|^{2})(|b|^{2} - |d|^{2})}{|a\bar{b} - c\bar{d}|^{2}} = \left|\frac{ad - bc}{a\bar{b} - c\bar{d}}\right|^{2},$$

104

this theorem follows from Lemma 2.3. This completes the proof.

Remark B. For a function r satisfying $0 \le r \le 1$ and $\int_{\mathbb{T}} r dm > 0$,

$$(HS)(r) = \{ W \in L^1 : W > 0, \ \int_{\mathbb{T}} |f|^2 W dm \ge \int_{\mathbb{T}} |rPf|^2 W dm, \ (f \in \mathcal{P}) \}.$$

Proof. Let $a = b = \sqrt{W}$, $c = r\sqrt{W}$ and d = 0. By Theorem 2.4, $W/V \in H^{1/2}$. By Neuwirth–Newman's theorem (cf. [14], p.79), W/V is a constant, so $W \in (HS)(r)$. The converse is also true.

Theorem 2.5. Let W be a positive function in L^1 . Let a, b, c, d be in L^{∞} . Then the following conditions (1) and (2) are equivalent.

(1) For all f in \mathcal{P} ,

$$\int_{\mathbb{T}} |(aP + bQ)f|^2 W dm \ge \int_{\mathbb{T}} |(cP + dQ)f|^2 W dm.$$

(2)
$$|a| \ge |c|, |b| \ge |d|$$
, and either (a) or (b) holds.
(a) $ad - bc = 0$.
(b) $\log |a\bar{b}| = a\bar{d}|W \in L^1$ and there is a V in $(HS)(n)$

(b) $\log |a\bar{b} - c\bar{d}| W \in L^1$, and there is a V in (HS)(r) such that $(a\bar{b} - c\bar{d})W/V$ is in $H^{1/2}$, where $r = |ad - bc|/|a\bar{b} - c\bar{d}|$.

Proof. Suppose (1) holds and (a) of (2) does not hold. Let $a_1 = a\sqrt{W}$, $b_1 = b\sqrt{W}$, $c_1 = c\sqrt{W}$, $d_1 = d\sqrt{W}$. Then $\int_{\mathbb{T}} |a_1d_1 - b_1c_1|dm > 0$ and

$$\int_{\mathbb{T}} |(a_1P + b_1Q)f|^2 dm \ge \int_{\mathbb{T}} |(c_1P + d_1Q)f|^2 dm,$$

for all f in \mathcal{P} . By Theorem 2.4, this implies that $\log |a_1\bar{b_1} - c_1\bar{d_1}| \in L^1$, $|a_1|^2 - |c_1|^2 \ge 0$, $|b_1|^2 - |d_1|^2 \ge 0$, and there is a V in (HS)(r) such that $(a_1\bar{b_1} - c_1\bar{d_1})/V$ is in $H^{1/2}$, where $r = |a_1d_1 - b_1c_1|/|a_1\bar{b_1} - c_1\bar{d_1}| = |ad - bc|/|a\bar{b} - c\bar{d}|$. Hence (b) of (2) holds, so (1) implies (2). The converse is also true.

Remark C. Let W be a positive function in L^1 . Let $L^2(W)$ be the weighted Lebesgue space with the norm

$$||f||_{2,W} = \{\int_{\mathbb{T}} |f|^2 W dm\}^{1/2}.$$

When W = 1, then we write $||f|| = ||f||_W$. Let A = aP + bQ, and let B = cP + dQ. Then the condition (1) implies that B is majorized by A on $L^2(W)$, i.e., $A^*A \ge B^*B$ on $L^2(W)$, i.e., $||Af||_{2,W} \ge ||Bf||_{2,W}$ for all f in $L^2(W)$.

3. Applications of Theorem 2.4

The equivalence of (1) and (3) of the following corollary is Widom–Devinatz– Rochberg's theorem (cf. [1], [7], [6], [13], p.250, [15], p.93). Nakazi [7] removed the condition $W \in (HS)$ and established the condition of α satisfying

$$\int_{\mathbb{T}} |(\alpha P + Q)f|^2 W dm \ge \varepsilon^2 \int_{\mathbb{T}} |Pf|^2 W dm,$$

for all $f \in \mathcal{P}$.

Corollary 3.1. ([7]) Let W be in (HS) and let α be in L^{∞} . Then the following are equivalent.

- (1) T_{α} is bounded below on $H^2(W)$.
- (2) $\alpha^{-1} \in L^{\infty}$, and there is a V in (HS) such that $\alpha W/V$ is in $H^{1/2}$.
- (3) $\alpha^{-1} \in L^{\infty}$, and there is an inner function q and a real function $t \in L^1$ such that $\alpha/|\alpha| = qe^{i\tilde{t}}$ and $We^{-t} \in (HS)$.

Proof. By (1), there is a constant $\varepsilon > 0$ such that

$$\int_{\mathbb{T}} |P(\alpha Pf)|^2 W dm = \int_{\mathbb{T}} |T_{\alpha}(Pf)|^2 W dm \ge \varepsilon^2 \int_{\mathbb{T}} |Pf|^2 W dm,$$

for all $f \in \mathcal{P}$. Since $W \in (HS)$, P is bounded on $L^2(W)$, so

$$\begin{split} \|P\|_W^2 \int_{\mathbb{T}} |(\alpha P + Q)f|^2 W dm &\geq \int_{\mathbb{T}} |P(\alpha P + Q)f|^2 W dm \\ &= \int_{\mathbb{T}} |P(\alpha P f)|^2 W dm \geq \varepsilon^2 \int_{\mathbb{T}} |Pf|^2 W dm, \end{split}$$

for all $f \in \mathcal{P}$. Let $a = \|P\|_W \alpha \sqrt{W}, b = \|P\|_W \sqrt{W}, c = \varepsilon \sqrt{W}$ and d = 0. Then

$$\int_{\mathbb{T}} |(aP + bQ)f|^2 dm \ge \int_{\mathbb{T}} |cP + dQ)f|^2 dm.$$

By Theorem 2.4, $|a| \geq |c|$, so $||P||_W |\alpha| \geq \varepsilon > 0$, and $r = |ad - bc|/|a\bar{b} - c\bar{d}| = \varepsilon/(||P||_W |\alpha|) \leq 1$. Since $\alpha \in L^{\infty}$, $r^{-1} \in L^{\infty}$. By Theorem 2.4, there is a V in (HS)(r) such that $||P||_W^2 \alpha W/V = (a\bar{b} - c\bar{d})/V$ is in $H^{1/2}$. Since $V \in (HS)(r)$, $V = \gamma e^{u+\tilde{v}}$, where u and v are real functions such that $u \in L^1$, $v \in L^{\infty}$, $|v| \leq \pi/2$, and $r^2 e^u + e^{-u} \leq 2\cos v$. Since $r^{-1} \in L^{\infty}$, $u \in L^{\infty}$ and $||v||_{\infty} < \pi/2$, so $V \in (HS)$. This implies (2). The converse is also true. Suppose (2) holds. Since $\alpha W/V \in H^{1/2}$, there is an inner function q and real function $t \in L^1$ such that $\alpha W/V = qe^{t+i\tilde{t}}$. Thus $\alpha/|\alpha| = qe^{i\tilde{t}}$ and $We^{-t} = V/|\alpha| \in (HS)$. This implies (3). The converse is also true. This completes the proof.

The following corollary is the Feldman–Krupnik–Markus theorem ([6], Vol. 2, p.213, Theorem 5.1, and p.215, Lemma 5.3). $\|\alpha P + \beta Q\|_W$ and $\|P\|_W$ denote the operator norms of each operators on $L^2(W)$. In [11], this theorem was generalized to the case when α and β are functions in L^{∞} .

Corollary 3.2. ([6]) Let α and β be constants. Let

$$\gamma = \left|\frac{\alpha - \beta}{2}\right|^2 \left(\|P\|_W^2 - 1\right)$$

then

$$|\alpha P + \beta Q||_{W} = \sqrt{\gamma + \left(\frac{|\alpha| + |\beta|}{2}\right)^{2}} + \sqrt{\gamma + \left(\frac{|\alpha| - |\beta|}{2}\right)^{2}}.$$

Proof. We assume that $\|\alpha P + \beta Q\|_W^2 \neq \alpha \overline{\beta}$. Let $a = b = \sqrt{W} \|\alpha P + \beta Q\|_W$, $c = \alpha \sqrt{W}$ and $d = \beta \sqrt{W}$. Then for all f in \mathcal{P} ,

$$\int_{\mathbb{T}} |(aP + bQ)f|^2 dm \ge \int_{\mathbb{T}} |(cP + dQ)f|^2 dm.$$

By Theorem 2.4, $\log |||\alpha P + \beta Q||_W^2 - \alpha \overline{\beta}| = \log |a\overline{b} - c\overline{d}| \in L^1$, and there is a V in (HS)(r) such that $(||\alpha P + \beta Q||_W^2 - |\alpha \overline{\beta}|)W/V = (a\overline{b} - c\overline{d})/V$ is in $H^{1/2}$, where

$$r = \frac{|ad - bc|}{|a\bar{b} - c\bar{d}|} = \frac{|\alpha - \beta| \|\alpha P + \beta Q\|_W}{|\|\alpha P + \beta Q\|_W^2 - \alpha\bar{\beta}|}$$

Since $\|\alpha P + \beta Q\|_W^2 \neq \alpha \overline{\beta}$, $W/V \in H^{1/2}$ and $W/V \geq 0$. By the Neuwirth–Newman theorem (cf. [14], p.79), W/V is a constant, so $W \in (HS)(r)$. By Theorem 2.4

$$\int_{\mathbb{T}} |f|^2 W dm \ge \int_{\mathbb{T}} |rPf|^2 W dm.$$

Hence $r = 1/\|P\|_W$, so $\|P\|_W$ is described by $\|\alpha P + \beta Q\|_W$. By the calculation, $\|\alpha P + \beta Q\|_W$ is described by α, β and $\|P\|_W$. This completes the proof. \Box

An operator A is called hyponormal if its self-commutator $A^*A - AA^*$ is positive. If $\alpha - \beta$ is a constant, then the following theorem gives the descriptions of symbols of normal (and hyponormal) operators $\alpha P + \beta Q$. Brown and Halmos ([2]) proved that the Toeplitz operator T_{α} is normal if and only if α satisfies the condition (2) of the following corollary for some $c \in \mathbb{C}$. In [12], normal singular integral operator $\alpha P + \beta Q$ is considered without the condition that $\alpha - \beta$ is a constant.

Corollary 3.3. Let α and β be non-constant functions in L^{∞} . Suppose $\alpha - \beta$ is a non-zero constant. Then the following are equivalent.

- (1) $\alpha P + \beta Q$ is normal.
- (2) $\alpha = cf + \bar{f} + b$ for some $f \in zH^2$ and $b \in \mathbb{C}$, where $c = (\alpha \beta)/(\bar{\alpha} \bar{\beta})$. (3) $\alpha P + \beta Q$ is hyponormal.

Proof. (3) \Rightarrow (1): By (3), $\|(\alpha P + \beta Q)f\|^2 \ge \|(\alpha P + \beta Q)^*f\|^2$, for all $f \in L^2$. Since $\alpha - \beta \in \mathbb{C}$, it follows that

$$(\alpha P + \beta Q)^* = ((\alpha - \beta)P + \beta I)^* = (\bar{\alpha} - \bar{\beta})P + \bar{\beta}I = \bar{\alpha}P + \bar{\beta}Q.$$

Thus $\|\alpha Pf + \beta Qf\|^2 \ge \|\bar{\alpha} Pf + \bar{\beta} Qf\|^2$. Hence 2 Re $\int_{\mathbb{T}} (\alpha \bar{\beta} - \bar{\alpha} \beta) Pf \overline{Qf} dm \ge 0$, for all $f \in L^2$. This implies that 2 Re $\int_{\mathbb{T}} (\alpha \bar{\beta} - \bar{\alpha} \beta) Pf \overline{Qf} dm = 0$, for all $f \in L^2$. Thus $\|(\alpha P + \beta Q)f\|^2 = \|(\alpha P + \beta Q)^*f\|^2$, for all $f \in L^2$. Therefore $\alpha P + \beta Q$ is normal.

 $(1) \Rightarrow (3)$: Trivial.

(3) \Leftrightarrow (2): There exists a complex constant c such that $\beta = \alpha + c$. By Theorem 2.4 and the above proof, if $\alpha \bar{c} - \bar{\alpha} c = 0$, then (3) and (2) are equivalent. By Theorem 2.4, if $\alpha \bar{c} - \bar{\alpha} c \neq 0$, then (3) and (2) are equivalent, because (HS)(1) is the set of all positive constants, and the real function $i(\alpha \bar{c} - \bar{\alpha} c)$ belongs to $H^{1/2} \cap L^{\infty} = H^{\infty}$, so that it is a real constant.

Acknowledgement. The author is supported by Research Grant in Hokkai–Gakuen University.

References

- 1. A. Böttcher and B. Silbermann, *Analysis of Toeplitz Operators*, Akademie-Verlag, Berlin, and Springer-Verlag, 1990.
- A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213(1963/1964), 89–102.
- M. Cotlar and C. Sadosky, On the Helson-Szegő theorem and a related class of modified Toeplitz kernels, pp. 383-407, Harmonic analysis in Euclidean spaces, Part 1, Proc. Symp. Pure Math. 35, Amer. Math. Soc., Providence, 1979.
- R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- 5. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- I. Gohberg and N. Krupnik, One-dimensional Linear Singular Integral Equations, Vol. 1-2, Birkhäuser Verlag, Basel, 1992.
- T. Nakazi, Toeplitz operators and weighted norm inequalities, Acta Sci. Math. (Szeged) 58 (1993), 443–452.
- T. Nakazi and T. Yamamoto, Some singular integral operators and Helson-Szegő measures, J. Funct. Anal. 88 (1990), 366–384.
- T. Nakazi and T. Yamamoto, Weighted norm inequalities for some singular integral operators, J. Funct. Anal. 148 (1997), 279–295.
- T. Nakazi and T. Yamamoto, Norms of some singular integral operators on weighted L² spaces, J. Operator Theory 50 (2003), 311–330.
- T. Nakazi and T. Yamamoto, Norms and essential norms of the singular integral operator with Cauchy kernel on weighted Legesgue spaces, Integral Equations Operator Theory 68 (2010), 101–113.
- T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L², preprint.
- N.K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Vol. 1-2, Amer. Math. Soc., Providence, 2002.
- 14. D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, John Wiley & Sons, 1994.
- K. Seip, Interpolation and Sampling in Spaces of Analytic Functions, Amer. Math. Soc., Providence, 2004.
- 16. T. Yamamoto, Boundedness of some singular integral operators in weighted L^2 spaces, J. Operator Theory **32** (1994), 243–254.

DEPARTMENT OF MATHEMATICS, HOKKAI-GAKUEN UNIVERSITY, SAPPORO 062-8605, JAPAN.

E-mail address: yamamoto@elsa.hokkai-s-u.ac.jp