

Ann. Funct. Anal. 5 (2014), no. 1, 30–35
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ZERO-DILATION INDICES OF KMS MATRICES

HWA-LONG GAU¹ AND PEI YUAN WU²*

Dedicated to Professor Tsuyoshi Ando with admiration

Communicated by Q.-W. Wang

ABSTRACT. The zero-dilation index d(A) of an *n*-by-*n* complex matrix A is the maximum size of the zero matrix which can be dilated to A. In this paper, we determine the value of this index for the KMS matrix

$$J_n(a) = \begin{bmatrix} 0 & a & a^2 & \cdots & a^{n-1} \\ 0 & a & \ddots & \vdots \\ & \ddots & \ddots & a^2 \\ & & \ddots & a \\ 0 & & & 0 \end{bmatrix}, \ a \in \mathbb{C} \text{ and } n \ge 1,$$

by using the Li–Sze characterization of higher-rank numerical ranges of a finite matrix.

1. INTRODUCTION AND PRELIMINARIES

For any *n*-by-*n* complex matrix A, let d(A) denote the maximum size of a zero matrix which can be dilated to A, called the *zero-dilation index* of A. Recall that a *k*-by-*k* matrix B is said to *dilate* to A if $B = V^*AV$ for some *n*-by-*k* matrix V with $V^*V = I_k$, the *k*-by-*k* identity matrix, or, equivalently, if A is unitarily similar to a matrix of the form $\begin{bmatrix} B & * \\ * & * \end{bmatrix}$. Hence the zero-dilation index of A can

Date: Received: 2 April 2013; Accepted: 3 June 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A20; Secondary 15B05, 15A60.

Key words and phrases. Zero-dilation index, KMS matrix, higher-rank numerical range, S_n -matrix, S_n^{-1} -matrix.

also be expressed as

$$d(A) = \max\{k \ge 1 : A \text{ is unitarily similar to } \begin{bmatrix} 0_k & * \\ * & * \end{bmatrix}\},$$

where 0_k denotes the k-by-k zero matrix. The study of d(A) was initiated in [4], in which we established its basic properties and its relations with the eigenvalues of A, and we determined the value of d(A) when A is a normal matrix or a weighted permutation matrix with zero diagonals. The main tool we used there is the Li–Sze characterization of higher-rank numerical ranges of A. Recall that for any integer $k, 1 \leq k \leq n$, the rank-k numerical range $\Lambda_k(A)$ of A is the subset $\{\lambda \in \mathbb{C} : \lambda I_k \text{ dilates to } A\}$ of the complex plane. Note that $\Lambda_1(A)$ coincides with the classical numerical range $W(A) = \{\langle Ax, x \rangle : x \in \mathbb{C}^n, ||x|| = 1\}$ of A, where $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ are the standard inner product and its associated norm in \mathbb{C}^n . Li and Sze gave in [9, Theorem 2.2] a specific description of $\Lambda_k(A)$, namely,

$$\Lambda_k(A) = \bigcap_{\theta \in \mathbb{R}} \{ \lambda \in \mathbb{C} : \operatorname{Re}\left(e^{-i\theta}\lambda\right) \le \lambda_k(\operatorname{Re}\left(e^{-i\theta}A\right)) \},\$$

where, for a complex number z and a matrix B, $\operatorname{Re} z = (z + \overline{z})/2$ and $\operatorname{Re} B = (B + B^*)/2$ are their *real parts*, and, for an *n*-by-*n* Hermitian matrix C, $\lambda_1(C) \geq \cdots \geq \lambda_n(C)$ denote its eigenvalues in decreasing order. In particular, it follows that

$$d(A) = \min\{i_{\geq 0}(\operatorname{Re}\left(e^{-i\theta}A\right)) : \theta \in \mathbb{R}\}$$
(1.1)

for any matrix A, where $i_{\geq 0}(\text{Re}(e^{-i\theta}A))$ denotes the number of nonnegative eigenvalues of $\text{Re}(e^{-i\theta}A)$ (cf. [4, Theorem 2.2]).

The purpose of this paper is to compute d(A) when A is the KMS matrix

$$J_n(a) = \begin{bmatrix} 0 & a & a^2 & \cdots & a^{n-1} \\ 0 & a & \ddots & \vdots \\ & \ddots & \ddots & a^2 \\ & & \ddots & a \\ 0 & & & 0 \end{bmatrix}, a \in \mathbb{C} \text{ and } n \ge 1.$$

The study of the numerical range of $J_n(a)$ was started by Gaaya in [1, 2] and continued by the present authors in [5]. As a meeting ground of the classes of nilpotent, Toeplitz, nonnegative, S_n - and S_n^{-1} -matrices, $J_n(a)$ has diverse and interesting properties concerning its numerical range. The present paper is a further exploration of such properties. In Section 2 below, we show that

$$d(J_n(a)) = \begin{cases} n & \text{if } a = 0, \\ k & \text{if } a \neq 0 \text{ and } \cos \frac{k\pi}{n-1} < |a| \le \cos \frac{(k-1)\pi}{n-1}, 1 \le k \le \lfloor \frac{n}{2} \rfloor, \\ 1 & \text{if } |a| > 1 \end{cases}$$

for any $n \ge 2$. This is proven via, in addition to the Li–Sze result, the congruence of Re $(e^{-i\theta}J_n(a))$ and the *n*-by-*n* matrix

$$H_n(a,\theta) = \begin{bmatrix} -2|a|\cos\theta & 1\\ 1 & -2|a|\cos\theta & 1\\ & 1 & \ddots & \ddots\\ & & \ddots & -2|a|\cos\theta & 1\\ & & & 1 & 0 \end{bmatrix}, a \in \mathbb{C} \text{ and } \theta \in \mathbb{R}.$$

Here $H_1(a, \theta)$ is understood to be the 1-by-1 zero matrix. In the end of Section 2, we carry over the result for $J_n(a)$ to that for the classes of S_n - and S_n^{-1} -matrices with one single eigenvalue.

In the following, we use diag (a_1, \ldots, a_n) to denote the *n*-by-*n* diagonal matrix with diagonals a_1, \ldots, a_n . For a subset K of \mathbb{C}^n , $\bigvee K$ denotes the subspace of \mathbb{C}^n generated by vectors in K. If t is a real number, then $\lfloor t \rfloor$ (resp., $\lceil t \rceil$) denotes the largest (resp., smallest) integer less than (resp., greater than) or equal to t. Our reference for general properties of numerical ranges of matrices is [8, Chapter 1].

2. Main result

The main result of this paper is the following theorem.

Theorem 2.1. For a in \mathbb{C} and $n \geq 2$, we have

$$d(J_n(a)) = i_{\geq 0}(\operatorname{Re} J_n(a))$$

=
$$\begin{cases} n & \text{if } a = 0, \\ k & \text{if } a \neq 0 \text{ and } \cos \frac{k\pi}{n-1} < |a| \le \cos \frac{(k-1)\pi}{n-1}, 1 \le k \le \lfloor \frac{n}{2} \rfloor, \\ 1 & \text{if } |a| > 1. \end{cases}$$

This will be proven after the next two lemmas, the first of which gives the congruence of $\operatorname{Re}(e^{-i\theta}J_n(a))$ and $H_n(a,\theta)$ for any real θ . Recall that two *n*-by-*n* matrices A and B are congruent if $XAX^* = B$ for some invertible matrix X. By Sylvester's law of inertia [7, Theorem 4.5.8], two Hermitian matrices A and B are congruent if and only if they have the same numbers of positive, negative and zero eigenvalues. Thus, for congruent A and B, we have d(A) = d(B) by (1.1).

Lemma 2.2. If $a \neq 0$ in \mathbb{C} and $n \geq 2$, then $\operatorname{Re}(e^{-i\theta}J_n(a))$ is congruent to $H_n(a,\theta)$ for any real θ .

Proof. Since $J_n(a)$ and $J_n(|a|)$ are unitarily similar by [5, Proposition 2.1 (a)], we may assume that a > 0. Let $A = \operatorname{Re}\left(e^{-i\theta}J_n(a)\right), E_j = I_{j-1} \oplus \begin{bmatrix} 1 & -a \\ 0 & 1 \end{bmatrix} \oplus I_{n-j-1}$ for $1 \le j \le n-1$, and $E = E_{n-1} \cdots E_2 E_1$. Then

$$EAE^* = \frac{1}{2} \begin{bmatrix} -2a^2\cos\theta & e^{-i\theta}a \\ e^{i\theta}a & -2a^2\cos\theta & e^{-i\theta}a \\ & e^{i\theta}a & \ddots & \ddots \\ & & \ddots & -2a^2\cos\theta & e^{-i\theta}a \\ & & & e^{i\theta}a & 0 \end{bmatrix}.$$

If $W = \sqrt{2/a} \operatorname{diag}(1, e^{-i\theta}, e^{-2i\theta}, \dots, e^{-i(n-1)\theta})$, then $WEAE^*W^* = H_n(a, \theta)$, which shows the congruence of $\operatorname{Re}(e^{-i\theta}J_n(a))$ and $H_n(a, \theta)$.

For $n \geq 1$, let

$$J_n = \begin{bmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

denote the *n*-by-*n Jordan block*. It is known that the eigenvalues of $\operatorname{Re} J_n$ are $\cos(j\pi/(n+1))$, $1 \leq j \leq n$ (cf. [6, p. 373]). The next lemma relates the two Hermitian matrices $H_n(a, \theta)$ and $\operatorname{Re} J_{n-2}$.

Lemma 2.3. For any complex a, integer $n \ge 3$ and real θ , the following hold:

- (a) det $H_n(a, \theta) = -2^{n-2} \det((\operatorname{Re} J_{n-2}) (|a| \cos \theta) I_{n-2}),$
- (b) 0 is an eigenvalue of $H_n(a, \theta)$ if and only if $|a| \cos \theta = \cos(j\pi/(n-1))$ for some $j, 1 \le j \le n-2$,
- (c) $i_{\geq 0}(H_n(a,\theta)) = i_{\geq 0}((\operatorname{Re} J_{n-2}) (|a|\cos\theta)I_{n-2}) + 1$, and
- (d) $\overline{i}_{\geq 0}(H_n(a,\theta_1)) \leq \overline{i}_{\geq 0}(H_n(a,\theta_2))$ for $0 \leq \theta_1 \leq \theta_2 \leq \pi$.

Proof. For convenience, let $A = H_n(a, \theta)$ and $B_n = 2((\operatorname{Re} J_n) - (|a| \cos \theta)I_n)$.

(a) To evaluate det A, we expand it by minors on the last row of A and then on the last column of the resulting (n-1)-by-(n-1) submatrix to obtain

$$\det A = -\det B_{n-2} = -2^{n-2} \det((\operatorname{Re} J_{n-2}) - (|a|\cos\theta)I_{n-2}).$$

(b) This follows from (a) and the remark before the statement of this lemma.

(c) Note that A is cyclic in the sense that there is a vector $x = [1 \ 0 \ ... \ 0]^T$ in \mathbb{C}^n such that $x, Ax, \ldots, A^{n-1}x$ generate \mathbb{C}^n . Hence $\mathbb{C}^n = \bigvee \{x, (A - \lambda I_n)x, \ldots, (A - \lambda I_n)^{n-1}x\}$ for any complex λ . If λ is an eigenvalue of A, then the range of $A - \lambda I_n$ is not equal to \mathbb{C}^n and thus, from above, x is not in this range. In this case, we deduce that rank $(A - \lambda I_n) = n - 1$ or dim ker $(A - \lambda I_n) = 1$. In particular, this shows that the eigenvalues of A are all distinct. Let $\alpha_1 > \alpha_2 > \cdots > \alpha_n$ and $\beta_1 > \beta_2 > \cdots > \beta_{n-2}$ be the eigenvalues of A and B_{n-2} , respectively. Since B_{n-2} is a principal submatrix of A, the interlacing property for their eigenvalues [7, Theorem 4.3.8] yields that $\alpha_j \ge \beta_j$ for all $j, 1 \le j \le n-2$. If $\alpha_{j_0} = \beta_{j_0}$ for some j_0 , then apply the interlacing property for A, B_{n-1} and B_{n-2} to infer that β_{j_0} is also an eigenvalue of B_{n-1} . This is impossible since the eigenvalues of B_{n-1} and B_{n-2} are $2(\cos(j\pi/n) - |a|\cos\theta), 1 \le j \le n-1$, and $2(\cos(k\pi/(n-1))) - |a|\cos\theta),$ $1 \le k \le n-2$, respectively, which are distinct from each other. Thus $\alpha_j > \beta_j$ for all $j, 1 \le j \le n-2$. Similarly, we have $\alpha_j < \beta_{j-2}$ for $3 \le j \le n$.

Let $k = i_{\geq 0}(B_{n-2})$. If $|a| \cos \theta$ is an eigenvalue of Re J_{n-2} , then 0 is an eigenvalue of B_{n-2} and of A by (b). From $\beta_{k-1} > 0$, $\beta_k = 0$ and $\beta_{k+1} < 0$, we deduce that $\alpha_k > \beta_k = 0$, $\alpha_{k+1} = 0$ and $\alpha_{k+2} < \beta_k = 0$. Therefore, $i_{\geq 0}(A) = k + 1$ in this case. On the other hand, if $|a| \cos \theta$ is not an eigenvalue of Re J_{n-2} , then the α_j 's and β_j 's are all nonzero. From the preceding paragraph, we have $\alpha_k > \beta_k > 0$ and $\alpha_{k+3} < \beta_{k+1} < 0$. Since $\prod_{j=1}^n \alpha_j = -2^{n-2} \prod_{j=1}^{n-2} \beta_j$ by (a), we

deduce that $\alpha_{k+1}\alpha_{k+2} < 0$ and hence $\alpha_{k+1} > 0 > \alpha_{k+2}$. In this case, we again have $i_{\geq 0}(A) = k + 1$.

(d) This is an easy consequence of (c).

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Assume that $a \neq 0$. If n = 2, then a simple computation shows that the eigenvalues of $\operatorname{Re}(e^{-i\theta}J_2(a))$ are $\pm |a|/2$, and thus $d(A) = i_{\geq 0}(\operatorname{Re} J_2(a)) = 1$ by (1.1). For the remaining part of the proof, we assume that $n \geq 3$. Then a combination of (1.1) and Lemmas 2.2 and 2.3 (d) yields that

$$d(J_n(a)) = \min\{i_{\geq 0}(\operatorname{Re}(e^{-i\theta}J_n(a))) : \theta \in \mathbb{R}\}$$

= $\min\{i_{\geq 0}(H_n(a,\theta)) : \theta \in \mathbb{R}\}$
= $i_{\geq 0}(H_n(a,0))$
= $i_{\geq 0}(\operatorname{Re} J_n(a)).$

Since $(\text{Re } J_{n-2}) - |a|I_{n-2}$ has eigenvalues $\cos(j\pi/(n-1)) - |a|, 1 \le j \le n-2$, if $\cos(k\pi/(n-1)) < |a| \le \cos((k-1)\pi/(n-1))$ for some $k, 1 \le k \le \lfloor n/2 \rfloor$, then

$$d(J_n(a)) = i_{\geq 0}(H_n(a,0)) = i_{\geq 0}((\operatorname{Re} J_{n-2}) - |a|I_{n-2}) + 1$$

= $(k-1) + 1 = k$

by Lemma 2.3 (c). Similarly, if |a| > 1, then $d(J_n(a)) = 1$.

The KMS matrices are closely related to those
$$S_n$$
- and S_n^{-1} -matrices with one
single eigenvalue. Recall that an *n*-by-*n* matrix *A* is said to be of class S_n if it is
a contraction, that is, $||A|| \equiv \max_{||x||=1} ||Ax|| \leq 1$, all its eigenvalues have moduli
less than 1, and rank $(I_n - A^*A) = 1$. It is of class S_n^{-1} if all its eigenvalues have
moduli greater than 1 and rank $(I_n - A^*A) = 1$. These two classes of matrices
were first studied in [10] and [3], respectively. They are related to KMS matrices
via affine functions: if $0 < |a| < 1$ (resp., $|a| > 1$), then $((1 - |a|^2)/a)J_n(a) - \overline{a}I_n$
is of class S_n (resp., of class S_n^{-1}) with the single eigenvalue $-\overline{a}$ (cf. [5, Lemma
2.4]). Thus Theorem 2.1 may be transferred to one for S_n - and S_n^{-1} -matrices.

Corollary 2.4. If A is an S_n -matrix (resp., S_n^{-1} -matrix) with the single eigenvalue λ , then $d(A - \lambda I_n) = k$ for $\cos(k\pi/(n-1)) < |\lambda| \le \cos((k-1)\pi/(n-1))$, $1 \le k \le \lfloor n/2 \rfloor$ (resp., $d(A - \lambda I_n) = 1$).

We remark that, in the preceding corollary, $d(A - \lambda I_n) = 1$ for A an S_n^{-1} -matrix can also be proven by the result in [3]. Indeed, let $\lambda = |\lambda|e^{i\theta}$, where $0 \le \theta < 2\pi$, and let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of Re $(e^{-i\theta}A)$. Since λ is in W(A), we have $\lambda_1 \ge |\lambda| > 1$. On the other hand, by [3, Lemma 2.9 (1)], we also have $\lambda_2 \le 1$. Thus the eigenvalues $\lambda_j - |\lambda|, 1 \le j \le n$, of Re $(e^{-i\theta}(A - \lambda I_n))$ are such that $\lambda_1 - |\lambda| \ge 0$ and $\lambda_2 - |\lambda| < \lambda_2 - 1 \le 0$. Therefore, $d(A - \lambda I_n) = 1$ by (1.1).

Acknowledgement. This research was partially supported by the National Science Council of the Republic of China under projects NSC-101-2115-M-008-006 and NSC-101-2115-M-009-004 of the respective authors. The second author was also supported by the MOE-ATU.

References

- H. Gaaya, On the numerical radius of the truncated adjoint shift, Extracta Math. 25 (2010), 165–182.
- H. Gaaya, A sharpened Schwarz-Pick operatorial inequality for nilpotent operators, arXiv: 1202.3962v1.
- H.-L. Gau, Numerical ranges of reducible companion matrices, Linear Algebra Appl. 432 (2010), 1310–1321.
- H.-L. Gau, K.-Z. Wang and P.Y. Wu, Zero-dilation index of a finite matrix, Linear Algebra Appl. arXiv: 1304.0296 (submitted).
- H.-L. Gau and P.Y. Wu, Numerical Ranges of KMS matrices, Acta Sci. Math. (Szeged), arXiv: 1304.0295 (to appear).
- U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371–379.
- R.A. Horn and C.R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1985.
- R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
- 9. C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc. **136** (2008), 3013–3023.
- D. Sarason, Generalized interpolation in H[∞], Trans. Amer. Math. Soc. 127 (1967), 179–203.

¹ Department of Mathematics, National Central University, Chungli 32001, Taiwan.

E-mail address: hlgau@math.ncu.edu.tw

² DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU 30010, TAIWAN.

E-mail address: pywu@math.nctu.edu.tw