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Abstract. A criterion for the numerical range of a linear operator acting in a
Krein space to be a two-component hyperbolical disc is given, using the concept
of support function. A characterization of the Krein space numerical range as
a union of hyperbolical discs is obtained by a reduction to the two-dimensional
case. We revisit a famous result of Ando concerning the inclusion relation
W (A) ⊆ W (B) of the numerical ranges of two operators A and B acting in
(possibly different) Hilbert spaces, and the condition that A can be dilated to
an operator of the form B⊗ I. The extension of this result to operators acting
in Krein spaces is investigated.

1. Introduction

Let H be a Hilbert space. Suppose J is an involutive self-adjoint operator
acting on (H, ⟨., .⟩). Then H can be viewed as a (complex) Krein space with
respect to the indefinite inner product [x, y] := ⟨Jx, y⟩ for any x, y ∈ H, and J is
the so-called metric matrix. For a detailed study of Krein spaces and operators
therein we refer the interested reader to [1, 10]. In our discussion, we will identify
H with Cn if H has dimension n. In such a case, we will identify B(H), the
algebra of all bounded linear operators on H, with the algebra of n× n complex
matrices Mn. The Krein space numerical range of an operator A ∈ B(H) is
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defined as

WJ(A) =

{
[Ax, x]

[x, x]
: x ∈ H, [x, x] ̸= 0

}
.

This is a generalization of the well-known classical numerical range of an operator
in a Hilbert space

W (A) =

{
⟨Ax, x⟩
⟨x, x⟩

: x ∈ H, ⟨x, x⟩ ̸= 0

}
,

a concept that has been investigated extensively in the last decades (e.g., see
[2, 11, 16]), and plays an important role in the study of matrices and operators.
There are many results which connect analytic and algebraic properties of an
operator with the geometric properties of its numerical range. There is also a
substantial interest in investigating these relations in the Krein space setting
([3, 13, 14]).

A remarkable result of Ando [1] relating the numerical range with dilation
theory, states the following:

Theorem 1.1. Let A ∈ B(H). The following conditions are equivalent.

(a) W (A) ⊆ W (B) with B =

[
0 2
0 0

]
.

(b) A = V ∗
[
0 2IH
0 0

]
V for some V satisfying V ∗V = IH.

Since

[
0 2IH
0 0

]
= B⊗IH with B =

[
0 2
0 0

]
andW (B) = D = {z ∈ C : |z| ≤ 1},

Theorem 1.1 (a) is equivalent to:
(c) W (A) is included in the closed unit disc D.

Ando’s result can be easily rephrased in the context of dilation theory as follows.
Given two linear operators X and Y acting on the Hilbert spaces H and H1,
respectively, Y is said to be a dilation of X if there exists a linear operator
V : H → H1 satisfying V ∗V = IH and X = V ∗Y V. It is clear that if A can be
dilated to an operator of the form B ⊗ IH, then W (A) ⊆ W (B ⊗ IH) = W (B).
Thus, Ando’s result states that if B is a dilation of A, then W (A) ⊆ W (B), and

the converse also holds with B =

[
0 2
0 0

]
.

Next we shift our attention to the case of Krein spaces. Let X and Y be linear
operators acting in the Krein spaces H1 and H2, dimH1 = n1, dimH2 = n2,
n1 > n2, endowed with the indefinite metric matrices Jn1 and Jn2 , respectively.
We say that Y : H1 → H1 is a dilation of X: H2 → H2 if there exists a linear
operator V : H2 → H1 such that

V # = Jn2V
∗Jn1 , V #V = In2 , X = V #Y V,

where V # denotes the J-adjoint of V , defined as [V x, y] = [x, V #y] for any
x ∈ H1, y ∈ H2.

One of our aims is to study the relation between the inclusion W (A) ⊆ WJ(B)
and the condition that A can be dilated to an operator of the form B ⊗ I. Our
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investigation should be viewed as a starting point to the research of the interface
between the theory of dilations and the theory of Krein space numerical ranges.
This program has been initiated in the classical case by Ando [1] and Mirman
[17], and revisited by Choi and Li in [15].

This note is organized as follows. In Section 2, we collect results on the in-
definite numerical range , directly related with our discussion. In Section 3, a
criterion for hyperbolicity of WJ(A) is given using a geometric approach. In
Section 4, the hyperbolicity of the indefinite numerical range of generalized qua-
dratic operators is stated. In Section 5, a characterization of WJ(A) as a union
of hyperbolical discs is obtained by a reduction to the two-dimensional case. In
Section 6, Ando’s result is extended to the setting of indefinite numerical ranges.

2. Preliminaries

Let J be an involutive Hermitian matrix (J2 = J) with signature (r, n − r),
0 ≤ r ≤ n, that is, with r positive eigenvalues and n− r negative eigenvalues. In
our discussion, we shall consider the positive and the negative J-numerical range:

W±
J (A) = {[Ax, x] : x ∈ Cn, [x, x] = ±1} .

It can be easily seen that

WJ(A) = W+
J (A) ∪W−

J (A),

and
W+

−J(A) = −W−
J (A).

So, we may concentrate in the investigation of one of these sets. In [10] it has been
proved that WJ(A) is a pseudo-convex subset of C, i.e., for any distinct pair of
points x, y ∈ WJ(A), either the line segment [x, y] or the half-rays αx+(1−α) y,
α ≤ 0 and α ≥ 1 are contained in WJ(A). In contrast with the classical case,
WJ(A) may be neither closed nor bounded, even in the finite dimensional case
(see, [12, Section 2]). In general, it is difficult to obtain the complete charac-
terization of the Krein space numerical range. However, in the case of operators
acting on a two-dimensional space this description is simple [6, Theorem 3.2], and
usually known as the Hyperbolical Range Theorem. In the sequel, we denote by
J2 the matrix diag (1,−1).

Theorem 2.1. If A ∈ M2 has eigenvalues λ1 and λ2, then WJ2(A) is a possibly
degenerate two-component hyperbolical disc with foci at λ1 and λ2, transverse and
nontransverse axis of length√

Tr(A#A)− 2Re(λ1λ2) and
√
|λ1|2 + |λ2|2 − Tr(A#A)

, respectively. For the degenerate cases, WJ2(A) may be a singleton, a line, the
union of two half-lines, the whole complex plane, or the complex plane except a
line.

The following properties will be frequently used in the sequel:
(P1) WJ(αA+ β B) = αWJ(A) + βWJ(B) for any A,B ∈ Mn, α, β ∈ C.
(P2) Given A ∈ Mn, WJ(U

#AU) = WJ(A) for any J-unitary matrix U , that
is, U ∈ Mn satisfying U#U = I.
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3. Hyperbolicity of WJ(A)

It has been shown recently that the Krein space numerical range of some ma-
trices and operators is a two-component hyperbolical disc. This is the case of
certain tridiagonal operators [4] and of quadratic operators, i.e., those with min-
imal polynomial of degree 2 [5]. In this section, we present a necessary and
sufficient condition for hyperbolicity of the Krein space numerical range.

For this purpose, we recall that the support function pE of a convex subset of
the complex plane E, is defined as

pE(θ) = sup
{
Re
(
e−iθz

)
: z ∈ E

}
,

for θ ∈ [0, 2π] . According to the definition, the value pE(θ) is the maximum
scalar projection of the set E in the direction of θ. If E contains the origin, we
clearly have pE(θ) ≥ 0, for all θ. If a line L is extended from the origin in the
direction of the vector (cos θ, sin θ), then pE(θ) is the distance from the origin
to a line L′ perpendicular to L which is tangent to ∂E, the boundary of E, at
some point. The support function completely determines the closure of E, in the
sense that if pE(θ) = pF (θ) for convex sets E and F and all real θ, then E = F .
When the set E is an ellipse, the support function has a simple formula. This
result can be found in several standard references about convex sets as well as
in [9]. Next we extend this concept to WJ(A). To avoid cases of degeneracy in
which W±

J (A) is the whole plane, a half-plane, a line or a half-line, we assume
that there exists a real interval [θ1, θ2] such that when θ ranges over it either
(i) ReW−

J (e−iθA) < ReW+
J (e−iθA) or (ii) ReW−

J (e−iθA) > ReW+
J (e−iθA). For

θ ∈ [θ1, θ2] and assuming that (i) holds, the support functions of W±
J (A) are

defined as
pW−(θ) := sup

{
Re
(
e−iθ[Ax, x]

)
: x ∈ W−

J (A)
}

and
pW+(θ) := inf

{
Re
(
e−iθ[Ax, x]

)
: x ∈ W+

J (A)
}
.

For θ ∈ [θ1, θ2] such that ReW−
J (e−iθA) > ReW+

J (e−iθA), we define

pW−(θ) := inf
{
Re
(
e−iθ[Ax, x]

)
: x ∈ W−

J (A)
}

and
pW+(θ) := sup

{
Re
(
e−iθ[Ax, x]

)
: x ∈ W+

J (A)
}
.

Considering the matrix

Hθ = Re(e−iθA) :=
e−iθA+ e−iθA#

2
,

which is J-Hermitian or (J-self-adjoint) since H#
θ = Hθ, then, we can alterna-

tively define the support functions of WJ(A) as follows:

pW−(θ) = sup
{
W−

J (Hθ) : θ ∈ [θ1, θ2]
}

and
pW+(θ) = inf

{
W+

J (Hθ) : θ ∈ [θ1, θ2]
}
.

Next we characterize the support functions of W±
J (A), when these sets are the

components of a 2-component hyperbolical disc H. Without loss of generality, we
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can always assume H centered at the origin and with axis along the coordinate
axis, by rotating and translating A, as the J-numerical range satisfies (P1) and
(P2).

Theorem 3.1. Let a, b > 0 and A ∈ Mn. Then WJ(A) is the hyperbolical disc H

with equation
x2

a2
− y2

b2
≥ 1 if and only if

pW−(θ) = −
√

a2 cos2 θ − b2 sin2 θ,

and

pW+(θ) =
√
a2 cos2 θ − b2 sin2 θ,

for θ ∈ [θ1, θ2].

Proof. We prove the direct implication. Consider the unit vector (cos θ, sin θ)
in the direction of θ. The equation of the supporting line perpendicular to this
vector and at a distance λ from the origin is

x cos θ + y sin θ = λ.

We denote by H+ (H−) the branch of the hyperbolical disc H in the right half-
plane (left half-plane). The slope of the tangent to H+ at (x, y) is given by

x

a2
− y

b2
dy

dx
= 0.

Thus,

y′ =
xb2

ya2
= − cot θ,

which implies that
x

a2 cos θ
= − y

b2 sin θ
. (3.1)

Squaring and performing some elementary computations, it follows that

x2

a2

a2 cos2 θ
=

y2

b2

b2 sin2 θ
=

x2

a2
− y2

b2

a2 cos2 θ − b2 sin2 θ
=

1

a2 cos2 θ − b2 sin2 θ
.

From (3.1) we easily get

x

a2 cos θ
= − y

b2 sin θ
=

1√
a2 cos2 θ − b2 sin2 θ

=
x cos θ + y sin θ

a2 cos2 θ − b2 sin2 θ

=
λ

a2 cos2 θ − b2 sin2 θ
.

So

λ =
√
a2 cos2 θ − b2 sin2 θ.
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Using analogous arguments for H−, the direct implication follows.

Now we prove that the converse holds. The supporting line of W+
J (A) in the

direction perpendicular to θ, and at the distance
√
a2 cos2 θ − b2 sin2 θ from the

origin, is

x cos θ + y sin θ =
√

a2 cos2 θ − b2 sin2 θ.

We compute the envelope of the family of supporting lines of W+
J (A), which

describes its boundary. For this purpose, we consider the following system of
linear equations in x, y

x cos θ + y sin θ =
√
a2 cos2 θ − b2 sin2 θ

and

−x sin θ + y cos θ =
−a2 cos θ sin θ − b2 sin θ cos θ√

a2 cos2 θ − b2 sin2 θ
.

Its solution is given by

x =
a2 cos θ√

a2 cos2 θ − b2 sin2 θ
and y = − b2 sin θ√

a2 cos2 θ − b2 sin2 θ
.

So
x2

a2
− y2

b2
=

a2 cos2 θ − b2 sin2 θ

a2 cos2 θ − b2 sin2 θ
= 1.

The envelope of the family of supporting lines ofW−
J (A) is similarly obtained. □

4. Krein numerical ranges of generalized quadratic operators

Consider an operator A ∈ B(H) with an operator matrix of the form

A =

[
aIr cP
dP −aIr

]
, a ∈ R, c, d ∈ C, (4.1)

where P is a positive semi-definite matrix and cdP ̸= 0. If d = 0, such an operator
reduces to a so-called quadratic operator (see [5] and the references therein).

The family of matrices

Ap =

[
a cp
dp −a

]
, a ∈ R, p ≥ 0, (4.2)

will be very useful in our investigation. The following lemma is used in the proof
of Theorem 4.2.

Lemma 4.1. Let Ap be of the form (4.2). For p ≥ 0, WJ2(Ap) is the pseudo-
convex region bounded by the two component hyperbola with foci at

µ±
p = ±

√
a2 + cdp2

and transverse axis of length√
2|a2 + cdp2| − (2a2 + (|c|2 + |d|2)p2).

If p < q, then WJ2(Ap) ⊆ WJ2(Aq). Further,
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(1) If c = d̄, then WJ2(Ap) is the union of two half-rays whose endpoints are
µ+
p and µ−

p , and such that WJ2(Ap) is a subset of the relative interior of
WJ2(Aq).

(2) If c ̸= d̄ and |c| = |d|, then ∂WJ2(Ap)∩WJ2(Aq) = {a,−a} and WJ2(Ap) ⊆
int(WJ2(Aq)) ∪ {a,−a}.

(3) If |c| ≠ |d|, then WJ2(Ap) ⊆ intWJ2(Aq).

Proof. The J-Hermitian part of e−iθAp reads

Re(e−iθAp) = Hθ
p =

(e−iθAp + eiθJ2A
∗
pJ2)

2

=

[
a cos θ 1

2
((c− d̄) cos θ − i(c+ d̄) sin θ)p

1
2
((−c̄+ d) cos θ − i(c̄+ d) sin θ)p −a cos θ

]
,

and its eigenvalues are given by

λ±(Hθ
p ) = ±1

2

√
(2a2 − (|c|2 + |d|2)p2 + (2a2 + (cd+ c̄d̄)p2) cos(2θ)− i(cd− c̄d̄)p2) sin(2θ).

For θ ∈ [θ1, θ2] such that

(2a2 − (|c|2 + |d|2)p2 + (2a2 + (cd+ c̄d̄)p2) cos(2θ)− i(cd− c̄d̄)p2) sin(2θ) ≥ 0,

it follows that

(λ±(Hθ
p))

2 ≤ (λ±(Hθ
p))

2

for p < q, because λ+(Hθ
p) is an increasing function of θ.

1. It can be readily seen that the equality occurs in the above inequality if
and only if |c| = |d| and θ is such that (2a2 − (|c|2 + |d|2)p2 + (2a2 + (cd +
c̄d̄)p2) cos(2θ) − i(cd − c̄d̄)p2) sin(2θ) = 0. The result follows from the previous
observations, bearing in mind the Hyperbolical Range Theorem.

2. If |c| = |d|, then the above mentioned equality case does not depend on p.
This implies that there exist common points to all the hyperbolical discs bound-
aries. Further, these points are −a and a.

3. Clear. □
Given a self-adjoint operator X ∈ B(H), diagonalizable under a J-unitary

similarity, define

σ±
J (X) = {λ ∈ R : Xξ = λξ, for some ξ ∈ H with [ξ, ξ] = ±1}.

Throughout, ∥X∥ denotes the largest eigenvalue of X.

Theorem 4.2. Suppose A ∈ B(H) has an operator matrix of the form (4.1). Let
J = Ir ⊕−Ir, p̃ = ||P || and

Ap̃ =

[
a cp̃
dp̃ −a

]
,

so that Ap̃ has eigenvalues µ
±
p̃ = ±

√
a2 + cdp̃2, and WJ2(Ap̃) is the pseudo-convex

region bounded by the 2-component hyperbola with foci at µ+
p̃ , µ

−
p̃ , and transverse

axis of length √
2|a2 + cdp̃2| − (2a2 + (|c|2 + |d|2)p̃2).
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Then,
WJ(A) = WJ2(Ap̃).

Proof. We notice that according to the hypothesis, A is J-unitarily similar to

Ã =

[
aIr cP̃

dP̃ −aIr

]
,

where P̃ = diag (p1, p2, . . . , pr), with p1 ≥ p2 ≥ . . . ≥ pr the eigenvalues of P̃ .
For θ ∈ [θ1, θ2], consider the J-self-adjoint matrix Hθ = Re (e−iθÃ). By Lemma

4.1, it follows that

σ+
J (H

θ) =
r∪

j=1

σ+
J (H

θ
pj
)

and

σ−
J (H

θ) =
r∪

j=1

σ−
J (H

θ
pj
).

Denote by λ−
JM(X) the largest eigenvalue of the J-self-adjoint matrix X ∈ B(H)

in σ−
J (X), and by λ+

Jm(X) the smallest eigenvalue of X in σ+
J (X). Since λ−

JM(Hθ)

is the eigenvalue in σ−
J2
(e−iθÃ) and λ+

Jm(H
θ) is the eigenvalue in σ+

J2
(e−iθÃ), the

result easily follows. □

5. Compressions

Let P ∈ M2 be a J2-orthogonal projection, i.e., P
2 = P, P# = P . For A ∈ Mn,

the restriction of PAP to the range of P is called a 2-dimensional compression
of A, or in matrix form

Axy =

[
ϵx [Ax, x] ϵx [Ay, x]
ϵy [Ax, y] ϵy [Ay, y]

]
, (5.1)

where x e y are real J-orthonormal column n-tuples, i.e.,
[x, y] = 0, ϵx = [x, x] = ±1 and ϵy = [y, y] = ±1. (5.2)

Explicitly, we have PAP = Axy ⊕ 0n−2, the zero block of size n− 2.

Theorem 5.1. Let A ∈ Mn and J = Ir ⊕ (−In−r). Then WJ(A) is the union of
all the sets ∪

x,y∈Rn

[x,x]=[y,y]=1

WJxy (Axy)

∪ ∪
x,y∈Rn

[x,x]=[y,y]=−1

WJxy (Axy)

∪ ∪
x,y∈Rn

[x,x]=−[y,y]=1

WJxy (Axy)

 ,

where Axy is the matrix (5.1), x and y run over all pairs of real J-orthonormal
vectors and Jxy = diag (ϵx, ϵy), with ϵx and ϵy given by (5.2).

Proof. Let w = u + iv be a complex vector in which u and v are real n-vectors.
Assume that [w,w] = 1, and so [Aw,w] ∈ W+

J (A) (the case [Aw,w] ∈ −W−
J (A)

is similarly treated). Thus,

1 = [w,w] = [u, u] + [v, v] . (5.3)
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If u and v are linearly dependent, say v = αu, α ∈ R, then w = u+iαu = (1+iα)u
and hence

[Aw,w] = [A|1 + iα|u, |1 + iα|u] . (5.4)

Since |1+ iα|u is a real J-unit vector, from (5.4) we can conclude that [Aw,w] ∈
W+

J2
(Axy), where x = |1 + iα|u and y is chosen to be a real J-unit vector such

that [x, y] = 0.
Assume that u and v are linearly independent. We have [w,w] = [u, u]+[v, v] ̸=

0. Let [u, u] ̸= 0, and

x =
u√

|[u, u]|
.

Take

s = [u, v]u− [u, u]v,

so that [s, u] = 0. Assume that [s, s] = [u, u][u, v]([u, u]− [u, v]) ̸= 0 and let

y =
s√
|[s, s]|

.

We may write

w = u+ iv = αxx+ αyy,

where

αx =
√
|[u, u]|

(
1 + i

[u, v]

[u, u]

)
, αy = −i

√
|[s, s]|
[u, u]

.

Let us compute [Aw,w]. We find

[Aw,w] = αxαx[Ax, x] + αyαy[Ay, y] + αxαy[Ax, y] + αyαx[Ay, x]

= [αx, αy]

[
ϵx 0
0 ϵy

] [
[Ax, x]ϵx [Ax, y]ϵx
[Ay, x]ϵy [Ay, y]ϵy

] [
αx

αy

]
,

[w,w] = αxαx[x, x] + αyαy[y, y] = [αx, αy]

[
ϵx 0
0 ϵy

] [
αx

αy

]
,

so that
[Aw,w]

[w,w]
=

[Axyz, z]

[z, z]
, (5.5)

where z = [αx, αy]
T . The equality (5.5) shows that any element [Aw,w] in W+

J (A)
is in the J2-numerical range of some 2-dimensional real J-orthogonal compression
of A.

If [s, s] = 0, we perturb w so that [s, s] ̸= 0. For this purpose, we consider
w′ = u′ + iv′, u′, v′ ∈ R, such that [u′, u′][u′, v′]([u′, u′] − [u′, v′]) ̸= 0 and replace
w by wϵ = ϵw + (1− ϵ)w′. For a sufficiently small ϵ, we have

[uϵ, uϵ][uϵ, vϵ]([uϵ, uϵ]− [uϵ, vϵ]) ̸= 0.

Further, the point generated by wϵ is in the neighborhood of the point generated
by w, and approaches it as ϵ → 0.

The reciprocal inclusion is a consequence of the following facts. Any 2-dimensional
real J-orthogonal compression of A is a 2-square principal submatrix of a matrix
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J-orthogonally similar to A, and WJ(A) is invariant under J-orthogonal similar-
ities. Moreover, WJ ′(B) ⊂ WJ(A) for any principal submatrix B of A and J ′ the
principal submatrix of J in the same rows and columns. □

The pseudo-convexity of WJ(A) is a simple consequence of the previous theo-
rem. It was obtained in [12] by a different approach.

Corollary 5.2. Let A ∈ Mn and J = Ir⊕ (−In−r). Then W±
J (A) are convex sets

and WJ(A) is a pseudo-convex subset of C.

Proof. Consider the points [Au, u]/[u, u], [Aw,w]/[w,w] ∈ WJ(A). Let s = [w, u]u−
[u, u]w. Assume that [s, s] ̸= 0. The vectors x = u/

√
|[u, u]| and y = s/

√
|[s, s]|

are J-orthonormal. If ϵxϵy > 0, the numerical range of the compression of A
to the subspace spanned by the vectors x, y is an elliptical disc with foci at the
eigenvalues λ1, λ2 of Axy and minor axis of length (Tr AA∗ − |λ1|2 − |λ2|2)1/2 [11,
Theorem 1.3.6]. If ϵxϵy < 0, the mentioned numerical range is a hyperbolical disc
containing the points [Au, u]/[u, u] and [Aw,w]/[w,w] .

If [s, s] = 0, we perturb s as sϵ = s+ tϵ, where [t, t] ̸= 0, and [u, t] = 0, so that
[sϵ, sϵ] ̸= 0 for a sufficiently small ϵ. Further, the points generated by the vectors
u, wϵ = (sϵ − [w, u]u)/[u, u] are in the neighborhoods of the points generated by
u,w, respectively, and approach them as ϵ → 0. □

In the next theorem, the numerical range is compressed into the union of 2-by-2
compressions over certain J-orthogonally complementary subspaces.

Theorem 5.3. Let A ∈ Mn, J = Ir⊕(−In−r) and S be a nondegenerate subspace
of Cn. Then

WJ(A) =

(∪
x,y

WJ2 (Axy)

)
,

where x and y vary over all J-unit vectors in S and S⊥, respectively.

Proof. For any J2-unit vector (α, β)
T ∈ C2, we have [αx + β y, α x + β y] = ±1.

Then for w = αx+ β y we obtain

[Aw,w] = αα[Ax, x] + ββ[Ay, y] + αβ[Ax, y] + βα[Ay, x]

= [α, β]

[
ϵx 0
0 ϵy

] [
[Ax, x]ϵx [Ax, y]ϵx
[Ay, x]ϵy [Ay, y]ϵy

] [
α
β

]
,

[w,w] = αα[x, x] + ββ[y, y] = [α, β]

[
ϵx 0
0 ϵy

] [
α
β

]
,

so that

WJ2(Axy) ⊂ WJ(A).

Conversely, if z ∈ Cn is an arbitrary J-unit vector, then there exist J-unit vectors
x ∈ S, y ∈ S⊥ and a J2-unit vector (α, β)

T ∈ C2 such that z = αx + βy. It can
be easily shown that [Az, z] ∈ WJ2(Axy), and the result follows. □
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Remark 5.4. In [13] and [8] algorithms for plotting the indefinite numerical range
have been presented. Theorem 5.1 may be used to provide an alternative al-
gorithm for the numerical determination of WJ(A). The idea is to generate a
complete set of J-orthonormal pairs x, y and actually compute the union of the
hyperbolical and elliptical discs WJ(Axy).

6. Dilations

Consider the Krein spaces H1, H2 and H3 = H1 ⊗ H2, with n1 = 2, n2 = n,
and the involutions J2 = diag (1,−1) and J2 ⊗ In = J2n acting on H1 and H2,
respectively. Let

B =

[
λ1 d
0 λ2

]
.

Since

B ⊗ In =

[
λ1In dIn
0 λ2In

]
=

n⊕
1

[
λ1 d
0 λ2

]
,

we conclude that

WJ2n(B ⊗ In) = WJ2(B).

Let u1, · · · u2n be a J2n-orthonormal basis for H3, and let V be the 2n×n matrix
V = (u1, · · · , un) whose jth column is uj. If [u1, u1] = · · · = [un, un] = 1, we
obtain

V ∗J2nV = In.

Consider

A = V ∗(J2 ⊗ In)(B ⊗ In)V.

There is a simple inclusion relation between W (A) and WJ2(B). Indeed, for x ∈
Hn we find

x∗Ax

x∗x
=

x∗V ∗(J2 ⊗ In)(B ⊗ In)V x

x∗V ∗(J2 ⊗ In)V x
=

y∗(J2 ⊗ In)(B ⊗ In)y

y∗(J2 ⊗ In)y
,

where y = V u. Thus,

W (A) ⊆ WJ2(B).

Next we consider the compression ofB⊗In to the space spanned by uσ1 , · · · , uσn ,
with

[uσ1 , uσ1 ] = ϵσ1 , . . . , [uσn , uσn ] = ϵσn ,

σ ∈ S2n, the symmetric group of degree 2n. If we take the 2n × n matrix V =
(uσ1 , · · · , uσn), we have

V ∗J2nV = V ∗(J2 ⊗ In)V = Jσ
n = diag (ϵσ1 , · · · ϵσn).

Consider now

A = Jσ
nV

∗(J2 ⊗ In)(B ⊗ In)V.

The following inclusion holds

W±
Jσ
n
(A) ⊆ W±

J2
(B),
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because, for x ∈ Hn and y = Uv, we get

x∗Jσ
nAx

x∗Jσ
nx

=
x∗V ∗(J2 ⊗ In)(B ⊗ In)V x

x∗V ∗(J2 ⊗ In)V x
=

y∗(J2 ⊗ In)(B ⊗ In)y

y∗(J2 ⊗ In)y
.

Theorem 6.1. Let
B = diag (λ1, λ2), λ1 > λ2.

If A satisfies W (A) ⊆ W+
J2
(B) or W (A) ⊆ W−

J2
(B), then A can be dilated to an

operator of the form B ⊗ In.

Proof. We have

B ⊗ In =

[
λ1In 0
0 λ2In

]
, J2 ⊗ In =

[
In 0
0 −In

]
.

Let us first assume thatW (A) ⊆ W+
J2
(B). By the Hyperbolical Range Theorem

we may conclude thatW+
J2
(B) = [λ1,+∞[. As a consequence, A is Hermitian since

W (A) ⊆ [λ1,+∞[, and so (A−λ1In), (A−λ2In) are positive semidefinite matrices.
Let us define

C =

√
A− λ2In
λ1 − λ2

, D =

√
A− λ1In
λ1 − λ2

.

Since [
C D

]
(J2 ⊗ In)

[
C
D

]
=
[
C D

] [In 0
0 −In

] [
C
D

]
= C2 −D2 = In,

we obtain [
C
D

]#
= In

[
C D

]
(J2 ⊗ In).

Thus,[
C
D

]#
(B ⊗ In)

[
C
D

]
=
[
C D

] [λ1In 0
0 −λ2In

] [
C
D

]
= λ1C

2 − λ2D
2 = A.

Let us assume now that W (A) ⊆ W−
J2
(B). Since W−

J2
(B) =] −∞, λ2], we easily

conclude that A is Hermitian and the matrices (A−λ1In), (A−λ2In) are negative
semidefinite.

Let define C and D as follows:

C =

√
λ2In − A

λ1 − λ2

, D =

√
λ1In − A

λ1 − λ2

.

Having in mind that[
C D

]
(J2 ⊗ In)

[
C
D

]
=
[
C D

] [In 0
0 −In

] [
C
D

]
= C2 −D2 = −In,

we get [
C
D

]#
= −In

[
C D

]
(J2 ⊗ In).

Henceforth,[
C
D

]#
(B ⊗ In)

[
C
D

]
= −

[
C D

] [λ1In 0
0 −λ2In

] [
C
D

]
= −λ1C

2 + λ2D
2 = A.
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□
Theorem 6.2. Let

B = diag (λ1, λ2), λ1 > λ2.

If A satisfies WJ(A) ⊆ WJ2(B) for J = Ir ⊕ −In−r = diag (ϵ1, . . . , ϵn), then A
can be dilated to an operator of the form B ⊗ In.

Proof. According to the hypothesis, WJ2(B) =]−∞, λ2]∪[λ1,+∞[. HenceWJ(A)
is a subset of the real line, and so A is J-Hermitian. Further, A is J-unitarily
diagonalizable, otherwise WJ(A) would be the whole real line. Assume firstly
that A = diag (µ1, . . . , µn), with µ1 ≥ µ2 ≥ . . . ≥ µn. Since WJ(A) ⊆ WJ2(B),
we infer that σ+

J (A) = {µ1, . . . , µr} and σ−
J (A) = {µr+1, . . . , µn} and so we have

µ1 ≥ . . . ≥ µr ≥ λ1 > λ2 ≥ µr+1 ≥ . . . ≥ µn. Given

B ⊗ In =

[
λ1In 0
0 λ2In

]
, J2 ⊗ In =

[
In 0
0 −In

]
,

we search an isometric matrix V = [P TQT ]T such that[
P ∗ Q∗] J2 ⊗ In

[
P
Q

]
= P ∗P −Q∗Q = J,

and [
P ∗ Q∗] (J2 ⊗ In)(B ⊗ In)

[
P
Q

]
= λ1P

∗P − λ2Q
∗Q = JA.

Thus,

P ∗P = J +Q∗Q,

Q∗Q =
J(A− λ1In)

λ1 − λ2

=
diag (ϵ1(µ1 − λ1), . . . , ϵn(µn − λ1))

λ1 − λ2

,

P ∗P =
J(A− λ2In)

λ1 − λ2

=
diag (ϵ1(µ1 − λ2), . . . , ϵn(µn − λ2))

λ1 − λ2

.

Noticing that ϵj(µj − λk) ≥ 0, j = 1, . . . , n, k = 1, 2, let us define

Q =

√
diag (ϵ1(µ1 − λ1), . . . , ϵn(µn − λ1))

λ1 − λ2

,

P =

√
diag (ϵ1(µ1 − λ2), . . . , ϵn(µn − λ2))

λ1 − λ2

.

If A is not in diagonal form, a J-unitary matrix can be found such that A =
U∗diag (µ1, . . . , µn)U. Then, replace V by W = V U and the theorem follows by
the first part of the proof. □
Theorem 6.3. Let

B = diag (1, i, 0), J3 = diag (1, 1,−1),

A = diag (α1 + iβ1, . . . , αn + iβn) = H + iK, αj, βj ∈ R, j = 1, . . . , n.

If WJ(A) ⊆ WJ3(B) for J = Ir ⊕−In−r = diag (ϵ1, . . . , ϵn), then A can be dilated
to an operator of the form B ⊗ In.
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Proof. Under the conditions of the theorem, WJ3(B) is the pseudo-convex hull
of the points 1, i, 0, that is, the least (in the sense of set containment) pseudo-
convex set containing these points [7, Proposition 2.3]. Since according to the
hypothesis WJ(A) ⊆ WJ3(B), and the projection of W±

J (A) on the real axis is
given by W±

J (H), we may conclude that

W−
J (H) ⊆]−∞, 0]

and

W+
J (H) ⊆ [1,+∞[.

Henceforth, we have α1 ≥ . . . ≥ αr ≥ 1 > 0 ≥ αr+1 ≥ . . . ≥ αn. By a similar
reasoning, but considering the projection of W±

J (A) on the imaginary axis, we
conclude that

W+
J (K) ⊆ [0,+∞[,

and

W−
J (H) ⊆]−∞, 0].

Hence β1 ≥ . . . ≥ βr ≥ 0 ≥ βr+1 ≥ . . . ≥ βn. Considering

B ⊗ In =

In 0 0
0 iIn 0
0 0 0

 , J3 ⊗ In =

In 0 0
0 In 0
0 0 −In

 ,

we search an isometric matrix V = [P TQTRT ]T such that

[
P ∗ Q∗ R∗] J3 ⊗ In

PQ
R

 = P ∗P +Q∗Q−R∗R = J

[
P ∗ Q∗ R∗] (J3 ⊗ In)(B ⊗ In)

PQ
R

 = P ∗P + iQ∗Q = JA.

Thus,

P ∗P +Q∗Q = J +R∗R,

P ∗P = JH = diag (ϵ1α1, . . . , ϵnαn),

Q∗Q = JK = diag (ϵ1β1, . . . , ϵnβn),

R∗R = diag (ϵ1(α1 + β1 − 1), . . . , ϵn(αn + βn − 1)).

Observing that, under the hypothesis ϵjαj ≥ 0, ϵjβj ≥ 0 and ϵj(αj+βj−1) ≥ 0 for
j = 1, . . . , n, we can define the positive semi-definite matrices P,Q,R as follows:

P =
√
diag (ϵ1α1, . . . , ϵnαn),

Q =
√
diag (ϵ1β1, . . . , ϵnβn),

R =
√
diag (ϵ1(α1 + β1 − 1), . . . , ϵn(αn + βn − 1)).

□
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