Ann. Funct. Anal. 5 (2014), no. 1, 30-35
\mathscr{A} Nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ZERO-DILATION INDICES OF KMS MATRICES

HWA-LONG GAU ${ }^{1}$ AND PEI YUAN WU ${ }^{2 *}$
Dedicated to Professor Tsuyoshi Ando with admiration
Communicated by Q.-W. Wang

Abstract. The zero-dilation index $d(A)$ of an n-by- n complex matrix A is the maximum size of the zero matrix which can be dilated to A. In this paper, we determine the value of this index for the KMS matrix

$$
J_{n}(a)=\left[\begin{array}{ccccc}
0 & a & a^{2} & \cdots & a^{n-1} \\
& 0 & a & \ddots & \vdots \\
& & \ddots & \ddots & a^{2} \\
& & & \ddots & a \\
0 & & & & 0
\end{array}\right], \quad a \in \mathbb{C} \text { and } n \geq 1
$$

by using the Li-Sze characterization of higher-rank numerical ranges of a finite matrix.

1. Introduction and preliminaries

For any n-by- n complex matrix A, let $d(A)$ denote the maximum size of a zero matrix which can be dilated to A, called the zero-dilation index of A. Recall that a k-by- k matrix B is said to dilate to A if $B=V^{*} A V$ for some n-by- k matrix V with $V^{*} V=I_{k}$, the k-by- k identity matrix, or, equivalently, if A is unitarily similar to a matrix of the form $\left[\begin{array}{ll}B & * \\ * & *\end{array}\right]$. Hence the zero-dilation index of A can

[^0]also be expressed as
\[

d(A)=\max \left\{k \geq 1: A is unitarily similar to\left[$$
\begin{array}{cc}
0_{k} & * \\
* & *
\end{array}
$$\right]\right\}
\]

where 0_{k} denotes the k-by- k zero matrix. The study of $d(A)$ was initiated in [4], in which we established its basic properties and its relations with the eigenvalues of A, and we determined the value of $d(A)$ when A is a normal matrix or a weighted permutation matrix with zero diagonals. The main tool we used there is the Li-Sze characterization of higher-rank numerical ranges of A. Recall that for any integer $k, 1 \leq k \leq n$, the rank- k numerical range $\Lambda_{k}(A)$ of A is the subset $\left\{\lambda \in \mathbb{C}: \lambda I_{k}\right.$ dilates to $\left.A\right\}$ of the complex plane. Note that $\Lambda_{1}(A)$ coincides with the classical numerical range $W(A)=\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$ of A, where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ are the standard inner product and its associated norm in $\mathbb{C}^{n} . \mathrm{Li}$ and Sze gave in [9, Theorem 2.2] a specific description of $\Lambda_{k}(A)$, namely,

$$
\Lambda_{k}(A)=\bigcap_{\theta \in \mathbb{R}}\left\{\lambda \in \mathbb{C}: \operatorname{Re}\left(e^{-i \theta} \lambda\right) \leq \lambda_{k}\left(\operatorname{Re}\left(e^{-i \theta} A\right)\right)\right\}
$$

where, for a complex number z and a matrix $B, \operatorname{Re} z=(z+\bar{z}) / 2$ and $\operatorname{Re} B=$ $\left(B+B^{*}\right) / 2$ are their real parts, and, for an n-by- n Hermitian matrix $C, \lambda_{1}(C) \geq$ $\cdots \geq \lambda_{n}(C)$ denote its eigenvalues in decreasing order. In particular, it follows that

$$
\begin{equation*}
d(A)=\min \left\{i_{\geq 0}\left(\operatorname{Re}\left(e^{-i \theta} A\right)\right): \theta \in \mathbb{R}\right\} \tag{1.1}
\end{equation*}
$$

for any matrix A, where $i_{\geq 0}\left(\operatorname{Re}\left(e^{-i \theta} A\right)\right)$ denotes the number of nonnegative eigenvalues of $\operatorname{Re}\left(e^{-i \theta} A\right)$ (cf. [4, Theorem 2.2]).

The purpose of this paper is to compute $d(A)$ when A is the $K M S$ matrix

$$
J_{n}(a)=\left[\begin{array}{ccccc}
0 & a & a^{2} & \cdots & a^{n-1} \\
& 0 & a & \ddots & \vdots \\
& & \ddots & \ddots & a^{2} \\
& & & \ddots & a \\
0 & & & & 0
\end{array}\right], \quad a \in \mathbb{C} \text { and } n \geq 1 .
$$

The study of the numerical range of $J_{n}(a)$ was started by Gaaya in [1, 2] and continued by the present authors in [5]. As a meeting ground of the classes of nilpotent, Toeplitz, nonnegative, $S_{n^{-}}$and S_{n}^{-1}-matrices, $J_{n}(a)$ has diverse and interesting properties concerning its numerical range. The present paper is a further exploration of such properties. In Section 2 below, we show that

$$
d\left(J_{n}(a)\right)= \begin{cases}n & \text { if } a=0 \\ k & \text { if } a \neq 0 \text { and } \cos \frac{k \pi}{n-1}<|a| \leq \cos \frac{(k-1) \pi}{n-1}, 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor \\ 1 & \text { if }|a|>1\end{cases}
$$

for any $n \geq 2$. This is proven via, in addition to the Li-Sze result, the congruence of $\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right)$ and the n-by- n matrix
$H_{n}(a, \theta)=\left[\begin{array}{ccccc}-2|a| \cos \theta & 1 & & & \\ 1 & -2|a| \cos \theta & 1 & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & -2|a| \cos \theta & 1 \\ & & & 1 & 0\end{array}\right], \quad a \in \mathbb{C}$ and $\theta \in \mathbb{R}$.
Here $H_{1}(a, \theta)$ is understood to be the 1-by-1 zero matrix. In the end of Section 2, we carry over the result for $J_{n}(a)$ to that for the classes of $S_{n^{-}}$and S_{n}^{-1}-matrices with one single eigenvalue.

In the following, we use $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ to denote the n-by- n diagonal matrix with diagonals a_{1}, \ldots, a_{n}. For a subset K of $\mathbb{C}^{n}, \bigvee K$ denotes the subspace of \mathbb{C}^{n} generated by vectors in K. If t is a real number, then $\lfloor t\rfloor$ (resp., $\lceil t\rceil$) denotes the largest (resp., smallest) integer less than (resp., greater than) or equal to t. Our reference for general properties of numerical ranges of matrices is [8, Chapter 1].

2. Main result

The main result of this paper is the following theorem.
Theorem 2.1. For a in \mathbb{C} and $n \geq 2$, we have

$$
\begin{aligned}
d\left(J_{n}(a)\right) & =i_{\geq 0}\left(\operatorname{Re} J_{n}(a)\right) \\
& = \begin{cases}n & \text { if } a=0, \\
k & \text { if } a \neq 0 \text { and } \cos \frac{k \pi}{n-1}<|a| \leq \cos \frac{(k-1) \pi}{n-1}, 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor \\
1 & \text { if }|a|>1 .\end{cases}
\end{aligned}
$$

This will be proven after the next two lemmas, the first of which gives the congruence of $\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right)$ and $H_{n}(a, \theta)$ for any real θ. Recall that two n-by- n matrices A and B are congruent if $X A X^{*}=B$ for some invertible matrix X. By Sylvester's law of inertia [7, Theorem 4.5.8], two Hermitian matrices A and B are congruent if and only if they have the same numbers of positive, negative and zero eigenvalues. Thus, for congruent A and B, we have $d(A)=d(B)$ by (1.1).

Lemma 2.2. If $a \neq 0$ in \mathbb{C} and $n \geq 2$, then $\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right)$ is congruent to $H_{n}(a, \theta)$ for any real θ.

Proof. Since $J_{n}(a)$ and $J_{n}(|a|)$ are unitarily similar by [5, Proposition 2.1 (a)], we may assume that $a>0$. Let $A=\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right), E_{j}=I_{j-1} \oplus\left[\begin{array}{cc}1 & -a \\ 0 & 1\end{array}\right] \oplus I_{n-j-1}$ for $1 \leq j \leq n-1$, and $E=E_{n-1} \cdots E_{2} E_{1}$. Then

$$
E A E^{*}=\frac{1}{2}\left[\begin{array}{ccccc}
-2 a^{2} \cos \theta & e^{-i \theta} a & & & \\
e^{i \theta} a & -2 a^{2} \cos \theta & e^{-i \theta} a & & \\
& e^{i \theta} a & \ddots & \ddots & \\
& & \ddots & -2 a^{2} \cos \theta & e^{-i \theta} a \\
& & & e^{i \theta} a & 0
\end{array}\right]
$$

If $W=\sqrt{2 / a} \operatorname{diag}\left(1, e^{-i \theta}, e^{-2 i \theta}, \ldots, e^{-i(n-1) \theta}\right)$, then $W E A E^{*} W^{*}=H_{n}(a, \theta)$, which shows the congruence of $\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right)$ and $H_{n}(a, \theta)$.

For $n \geq 1$, let

$$
J_{n}=\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

denote the n-by- n Jordan block. It is known that the eigenvalues of $\operatorname{Re} J_{n}$ are $\cos (j \pi /(n+1)), 1 \leq j \leq n$ (cf. [6, p. 373]). The next lemma relates the two Hermitian matrices $H_{n}(a, \theta)$ and $\operatorname{Re} J_{n-2}$.

Lemma 2.3. For any complex a, integer $n \geq 3$ and real θ, the following hold:
(a) $\operatorname{det} H_{n}(a, \theta)=-2^{n-2} \operatorname{det}\left(\left(\operatorname{Re} J_{n-2}\right)-(|a| \cos \theta) I_{n-2}\right)$,
(b) 0 is an eigenvalue of $H_{n}(a, \theta)$ if and only if $|a| \cos \theta=\cos (j \pi /(n-1))$ for some $j, 1 \leq j \leq n-2$,
(c) $i_{\geq 0}\left(H_{n}(a, \theta)\right)=i_{\geq 0}\left(\left(\operatorname{Re} J_{n-2}\right)-(|a| \cos \theta) I_{n-2}\right)+1$, and
(d) $i_{\geq 0}\left(H_{n}\left(a, \theta_{1}\right)\right) \leq i_{\geq 0}\left(H_{n}\left(a, \theta_{2}\right)\right)$ for $0 \leq \theta_{1} \leq \theta_{2} \leq \pi$.

Proof. For convenience, let $A=H_{n}(a, \theta)$ and $B_{n}=2\left(\left(\operatorname{Re} J_{n}\right)-(|a| \cos \theta) I_{n}\right)$.
(a) To evaluate $\operatorname{det} A$, we expand it by minors on the last row of A and then on the last column of the resulting $(n-1)$-by- $(n-1)$ submatrix to obtain

$$
\operatorname{det} A=-\operatorname{det} B_{n-2}=-2^{n-2} \operatorname{det}\left(\left(\operatorname{Re} J_{n-2}\right)-(|a| \cos \theta) I_{n-2}\right) .
$$

(b) This follows from (a) and the remark before the statement of this lemma.
(c) Note that A is cyclic in the sense that there is a vector $x=[10 \ldots 0]^{T}$ in \mathbb{C}^{n} such that $x, A x, \ldots, A^{n-1} x$ generate \mathbb{C}^{n}. Hence $\mathbb{C}^{n}=\bigvee\left\{x,\left(A-\lambda I_{n}\right) x, \ldots,(A-\right.$ $\left.\left.\lambda I_{n}\right)^{n-1} x\right\}$ for any complex λ. If λ is an eigenvalue of A, then the range of $A-\lambda I_{n}$ is not equal to \mathbb{C}^{n} and thus, from above, x is not in this range. In this case, we deduce that $\operatorname{rank}\left(A-\lambda I_{n}\right)=n-1$ or $\operatorname{dim} \operatorname{ker}\left(A-\lambda I_{n}\right)=1$. In particular, this shows that the eigenvalues of A are all distinct. Let $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{n}$ and $\beta_{1}>\beta_{2}>\cdots>\beta_{n-2}$ be the eigenvalues of A and B_{n-2}, respectively. Since B_{n-2} is a principal submatrix of A, the interlacing property for their eigenvalues [7, Theorem 4.3.8] yields that $\alpha_{j} \geq \beta_{j}$ for all $j, 1 \leq j \leq n-2$. If $\alpha_{j_{0}}=\beta_{j_{0}}$ for some j_{0}, then apply the interlacing property for A, B_{n-1} and B_{n-2} to infer that $\beta_{j_{0}}$ is also an eigenvalue of B_{n-1}. This is impossible since the eigenvalues of B_{n-1} and B_{n-2} are $2(\cos (j \pi / n)-|a| \cos \theta), 1 \leq j \leq n-1$, and $2(\cos (k \pi /(n-1))-|a| \cos \theta)$, $1 \leq k \leq n-2$, respectively, which are distinct from each other. Thus $\alpha_{j}>\beta_{j}$ for all $j, 1 \leq j \leq n-2$. Similarly, we have $\alpha_{j}<\beta_{j-2}$ for $3 \leq j \leq n$.

Let $k=i_{\geq 0}\left(B_{n-2}\right)$. If $|a| \cos \theta$ is an eigenvalue of $\operatorname{Re} J_{n-2}$, then 0 is an eigenvalue of B_{n-2} and of A by (b). From $\beta_{k-1}>0, \beta_{k}=0$ and $\beta_{k+1}<0$, we deduce that $\alpha_{k}>\beta_{k}=0, \alpha_{k+1}=0$ and $\alpha_{k+2}<\beta_{k}=0$. Therefore, $i_{\geq 0}(A)=k+1$ in this case. On the other hand, if $|a| \cos \theta$ is not an eigenvalue of $\operatorname{Re} J_{n-2}$, then the α_{j} 's and β_{j} 's are all nonzero. From the preceding paragraph, we have $\alpha_{k}>\beta_{k}>0$ and $\alpha_{k+3}<\beta_{k+1}<0$. Since $\prod_{j=1}^{n} \alpha_{j}=-2^{n-2} \prod_{j=1}^{n-2} \beta_{j}$ by (a), we
deduce that $\alpha_{k+1} \alpha_{k+2}<0$ and hence $\alpha_{k+1}>0>\alpha_{k+2}$. In this case, we again have $i_{\geq 0}(A)=k+1$.
(d) \bar{T} his is an easy consequence of (c).

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1. Assume that $a \neq 0$. If $n=2$, then a simple computation shows that the eigenvalues of $\operatorname{Re}\left(e^{-i \theta} J_{2}(a)\right)$ are $\pm|a| / 2$, and thus $d(A)=$ $i_{\geq 0}\left(\operatorname{Re} J_{2}(a)\right)=1$ by (1.1). For the remaining part of the proof, we assume that $n \geq 3$. Then a combination of (1.1) and Lemmas 2.2 and 2.3 (d) yields that

$$
\begin{aligned}
d\left(J_{n}(a)\right) & =\min \left\{i_{\geq 0}\left(\operatorname{Re}\left(e^{-i \theta} J_{n}(a)\right)\right): \theta \in \mathbb{R}\right\} \\
& =\min \left\{i_{\geq 0}\left(H_{n}(a, \theta)\right): \theta \in \mathbb{R}\right\} \\
& =i_{\geq 0}\left(H_{n}(a, 0)\right) \\
& =i_{\geq 0}\left(\operatorname{Re} J_{n}(a)\right) .
\end{aligned}
$$

Since $\left(\operatorname{Re} J_{n-2}\right)-|a| I_{n-2}$ has eigenvalues $\cos (j \pi /(n-1))-|a|, 1 \leq j \leq n-2$, if $\cos (k \pi /(n-1))<|a| \leq \cos ((k-1) \pi /(n-1))$ for some $k, 1 \leq k \leq\lfloor n / 2\rfloor$, then

$$
\begin{aligned}
d\left(J_{n}(a)\right) & =i_{\geq 0}\left(H_{n}(a, 0)\right)=i_{\geq 0}\left(\left(\operatorname{Re} J_{n-2}\right)-|a| I_{n-2}\right)+1 \\
& =(k-1)+1=k
\end{aligned}
$$

by Lemma 2.3 (c). Similarly, if $|a|>1$, then $d\left(J_{n}(a)\right)=1$.
The KMS matrices are closely related to those $S_{n^{-}}$and S_{n}^{-1}-matrices with one single eigenvalue. Recall that an n-by- n matrix A is said to be of class S_{n} if it is a contraction, that is, $\|A\| \equiv \max _{\|x\|=1}\|A x\| \leq 1$, all its eigenvalues have moduli less than 1 , and $\operatorname{rank}\left(I_{n}-A^{*} A\right)=1$. It is of class S_{n}^{-1} if all its eigenvalues have moduli greater than 1 and $\operatorname{rank}\left(I_{n}-A^{*} A\right)=1$. These two classes of matrices were first studied in [10] and [3], respectively. They are related to KMS matrices via affine functions: if $0<|a|<1$ (resp., $|a|>1$), then $\left(\left(1-|a|^{2}\right) / a\right) J_{n}(a)-\bar{a} I_{n}$ is of class S_{n} (resp., of class S_{n}^{-1}) with the single eigenvalue $-\bar{a}$ (cf. [5, Lemma 2.4]). Thus Theorem 2.1 may be transferred to one for $S_{n^{-}}$and S_{n}^{-1}-matrices.

Corollary 2.4. If A is an S_{n}-matrix (resp., S_{n}^{-1}-matrix) with the single eigenvalue λ, then $d\left(A-\lambda I_{n}\right)=k$ for $\cos (k \pi /(n-1))<|\lambda| \leq \cos ((k-1) \pi /(n-1))$, $1 \leq k \leq\lfloor n / 2\rfloor\left(r e s p ., d\left(A-\lambda I_{n}\right)=1\right)$.

We remark that, in the preceding corollary, $d\left(A-\lambda I_{n}\right)=1$ for A an S_{n}^{-1}-matrix can also be proven by the result in [3]. Indeed, let $\lambda=|\lambda| e^{i \theta}$, where $0 \leq \theta<2 \pi$, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of $\operatorname{Re}\left(e^{-i \theta} A\right)$. Since λ is in $W(A)$, we have $\lambda_{1} \geq|\lambda|>1$. On the other hand, by [3, Lemma 2.9 (1)], we also have $\lambda_{2} \leq 1$. Thus the eigenvalues $\lambda_{j}-|\lambda|, 1 \leq j \leq n$, of $\operatorname{Re}\left(e^{-i \theta}\left(A-\lambda I_{n}\right)\right)$ are such that $\lambda_{1}-|\lambda| \geq 0$ and $\lambda_{2}-|\lambda|<\lambda_{2}-1 \leq 0$. Therefore, $d\left(A-\lambda I_{n}\right)=1$ by (1.1).

Acknowledgement. This research was partially supported by the National Science Council of the Republic of China under projects NSC-101-2115-M-008006 and NSC-101-2115-M-009-004 of the respective authors. The second author was also supported by the MOE-ATU.

References

1. H. Gaaya, On the numerical radius of the truncated adjoint shift, Extracta Math. 25 (2010), 165-182.
2. H. Gaaya, A sharpened Schwarz-Pick operatorial inequality for nilpotent operators, arXiv: 1202.3962 v 1 .
3. H.-L. Gau, Numerical ranges of reducible companion matrices, Linear Algebra Appl. 432 (2010), 1310-1321.
4. H.-L. Gau, K.-Z. Wang and P.Y. Wu, Zero-dilation index of a finite matrix, Linear Algebra Appl. arXiv: 1304.0296 (submitted).
5. H.-L. Gau and P.Y. Wu, Numerical Ranges of KMS matrices, Acta Sci. Math. (Szeged), arXiv: 1304.0295 (to appear).
6. U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), 371-379.
7. R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
8. R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
9. C.-K. Li and N.-S. Sze, Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc. 136 (2008), 3013-3023.
10. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179203.

1 Department of Mathematics, National Central University, Chungli 32001, Taiwan.

E-mail address: hlgau@math.ncu.edu.tw
${ }^{2}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan.

E-mail address: pywu@math.nctu.edu.tw

[^0]: Date: Received: 2 April 2013; Accepted: 3 June 2013.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47A20; Secondary 15B05, 15A60.
 Key words and phrases. Zero-dilation index, KMS matrix, higher-rank numerical range, $S_{n^{-}}$ matrix, S_{n}^{-1}-matrix.

